Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Wavelength-steered directional rotation in an autonomous light-driven molecular motor

Abstract

Artificial molecular motors are at the forefront of research in nanotechnology due to their ability to perform tasks by harnessing directionally controlled motion at the molecular scale. The development of light-driven nanomotors is a particularly challenging task that holds great potential for the development of sunlight-powered systems and active materials. Here we describe an azoimidazolium photochemical molecular rotary motor which operates along a triangular reaction cycle exploiting the formation of diastereomeric species upon photoisomerisation. The different thermal stability and photochemical reactivity of these diastereomers permit net directional motion combining a thermal rotation about a C–N single bond and two light-induced configurational rearrangements that proceed predominantly through a rotational mechanism, as corroborated by computational studies. The composition of the dissipative state obtained upon continuous supply of light can be modified by changing the irradiation wavelength, and as a result, the preferred rotation direction of the motor is inverted.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Selected artificial molecular rotary motors.
Fig. 2: Spatial orientation and slow dihedral rotation in the symmetric compound [R1]+.
Fig. 3: Operation of motor [R2]+ and sterically guided dihedral rotation.
Fig. 4: Calculated structures of the principal [R3]+ isomers.
Fig. 5: Operational network of rotary motor [R3]+ and wavelength-steered net directional motion.

Similar content being viewed by others

Data availability

The online version of this Article provides Supplementary Information, including Supplementary Figs. 1–69, general methods, detailed experimental and analytical data, NMR spectra, UV–visible light spectra, computed geometries, NMR chemical shifts and ground and excited state potential energy surfaces, as well as all the additional supporting data for the study. A movie illustrating the directionally biased isomer interconversion at the ground state, experimental and mathematically extrapolated UV–visible light absorption spectra, NMR photokinetic concentration profiles, coordinates of optimized minima, transition states and minimum energy crossing points, input files for minimum energy crossing points optimizations and energies and oscillator strengths of the excited states for minima and transition states computed with multiple DFT functionals and at the CASPT2 level are provided as additional Supplementary Information.

References

  1. Baker, M. A. B. & Berry, R. M. An introduction to the physics of the bacterial flagellar motor: a nanoscale rotary electric motor. Contemp. Phys. 50, 617–632 (2009).

    Article  Google Scholar 

  2. Schliwa, M. Molecular Motors (Wiley, 2004).

  3. Vale, R. D. & Milligan, R. A. The way things move: looking under the hood of molecular motor proteins. Science 288, 88–95 (2000).

    Article  CAS  PubMed  Google Scholar 

  4. Brown, A. I. & Sivak, D. A. Theory of nonequilibrium free energy transduction by molecular machines. Chem. Rev. 120, 434–459 (2020).

    Article  CAS  PubMed  Google Scholar 

  5. Goodsell, D. S. The Machinery of Life (Copernicus, 2009).

  6. Aprahamian, I. The future of molecular machines. ACS Cent. Sci. 6, 347–358 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kassem, S. et al. Artificial molecular motors. Chem. Soc. Rev. 46, 2592–2621 (2017).

    Article  CAS  PubMed  Google Scholar 

  8. Astumian, R. D. Kinetic asymmetry and directionality of nonequilibrium molecular systems. Angew. Chem. Int. Ed. 63, e202306569 (2024).

    Article  CAS  Google Scholar 

  9. Mondal, A., Toyoda, R., Costil, R. & Feringa, B. L. Chemically driven rotatory molecular machines. Angew. Chem. Int. Ed. 61, e20220663 (2022).

    Article  Google Scholar 

  10. Erbas-Cakmak, S., Leigh, D. A., McTernan, C. T. & Nussbaumer, A. L. Artificial molecular machines. Chem. Rev. 115, 10081–10206 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Corra, S., Curcio, M., Baroncini, M., Silvi, S. & Credi, A. Photoactivated artificial molecular machines that can perform tasks. Adv. Mater. 32, 1906064 (2020).

    Article  CAS  Google Scholar 

  12. Baroncini, M., Silvi, S. & Credi, A. Photo- and redox-driven artificial molecular motors. Chem. Rev. 120, 200–268 (2020).

    Article  CAS  PubMed  Google Scholar 

  13. Pooler, D. R. S., Lubbe, A. S., Crespi, S. & Feringa, B. L. Designing light-driven rotary molecular motors. Chem. Sci. 12, 14964–14986 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Oruganti, B., Wang, J. & Durbeej, B. Quantum chemical design of rotary molecular motors. Int. J. Quantum Chem. 118, e25405 (2018).

    Article  Google Scholar 

  15. Sheng, J. et al. Formylation boosts the performance of light-driven overcrowded alkene-derived rotary molecular motors. Nat. Chem. 16, 1330–1338 (2024).

    Article  CAS  PubMed  Google Scholar 

  16. Boursalian, G. B. et al. All-photochemical rotation of molecular motors with a phosphorus stereoelement. J. Am. Chem. Soc. 142, 16868–16876 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Roke, D., Wezenberg, S. J. & Feringa, B. L. Molecular rotary motors: unidirectional motion around double bonds. Proc. Natl Acad. Sci. USA 115, 9423–9431 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kistemaker, J. C. M. et al. Third-generation light-driven symmetric molecular motors. J. Am. Chem. Soc. 139, 9650–9661 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Koumura, N., Zijlstra, R. W. J., van Delden, R. A., Harada, N. & Feringa, B. L. Light-driven monodirectional molecular rotor. Nature 401, 152–155 (1999).

    Article  CAS  PubMed  Google Scholar 

  20. Greb, L., Eichhofer, A. & Lehn, J.-M. Synthetic molecular motors: thermal N inversion and directional photoinduced CN bond rotation of camphorquinone imines. Angew. Chem. Int. Ed. 54, 14345–14348 (2015).

    Article  CAS  Google Scholar 

  21. Greb, L. & Lehn, J.-M. Light-driven molecular motors: imines as four-step or two-step unidirectional rotors. J. Am. Chem. Soc. 136, 13114–13117 (2014).

    Article  CAS  PubMed  Google Scholar 

  22. Gerwien, A., Gnannt, F., Mayer, P. & Dube, H. Photogearing as a concept for translation of precise motions at the nanoscale. Nat. Chem. 14, 670–676 (2022).

    Article  CAS  PubMed  Google Scholar 

  23. Wilcken, R. et al. Complete mechanism of hemithioindigo motor rotation. J. Am. Chem. Soc. 140, 5311–5318 (2018).

    Article  CAS  PubMed  Google Scholar 

  24. Gerwien, A., Mayer, P. & Dube, H. Photon-only molecular motor with reverse temperature-dependent efficiency. J. Am. Chem. Soc. 140, 16442–16445 (2018).

    Article  CAS  PubMed  Google Scholar 

  25. Guentner, M. et al. Sunlight-powered kHz rotation of a hemithioindigo-based molecular motor. Nat. Commun. 6, 8406 (2015).

    Article  CAS  PubMed  Google Scholar 

  26. Kuntze, K. et al. A visible-light-driven molecular motor based on barbituric acid. Chem. Sci. 14, 8458–8465 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Filatov, M. et al. Towards the engineering of a photon-only two-stroke rotary molecular motor. Nat. Commun. 13, 6433 (2022).

    Article  CAS  Google Scholar 

  28. Pooler, D. R. S., Doellerer, D., Crespi, S. & Feringa, B. L. Controlling rotary motion of molecular motors based on oxindole. Org. Chem. Front. 9, 2084–2092 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Perrot, A., Wang, W., Buhler, E., Moulin, E. & Giuseppone, N. Bending actuation of hydrogels through rotation of light-driven molecular motors. Angew. Chem. Int. Ed. 62, e202300263 (2023).

    Article  CAS  Google Scholar 

  30. Chen, J. et al. Artificial muscle-like function from hierarchical supramolecular assembly of photoresponsive molecular motors. Nat. Chem. 10, 132–138 (2018).

    Article  CAS  PubMed  Google Scholar 

  31. Foy, J. T. et al. Dual-light control of nanomachines that integrate motor and modulator subunits. Nat. Nanotechnol. 12, 540–545 (2017).

    Article  CAS  PubMed  Google Scholar 

  32. Li, Q. et al. Macroscopic contraction of a gel induced by the integrated motion of light-driven molecular motors. Nat. Nanotechnol. 10, 161–165 (2015).

    Article  PubMed  Google Scholar 

  33. Qutbuddin, Y. et al. Light-activated synthetic rotary motors in lipid membranes induce shape changes through membrane expansion. Adv. Mater. 36, 2311176 (2024).

    Article  CAS  Google Scholar 

  34. Li, Q., Tan, J. & Sun, T. Light-driven Feringa motors for precision molecular mechanotherapeutics. Trends Chem. 5, 653–656 (2023).

    Article  CAS  Google Scholar 

  35. Guinart, A. et al. Synthetic molecular motor activates drug delivery from polymersomes. Proc. Natl Acad. Sci. USA 120, e2301279120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Corra, S., Curcio, M. & Credi, A. Photoactivated artificial molecular motors. JACS Au 3, 1301–1313 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhang, Q., Qu, D.-H., Tian, H. & Feringa, B. L. Bottom-up: can supramolecular tools deliver responsiveness from molecular motors to macroscopic materials? Matter 3, 355–370 (2020).

    Article  Google Scholar 

  38. Jerca, F. A., Jerca, V. V. & Hoogenboom, R. Advances and opportunities in the exciting world of azobenzenes. Nat. Rev. Chem. 6, 51–69 (2022).

    Article  PubMed  Google Scholar 

  39. Asaka, T., Akai, N., Kawai, A. & Shibuya, K. Photochromism of 3-butyl-1-methyl-2-phenylazoimidazolium in room temperature ionic liquids. J. Photochem. Photobiol. A 209, 12–18 (2010).

    Article  CAS  Google Scholar 

  40. Borsley, S., Kreidt, E., Leigh, D. A. & Roberts, B. M. W. Autonomous fuelled directional rotation about a covalent single bond. Nature 604, 80–85 (2022).

    Article  CAS  PubMed  Google Scholar 

  41. Greenfield, J. L. et al. Molecular Photoswitches (ed. Pianowski, Z. L.) Ch. 5 (Wiley, 2022).

  42. Lin, I. J. B. & Vasam, C. S. Preparation and application of N-heterocyclic carbene complexes of Ag(I). Coord. Chem. Rev. 251, 642–670 (2007).

    Article  CAS  Google Scholar 

  43. Nicoli, F. et al. Photoinduced autonomous nonequilibrium operation of a molecular shuttle by combined isomerization and proton transfer through a catalytic pathway. J. Am. Chem. Soc. 144, 10180–10185 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hugelshofer, C. L., Mellem, K. T. & Myers, A. G. Synthesis of quaternary α-methyl α-amino acids by asymmetric alkylation of pseudoephenamine alaninamide pivaldimine. Org. Lett. 15, 3134–3137 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Onsager, L. Reciprocal relations in irreversible processes. Phys. Rev. 37, 405–426 (1931).

    Article  CAS  Google Scholar 

  46. Astumian, R. D. Microscopic reversibility as the organizing principle of molecular machines. Nat. Nanotechnol. 7, 684–688 (2012).

    Article  CAS  PubMed  Google Scholar 

  47. Uhl, E., Thumser, S., Mayer, P. & Dube, H. Transmission of unidirectional molecular motor rotation to a remote biaryl axis. Angew. Chem. Int. Ed. 57, 11064–11068 (2018).

    Article  CAS  Google Scholar 

  48. Weingart, O., Lan, Z., Thiel, W. & Thiel, W. Chiral pathways and periodic decay in cis-azobenzene photodynamics. J. Phys. Chem. Lett. 2, 1506–1509 (2011).

    Article  CAS  Google Scholar 

  49. Wang, Y.-T. et al. Photoisomerization of arylazopyrazole photoswitches: stereospecific excited-state relaxation. Angew. Chem. Int. Ed. 55, 14009–14013 (2016).

    Article  CAS  Google Scholar 

  50. Aleotti, F. et al. Multidimensional potential energy surfaces resolved at the RASPT2 level for accurate photoinduced isomerization dynamics of azobenzene. J. Chem. Theory Comput. 15, 6813–6823 (2019).

    Article  CAS  PubMed  Google Scholar 

  51. Nenov, A. et al. UV-light-induced vibrational coherences: the key to understand Kasha rule violation in trans-azobenzene. J. Phys. Chem. Lett. 9, 1534–1541 (2018).

    Article  CAS  PubMed  Google Scholar 

  52. Casellas, J., Bearpark, M. J. & Reguero, M. Excited-state decay in the photoisomerization of azobenzene: a new balance between mechanisms. ChemPhysChem 17, 3068–3079 (2016).

    Article  CAS  PubMed  Google Scholar 

  53. Moghaddam, K. G., Giudetti, G., Sipma, W. & Faraji, S. Theoretical insights into the effect of size and substitution patterns of azobenzene derivatives on the DNA G-quadruplex. Phys. Chem. Chem. Phys. 22, 26944–26954 (2020).

    Article  Google Scholar 

  54. Vela, S., Krüger, C. & Corminboeuf, C. Exploring chemical space in the search for improved azoheteroarene-based photoswitches. Phys. Chem. Chem. Phys. 21, 20782–20790 (2019).

    Article  CAS  PubMed  Google Scholar 

  55. Corra, S. et al. Kinetic and energetic insights into the dissipative non-equilibrium operation of an autonomous light-powered supramolecular pump. Nat. Nanotechnol. 17, 746–751 (2022).

    Article  CAS  PubMed  Google Scholar 

  56. Sangchai, T., Al Shehimy, S., Penocchio, E. & Ragazzon, G. Artificial molecular ratchets: tools enabling endergonic processes. Angew. Chem. Int. Ed. 62, e202309501 (2023).

    Article  CAS  Google Scholar 

  57. Falivene, L. et al. Towards the online computer-aided design of catalytic pockets. Nat. Chem. 11, 872–879 (2019).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Royal Society of Chemistry (M.C., Research Fund R23-8129362510), the European Union—Next Generation EU and the Italian Ministry of University and Research (A.C., PRIN grant no. 2022JMTLE; M.B. and C.T., PRIN grant no. 2022KMMAYM_002; S.S., PRIN grant no. 201732PY3X; M.G. and F.A., PRIN grant no. P20224AWLB) and the University of Bologna. Correspondence should be addressed to M.C.

Author information

Authors and Affiliations

Authors

Contributions

M.C. and F.N. conceived the project. M.C., M.B., S.S. and L.M. guided and supervised the research. F.N., S.B. and M.C. synthesized the compounds and carried out NMR experiments. C.T. carried out the photophysical characterisations. E.L. and F.A. conducted computations. A.C., M.B., M.C., S.S. and M.G. secured research funds. M.C., C.T., F.N., E.L. and L.M. wrote the paper. All authors discussed the results and commented the paper.

Corresponding authors

Correspondence to Luca Muccioli, Massimo Baroncini or Massimiliano Curcio.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks Stefano Crespi, Jin Wen and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Experimental details, synthetic procedures (Supplementary Fig. 1), NMR data (Supplementary Figs. 2–32), photophysical data (Supplementary Figs. 33–51 and Supplementary Table 1), computational details, computational data (Supplementary Figs. 52–68 and Supplementary Tables 2–13) and kinetic analysis (Supplementary Fig. 69).

Supplementary Video 1

Movie illustrating the directional isomer interconversion at the ground state.

Supplementary Data 2

Absorption spectra of the E and Z isomers of the three reported compounds.

Supplementary Data 3

Photokinetic traces of the light-on experiments upon irradiation at 365 and 453 nm (compare with Fig. 5).

Supplementary Data 4

Coordinates (xyz) of all optimized minima, transition states (TS) and minimum energy crossing points (MECP), along with example Gaussian input files for DFT calculations in chloroform.

Supplementary Data 5

Input files for minimum energy crossing points (MECP) optimizations performed with COBRAMM at the CASPT2 level in the gas phase and in chloroform.

Supplementary Data 6

Energies and oscillator strengths of the excited states for each minimum (E, ZA and ZB) and transition state (ZAZB) computed with multiple DFT functionals and at the CASPT2 level in gas phase and in chloroform.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nicoli, F., Taticchi, C., Lorini, E. et al. Wavelength-steered directional rotation in an autonomous light-driven molecular motor. Nat. Chem. (2026). https://doi.org/10.1038/s41557-025-02045-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41557-025-02045-x

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing