Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Revealing the impact of microenvironment on gold-catalysed CO2 electroreduction via Marcus–Hush–Chidsey kinetics

Abstract

The microenvironment at electrochemical interfaces plays a crucial role in governing electrode-mediated electron transfer processes. However, elucidating the complex effects of the microenvironment remains challenging. The Butler–Volmer equation has been used in deducing reaction mechanisms and identifying rate-determining steps, but its empirical nature makes it challenging to deduce the molecular-level picture of interfacial electron transfer processes. By contrast, the application of the Marcus–Hush–Chidsey (MHC) electron transfer theory has been constrained by its tenuous connection to experimentally measurable parameters beyond reaction rates. Here we develop a mechanistic framework based on the MHC theory to systematically analyse the cation effect on the Au-catalysed CO2 reduction reaction using experimentally accessible variables. Our analysis reveals consistent trends for both inorganic and organic cations through thermodynamic and kinetic parameters derived from the MHC theory, with potential applications for probing ionomer–electrode interface microenvironments. This study establishes a universal strategy for investigating interfacial microenvironments in electron transfer processes by bridging theoretical parameters with experimental descriptors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Cation dependence of CO2RR activities and fitting parameters from MHC theory.
Fig. 2: Cation dependence of reorganization energy and interfacial water structure with different cations.
Fig. 3: Cation effect on the pre-exponential factor in the rate expression of the CO2RR.
Fig. 4: Insights into the difference between alkali metal and organic cations.
Fig. 5: Fitted parameters in ionomer-modified systems.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding authors upon reasonable request. Source data are provided with this paper.

References

  1. Govindarajan, N., Xu, A. & Chan, K. How pH affects electrochemical processes. Science 375, 379–380 (2022).

    Article  CAS  PubMed  Google Scholar 

  2. Xu, Y. et al. Cation effect on the elementary steps of the electrochemical CO reduction reaction on Cu. Nat. Catal. 7, 1120–1129 (2024).

    Article  Google Scholar 

  3. Gomes, R. J. et al. Modulating water hydrogen bonding within a non-aqueous environment controls its reactivity in electrochemical transformations. Nat. Catal. 7, 689–701 (2024).

    Article  CAS  Google Scholar 

  4. Chen, C. et al. Local reaction environment in electrocatalysis. Chem. Soc. Rev. 53, 2022–2055 (2024).

    Article  CAS  PubMed  Google Scholar 

  5. Lewis, N. B. et al. A molecular-level mechanistic framework for interfacial proton-coupled electron transfer kinetics. Nat. Chem. 16, 343–352 (2024).

    Article  CAS  PubMed  Google Scholar 

  6. Xu, Y., Yang, H., Chang, X. & Xu, B. Introduction to electrocatalytic kinetics. Acta Phys. Chim. Sin. 39, 2210025 (2023).

    Google Scholar 

  7. Henstridge, M. C., Laborda, E., Rees, N. V. & Compton, R. G. Marcus–Hush–Chidsey theory of electron transfer applied to voltammetry: a review. Electrochim. Acta 84, 12–20 (2012).

    Article  CAS  Google Scholar 

  8. Dickinson, E. J. F. & Wain, A. J. The Butler–Volmer equation in electrochemical theory: origins, value, and practical application. J. Electroanal. Chem. 872, 114145 (2020).

    Article  CAS  Google Scholar 

  9. Marcus, R. A. On the theory of oxidation–reduction reactions involving electron transfer. J. Chem. Phys. 24, 966 (1956).

    Article  CAS  Google Scholar 

  10. Marcus, R. A. & Sutin, N. Electron transfers in chemistry and biology. Biochim. Biophys. Acta 811, 265–322 (1985).

    Article  CAS  Google Scholar 

  11. Hush, N. S. Adiabatic rate processes at electrodes. I. Energy–charge relationships. J. Chem. Phys. 28, 962 (1958).

    Article  CAS  Google Scholar 

  12. Chidsey, C. E. D. Free energy and temperature dependence of electron transfer at the metal–electrolyte interface. Science 251, 919–922 (1991).

    Article  CAS  PubMed  Google Scholar 

  13. Huang, B. et al. Cation-dependent interfacial structures and kinetics for outer-sphere electron-transfer reactions. J. Phys. Chem. C 125, 4397–4411 (2021).

    Article  CAS  Google Scholar 

  14. Huang, B. et al. Cation- and pH-dependent hydrogen evolution and oxidation reaction kinetics. JACS Au 1, 1674–1687 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhang, B. A., Costentin, C. & Nocera, D. G. Driving force dependence of inner-sphere electron transfer for the reduction of CO2 on a gold electrode. J. Chem. Phys. 153, 094701 (2020).

    Article  CAS  PubMed  Google Scholar 

  16. Brown, S. M. et al. Electron transfer limitation in carbon dioxide reduction revealed by data-driven Tafel analysis. Preprint at ChemRxiv https://doi.org/10.26434/chemrxiv.13244906.v1 (2020).

  17. Lees, E. W. et al. Exploring CO2 reduction and crossover in membrane electrode assemblies. Nat. Chem. Eng. 1, 340–353 (2024).

    Article  Google Scholar 

  18. Goyal, A., Marcandalli, G., Mints, V. A. & Koper, M. T. M. Competition between CO2 reduction and hydrogen evolution on a gold electrode under well-defined mass transport conditions. J. Am. Chem. Soc. 142, 4154–4161 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Vos, R. E. & Koper, M. T. M. The effect of temperature on the cation-promoted electrochemical CO2 reduction on gold. ChemElectroChem 9, e202200239 (2022).

    Article  CAS  Google Scholar 

  20. Cui, Z., Wong, A. J., Janik, M. J. & Co, A. C. Cation effects on CO2 reduction catalyzed bysingle-crystal and polycrystalline gold underwell-defined mass transport conditions. Sci. Adv. 11, eadr6465 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wuttig, A., Yaguchi, M., Motobayashi, K. & Surendranath, Y. Inhibited proton transfer enhances Au-catalyzed CO2-to-fuels selectivity. Proc. Natl Acad. Sci. USA 113, E4585–E4593 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wuttig, A., Yoon, Y., Ryu, J. & Surendranath, Y. Bicarbonate is not a general acid in au-catalyzed CO2 electroreduction. J. Am. Chem. Soc. 139, 17109–17113 (2017).

    Article  CAS  PubMed  Google Scholar 

  23. Monteiro, M. C. O. et al. Absence of CO2 electroreduction on copper, gold and silver electrodes without metal cations in solution. Nat. Catal. 4, 654–662 (2021).

    Article  CAS  Google Scholar 

  24. Shin, S. et al. A unifying mechanism for cation effect modulating C1 and C2 productions from CO2 electroreduction. Nat. Commun. 13, 5482 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Qin, X., Hansen, H. A., Honkala, K. & Melander, M. M. Cation-induced changes in the inner- and outer-sphere mechanisms of electrocatalytic CO2 reduction. Nat. Commun. 14, 7607 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Koper, M. T. M. Theory and kinetic modeling of electrochemical cation-coupled electron transfer reactions. J. Solid State Electrochem. 28, 1601–1606 (2024).

    Article  CAS  Google Scholar 

  27. Bazant, M. Z. Unified quantum theory of electrochemical kinetics by coupled ion–electron transfer. Faraday Discuss. 246, 60–124 (2023).

    Article  CAS  PubMed  Google Scholar 

  28. Wang, G. et al. Electrocatalysis for CO2 conversion: from fundamentals to value-added products. Chem. Soc. Rev. 50, 4993–5061 (2021).

    Article  CAS  PubMed  Google Scholar 

  29. Chen, Y., Li, C. W. & Kanan, M. W. Aqueous CO2 reduction at very low overpotential on oxide-derived Au nanoparticles. J. Am. Chem. Soc. 134, 19969–19972 (2012).

    Article  CAS  PubMed  Google Scholar 

  30. Zhang, Z. et al. Probing electrolyte effects on cation-enhanced CO2 reduction on copper in acidic media. Nat. Catal. 7, 807–817 (2024).

    Article  CAS  Google Scholar 

  31. Ringe, S. et al. Understanding cation effects in electrochemical CO2 reduction. Energy Environ. Sci. 12, 3001–3014 (2019).

    Article  CAS  Google Scholar 

  32. Bard, A. J. & Faulkner, L. R. Electrochemical Methods: Fundamentals and Applications (Wiley, 2001).

  33. Tian, Y. et al. Effect of ion-specific water structures at metal surfaces on hydrogen production. Nat. Commun. 15, 7834 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Marcus, Y. Effect of ions on the structure of water: structure making and breaking. Chem. Rev. 109, 1346–1370 (2009).

    Article  CAS  PubMed  Google Scholar 

  35. Bohra, D. et al. Modeling the electrical double layer to understand the reaction environment in a CO2 electrocatalytic system. Energy Environ. Sci. 12, 3380–3389 (2019).

    Article  CAS  Google Scholar 

  36. Bockris, J. O’ M. & Khan, S. U. M. Quantum Electrochemistry (Springer, 1979).

  37. Le, J., Chen, A., Kuang, Y. & Cheng, J. Molecular understanding of cation effects on double layers and their significance to CO–CO dimerization. Nat. Sci. Rev. 10, nwad105 (2023).

    Article  CAS  Google Scholar 

  38. Ovalle, V. J. et al. Correlating hydration free energy and specific adsorption of alkali metal cations during CO2 electroreduction on Au. Nat. Catal. 5, 624–632 (2022).

    Article  CAS  Google Scholar 

  39. Peng, L. et al. Research advances in electrocatalysts, electrolytes, reactors and membranes for the electrocatalytic carbon dioxide reduction reaction. Acta Phys. Chim. Sin. 39, 2302037 (2023).

    Article  Google Scholar 

  40. Wang, J. et al. Poly(aryl piperidinium) membranes and ionomers for hydroxide exchange membrane fuel cells. Nat. Energy 4, 392–398 (2019).

    Article  CAS  Google Scholar 

  41. Yin, Z. et al. An alkaline polymer electrolyte CO2 electrolyzer operated with pure water. Energy Environ. Sci. 12, 2455–2462 (2019).

    Article  CAS  Google Scholar 

  42. Lazanas, A. C. & Prodromidis, M. I. Electrochemical impedance spectroscopy─A tutorial. ACS Meas. Sci. Au 3, 162–193 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Brug, G. J., van den Eeden, A. L. G., Sluyters-Rehbach, M. & Sluyters, J. H. The analysis of electrode impedances complicated by the presence of a constant phase element. J. Electroanal. Chem. Interfacial Electrochem. 176, 275–295 (1984).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the Beijing Natural Science Foundation Key Research Program (grant no. Z240026) and the Beijing National Laboratory for Molecular Sciences. This work is also supported by the National Key R&D Program of China (grant no. 2023YFA1508001 to X.C.) and the National Natural Science Foundation of China (grant nos. 22278002 to X.C and 92261111 to H.X.).

Author information

Authors and Affiliations

Authors

Contributions

Y.X. and B.X. conceived of the idea and designed the experiments in this study. Y.X. conducted all the experiments and analyses. Y.Q. performed the density functional theory calculations. All authors analysed the data and co-wrote the paper.

Corresponding authors

Correspondence to Hai Xiao or Bingjun Xu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks Dong Young Chung, Anne Co and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–21, Notes 1–7 and Table 1.

Source data

Source Data Fig. 1

Current–potential plots and fitting parameters.

Source Data Fig. 2

Reorganization energy and SEIRA spectra.

Source Data Fig. 3

Pre-exponential factors and fitted curve.

Source Data Fig. 4

Correlation among capacitance, hydration-free energy and pre-exponential factors.

Source Data Fig. 5

Reorganization and pre-exponential factors with ionomer modifications.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Y., Qiu, Y., Chang, X. et al. Revealing the impact of microenvironment on gold-catalysed CO2 electroreduction via Marcus–Hush–Chidsey kinetics. Nat. Chem. (2025). https://doi.org/10.1038/s41557-025-02010-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41557-025-02010-8

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing