Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Leveraging electron donor–acceptor complexes for kinetic resolution in catalytic asymmetric photochemical synthesis

Abstract

The formation of electron donor–acceptor (EDA) complexes has emerged as a powerful strategy for accessing valuable molecules. However, protocols for constructing enantio-enriched molecules are limited, typically relying on EDA complex formation between a substrate and an intermediate generated from a chiral catalyst along with another substrate. This approach facilitates the coupling of the resulting radical species, thereby enabling the controlled enantioselective formation of stereocentres. Here we introduce a kinetic resolution strategy that harnesses the formation of EDA complexes between a chiral catalyst and racemic feedstock. The key lies in the thermodynamic disparity of the chiral catalyst’s interaction with the two enantiomers of the substrate, which is critical for enabling subsequent transformations under a kinetic control. We demonstrate that photochemical reactions involving racemic azaarene-functionalized tertiary alcohols and amines, together with a chiral phosphoric acid, yield enantio-enriched derivatives containing tertiary carbon stereocentres. The utility of this approach is further exemplified by synthesizing important azaarene variants featuring tertiary or secondary C–F bonds, as well as ethylene oxides.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The development of a strategic blueprint for KR through enantio-differential formation of EDA complexes.
Fig. 2: Reaction design and optimization.
Fig. 3: Substrate scope with respect to tertiary and secondary alcohols.
Fig. 4: Substrate scope encompassed azaarene-diarene-substituted alcohols as well as a variety of tertiary and secondary amines, fluorides and ethylene oxides.
Fig. 5: Synthetic utilities.
Fig. 6: Mechanistic study.

Similar content being viewed by others

Data availability

The authors declare that all data supporting the findings of this study are available in the paper and its Supplementary Information. Crystallographic data for the structure of 1l have been deposited at the Cambridge Crystallographic Data Centre, under deposition no. CCDC 2416697. A copy of the data can be obtained free of charge via https://www.ccdc.cam.ac.uk/structures.

References

  1. Mulliken, R. S. Structures of complexes formed by halogen molecules with aromatic and with oxygenated solvents. J. Am. Chem. Soc. 72, 600–608 (1950).

    CAS  Google Scholar 

  2. Mulliken, R. S. Molecular compounds and their spectra. III. The interaction of electron donors and acceptors. J. Phys. Chem. 56, 801–822 (1952).

    CAS  Google Scholar 

  3. Mulliken, R. S. Molecular compounds and their spectra. II. J. Am. Chem. Soc. 74, 811–824 (1952).

    CAS  Google Scholar 

  4. Lima, C. G. S. et al. Organic synthesis enabled by light-irradiation of EDA complexes: theoretical background and synthetic applications. ACS Catal. 6, 1389–1407 (2016).

    CAS  Google Scholar 

  5. Mondal, S. et al. Enantioselective radical reactions using chiral catalysts. Chem. Rev. 122, 5842–5976 (2022).

    CAS  PubMed  Google Scholar 

  6. Wang, P.-Z., Xiao, W.-J. & Chen, J.-R. Light-empowered contra-thermodynamic stereochemical editing. Nat. Rev. Chem. 7, 35–50 (2023).

    PubMed  Google Scholar 

  7. Wortman, A. K. & Stephenson, C. R. J. EDA photochemistry: mechanistic investigations and future opportunities. Chem 9, 2390–2415 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Prier, C. K., Rankic, D. A. & MacMillan, D. W. C. Visible light photoredox catalysis with transition metal complexes: applications in organic synthesis. Chem. Rev. 113, 5322–5322 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Shaw, M. H., Twilton, J. & MacMillan, D. W. C. Photoredox catalysis in organic chemistry. J. Org. Chem. 81, 6898–6926 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Arceo, E., Jurberg, I. D., Álvarez-Fernández, A. & Melchiorre, P. Photochemical activity of a key donor–acceptor complex can drive stereoselective catalytic α-alkylation of aldehydes. Nat. Chem. 5, 750–756 (2013).

    CAS  PubMed  Google Scholar 

  11. Arceo, E., Bahamonde, A., Bergonzini, G. & Melchiorre, P. Enantioselective direct α-alkylation of cyclic ketones by means of photo-organocatalysis. Chem. Sci. 5, 2438–2442 (2014).

    CAS  Google Scholar 

  12. Bahamonde, A. & Melchiorre, P. Mechanism of the stereoselective α-alkylation of aldehydes driven by the photochemical activity of enamines. J. Am. Chem. Soc. 138, 8019–8030 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Cao, Z.-Y., Ghosh, T. & Melchiorre, P. Enantioselective radical conjugate additions driven by a photoactive intramolecular iminium-ion-based EDA complex. Nat. Commun. 9, 3274 (2018).

    PubMed  PubMed Central  Google Scholar 

  14. Woźniak, Ł, Murphy, J. J. & Melchiorre, P. Photo-organocatalytic enantioselective perfluoroalkylation of β-ketoesters. J. Am. Chem. Soc. 137, 5678–5681 (2015).

    PubMed  PubMed Central  Google Scholar 

  15. Bauer, A., Westkämper, F., Grimme, S. & Bach, T. Catalytic enantioselective reactions driven by photoinduced electron transfer. Nature 436, 1139–1140 (2005).

    CAS  PubMed  Google Scholar 

  16. Nicewicz, D. A. & MacMillan, D. W. C. Merging photoredox catalysis with organocatalysis: the direct asymmetric alkylation of aldehydes. Science 322, 77–80 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Huo, H. et al. Asymmetric photoredox transition-metal catalysis activated by visible light. Nature 515, 100–103 (2014).

    CAS  PubMed  Google Scholar 

  18. Blum, T. R. et al. Enantioselective photochemistry through Lewis acid-catalyzed triplet energy transfer. Science 354, 1391–1395 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Yao, W., Bazan-Bergamino, E. A. & Ngai, M.-Y. Asymmetric photocatalysis enabled by chiral organocatalysts. ChemCatChem 14, e202101292 (2022).

    CAS  PubMed  Google Scholar 

  20. Hölzl-Hobmeier, A. et al. Catalytic deracemization of chiral allenes by sensitized excitation with visible light. Nature 564, 240–243 (2018).

    PubMed  Google Scholar 

  21. Akiyama, T., Itoh, J., Yokota, K. & Fuchibe, K. Enantioselective Mannich-type reaction catalyzed by a chiral Brønsted acid. Angew. Chem. Int. Ed. 43, 1566–1568 (2004).

    CAS  Google Scholar 

  22. Uraguchi, D. & Terada, M. Chiral Brønsted acid-catalyzed direct Mannich reactions via electrophilic activation. J. Am. Chem. Soc. 126, 5356–5357 (2004).

    CAS  PubMed  Google Scholar 

  23. Parmar, D., Sugiono, E., Raja, S. & Rueping, M. Complete field guide to asymmetric BINOL-phosphate derived Brønsted acid and metal catalysis: history and classification by mode of activation; Bønsted acidity, hydrogen bonding, ion pairing, and metal phosphates. Chem. Rev. 114, 9047–9153 (2014).

    CAS  PubMed  Google Scholar 

  24. Cussac, M., Boucherle, A., Pierre, J. L. & Hache, J. Pyridyl ketones of biological interest (chalcone analogs). VI. Alcohol derivatives of azachalcones with depressant activity on the central nervous system. Eur. J. Med. Chem. 9, 651–657 (1974).

    CAS  Google Scholar 

  25. Lin, T. K. et al. Quantum statistical calculation for the correlation of biological activity and chemical structure. 3. Disopyramide phosphate and related compounds as antiarrhythmic agents. J. Med. Chem. 17, 751–753 (1974).

    CAS  PubMed  Google Scholar 

  26. Yen, C. H., Lowrie, H. S. & Dean, R. R. Compounds related to 4-diisopropylamino-2-phenyl-2-(2-pyridyl)butyramide. Synthesis and antiarrhythmic activity. J. Med. Chem. 17, 1131–1135 (1974).

    CAS  PubMed  Google Scholar 

  27. Rennison, D. et al. Synthesis and activity studies of analogues of the rat selective toxicant norbormide. Bioorg. Med. Chem. 15, 2963–2974 (2007).

    CAS  PubMed  Google Scholar 

  28. Rehdorf, J. et al. Pseudomonas putida esterase contains A GGG(A)X-motif confering activity for the kinetic resolution of tertiary alcohols. Appl. Microbio. Biotech. 93, 1119–1126 (2012).

    CAS  Google Scholar 

  29. Harikrishnan, L. S. et al. Diphenylpyridylethanamine (DPPE) derivatives as cholesteryl ester transfer protein (CETP) inhibitors. J. Med. Chem. 55, 6162–6175 (2012).

    CAS  PubMed  Google Scholar 

  30. Huang, A. et al. Discovery of 2-[1-(4-chlorophenyl)cyclopropyl]-3-hydroxy-8-(trifluoromethyl)quinoline-4-carboxylic acid (PSI-421), a P-Selectin inhibitor with improved pharmacokinetic properties and oral efficacy in models of vascular injury. J. Med. Chem. 53, 6003–6017 (2010).

  31. Hou, L. et al. Enantioselective radical addition to ketones through Lewis acid-enabled photoredox catalysis. J. Am. Chem. Soc. 144, 22140–22149 (2022).

    CAS  PubMed  Google Scholar 

  32. Yin, Y., Zhao, X. & Jiang, Z. Asymmetric photocatalytic synthesis of enantioenriched azaarene derivatives. Chin. J. Org. Chem. 42, 1609–1625 (2022).

    CAS  Google Scholar 

  33. Yin, Y. et al. Conjugate addition–enantioselective protonation of N-aryl glycines to α-branched 2-vinylazaarenes via cooperative photoredox and asymmetric catalysis. J. Am. Chem. Soc. 140, 6083–6087 (2018).

    CAS  PubMed  Google Scholar 

  34. Liu, Y. et al. Asymmetric olefin isomerization via photoredox catalytic hydrogen atom transfer and enantioselective protonation. J. Am. Chem. Soc. 145, 18307–18315 (2023).

    CAS  PubMed  Google Scholar 

  35. Ma, C. et al. Enantioselective chemodivergent three-component radical tandem reactions through asymmetric photoredox catalysis. J. Am. Chem. Soc. 145, 20141–20148 (2023).

    CAS  PubMed  Google Scholar 

  36. Fu, Q. et al. Enantioselective [2π + 2σ] cycloadditions of bicyclo[1.1.0]butanes with vinylazaarenes through asymmetric photoredox catalysis. J. Am. Chem. Soc. 146, 8372–8380 (2024).

    CAS  PubMed  Google Scholar 

  37. Sun, X. et al. Asymmetric photoredox catalytic formal De Mayo reaction enabled by sensitization-initiated electron transfer. Nat. Chem. 16, 1169–1176 (2024).

    CAS  PubMed  Google Scholar 

  38. Wang, J. et al. Enantioselective [2 + 2] photocycloreversion enables De Novo deracemization synthesis of cyclobutanes. J. Am. Chem. Soc. 146, 22840–22849 (2024).

    CAS  PubMed  Google Scholar 

  39. Ci, R.-N. et al. Aliphatic C−H arylation with heteroarenes without photocatalysts. Green Chem. 25, 8500–8504 (2023).

    CAS  Google Scholar 

  40. Niu, K.-K. et al. Visible-light-mediated direct C3 alkylation of quinoxalin-2(1H)-ones using alkanes. Chem. Commun. 60, 2409–2412 (2024).

    CAS  Google Scholar 

  41. Jin, J. & MacMillan, D. W. C. Alcohols as alkylating agents in heteroarene C−H functionalization. Nature 525, 87–90 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Wang, W.-Y., Wang, J.-J., Pan, J.-B., Xiao, L.-J. & Zhou, Q.-L. Enantioselective reductive C−O bond cleavage driven by photoinduced electron transfer. Chem 10, 3667–3677 (2024).

    CAS  Google Scholar 

  43. Cao, Y., Zhang, S. & Antilla, J. C. Catalytic asymmetric 1,4-reduction of α branched 2-vinylazaarenes by a chiral SPINOL-derived borophosphate. ACS Catal. 10, 10914–10919 (2020).

    CAS  Google Scholar 

  44. Yu, Z.-X., Ma, S.-W., Li, G.-X. & Ma, L.-J. Photocatalytic carbamoyl radical transfer to alkenyl azaarenes. Synlett 35, 1883–1888 (2024).

    CAS  Google Scholar 

  45. Chelucci, G., Baldino, S., Chessa, S., Pinnab, G. A. & Soccolini, F. An easy route to optically active 1-substituted-1-pyridyl-methylamines by diastereoselective reduction of enantiopure-tert-butanesulfinyl ketimines. Tetrahedron Asymmetry 17, 3163–3169 (2006).

    CAS  Google Scholar 

  46. Kane, D. L., Figula, B. C., Balaraman, K., Bertke, J. A. & Wolf, C. General alkyl fluoride functionalization via short-lived carbocation-organozincate ion pairs. Nat. Commun. 15, 1866 (2024).

    Google Scholar 

  47. Chen, X. et al. Aerobic redox deracemization of α-aryl glycine esters. Tetrahedron Lett. 61, 152107 (2020).

    CAS  Google Scholar 

  48. Henseler, A., Kato, M., Mori, K. & Akiyama, T. Chiral phosphoric acid catalyzed transfer hydrogenation: facile synthetic access to highly optically active trifluoromethylated amines. Angew. Chem. Int. Ed. 50, 8180–8183 (2011).

    CAS  Google Scholar 

  49. Liu, Y. et al. Transition-metal free chemoselective hydroxylation and hydroxylation−deuteration of heterobenzylic methylenes. Org. Lett. 22, 8127–8131 (2020).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Science Foundation of China (nos. 21925103, 22301066, 22171072, 22201068 and 22301061) and Henan Normal University.

Author information

Authors and Affiliations

Authors

Contributions

Z.J. conceived of and designed the experiments. T.S., Z.L., F.N. and Q.L. performed the experiments. T.S., Z.L., F.N. and X.Z. analysed and interpreted the results. T.S. prepared the Supplementary Information. Z.J. wrote the paper. All authors discussed the results and commented on the paper.

Corresponding author

Correspondence to Zhiyong Jiang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks Jia-Rong Chen, Charnsak Thongsornkleeb and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

(1) General information; (2) general experimental procedures; (3) selected results of screening reaction conditions; (4) control experiments; (5) mechanism studies; (6) Stern–Volmer quenching studies; (7) deuterium experiments and plausible mechanism; (8) determination of absolute configurations; (9) characterization of adducts; (10) spectral data; (11) references.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shao, T., Li, Z., Nie, F. et al. Leveraging electron donor–acceptor complexes for kinetic resolution in catalytic asymmetric photochemical synthesis. Nat. Chem. 17, 1722–1731 (2025). https://doi.org/10.1038/s41557-025-01973-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41557-025-01973-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing