Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Acceleration of Drosophila subobscura evolutionary response to global warming in Europe

Abstract

The increasing risk of irreversible ecological transformation under global warming has boosted the need to understand the capacity of organisms to adapt to this change. Here, using a resurvey method of populations of the European fly Drosophila subobscura, we show that a known evolutionary response to global warming has accelerated in the past 20 years, in step with regional warming. This genetic response has come entirely by resorting pre-existing variation—and not from novel inversions—for tolerance to high temperature. Temperate populations are predicted to converge to the typical Mediterranean chromosomal composition by the mid-2050s, at which point this classic example of steep genetic cline will have vanished. Our results suggest that species with broad geographic ranges, large population sizes and high genetic diversity may have the evolutionary potential to cope with climate change.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The 12 European sample sites and their distribution relative to the Mediterranean–temperate climate transition zone.
Fig. 2: Five decades of D. subobscura evolutionary response to global warming in Europe.
Fig. 3: Decadal rates of equatorialward shift in temperature and inversion frequencies in Europe.
Fig. 4: Change in site decadal rate of HWe between the two sample intervals.
Fig. 5: Predicted date when temperate sites will converge on the typical Mediterranean chromosomal composition.

Similar content being viewed by others

Data availability

All data generated in this study are available in the main text and Supplementary Information and can be accessed via figshare at https://doi.org/10.6084/m9.figshare.24619629 (ref. 25). Source data are provided with this paper.

Code availability

The R code for our statistical analyses can be accessed via figshare at https://doi.org/10.6084/m9.figshare.24619629 (ref. 25).

References

  1. Urban, M. C. Climate change. Accelerating extinction risk from climate change. Science 348, 571–573 (2015).

    Article  CAS  Google Scholar 

  2. Scheffers, B. R. et al. The broad footprint of climate change from genes to biomes to people. Science 354, aaf7671 (2016).

    Article  Google Scholar 

  3. Climate Change 2023: Synthesis Report (eds Core Writing Team et al.) (IPCC, 2023).

  4. Hughes, L. Biological consequences of global warming: is the signal already apparent? Trends Ecol. Evol. 15, 56–61 (2000).

    Article  CAS  Google Scholar 

  5. Parmesan, C. & Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421, 37–42 (2003).

    Article  CAS  Google Scholar 

  6. Parmesan, C. Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol. Evol. Syst. 37, 637–669 (2006).

    Article  Google Scholar 

  7. Meester, L. D., Stoks, R. & Brans, K. I. Genetic adaptation as a biological buffer against climate change: potential and limitations. Integr. Zool. 13, 372–391 (2018).

    Article  Google Scholar 

  8. Waldvogel, M. et al. Evolutionary genomics can improve prediction of species’ responses to climate change. Evol. Lett. 14, 4–18 (2020).

    Article  Google Scholar 

  9. Martin, R. A., da Silva, C. R. B., Moore, M. P. & Diamond, S. E. When will a changing climate outpace adaptive evolution? Wiley Interdiscip. Rev. Clim. Change 14, e852 (2023).

    Article  Google Scholar 

  10. Mimura, M. et al. Understanding and monitoring the consequences of human impacts on intraspecific variation. Evol. Appl. 10, 121–139 (2016).

    Article  Google Scholar 

  11. Steinbauer, M. J. et al. Accelerated increase in plant species richness on mountain summits is linked to warming. Nature 556, 231–234 (2018).

    Article  CAS  Google Scholar 

  12. Nadeau, C. P. & Urban, M. C. Eco-evolution on the edge during climate change. Ecography 42, 1280–1297 (2019).

    Article  Google Scholar 

  13. Rodríguez-Trelles, F. & Rodríguez, M. A. Rapid micro-evolution and loss of chromosomal diversity in Drosophila in response to climate warming. Evol. Ecol. 12, 829–838 (1998).

    Article  Google Scholar 

  14. Balanyà, J., Oller, J. M., Huey, R. B., Gilchrist, G. W. & Serra, L. Global genetic change tracks global climate warming in Drosophila subobscura. Science 313, 1773–1775 (2006).

    Article  Google Scholar 

  15. Kirkpatrick, M. How and why chromosome inversions evolve. PLoS Biol. 8, e1000501 (2010).

    Article  Google Scholar 

  16. Tigano, A. & Friesen, V. L. Genomics of local adaptation with gene flow. Mol. Ecol. 25, 2144–2164 (2016).

    Article  Google Scholar 

  17. Wellenreuther, M. & Bernatchez, L. Eco-evolutionary genomics of chromosomal inversions. Trends Ecol. Evol. 33, 427–440 (2018).

    Article  Google Scholar 

  18. Faria, R., Johannesson, K., Butlin, R. K. & Westram, A. M. Evolving inversions. Trends Ecol. Evol. 34, 239–248 (2019).

    Article  Google Scholar 

  19. Krimbas, C. B. Drosophila subobscura: Biology, Genetics and Inversion Polymorphism (Verlag Dr. Kovac, 1993).

    Google Scholar 

  20. Karageorgiou, C., Gámez-Visairas, V., Tarrío, R. & Rodríguez-Trelles, F. Long-read based assembly and synteny analysis of a reference Drosophila subobscura genome reveals signatures of structural evolution driven by inversions recombination-suppression effects. BMC Genomics 20, 223 (2019).

    Article  Google Scholar 

  21. Prevosti, A. et al. Colonization of America by Drosophila subobscura: experiment in natural populations that supports the adaptive role of chromosomal-inversion polymorphism. Proc. Natl Acad. Sci. USA 85, 5597–5600 (1988).

    Article  CAS  Google Scholar 

  22. Rodríguez-Trelles, F., Alvarez, G. & Zapata, C. Time-series analysis of seasonal changes of the O inversion polymorphism of Drosophila subobscura. Genetics 142, 179–187 (1996).

    Article  Google Scholar 

  23. Rodríguez-Trelles, F., Tarrío, R. & Santos, M. Genome-wide evolutionary response to a heat wave in Drosophila. Biol. Lett. 9, 20130228 (2013).

    Article  Google Scholar 

  24. Balanyà, J., Solé, E., Oller, J. M., Sperlich, D. & Serra, L. Long-term changes in the chromosomal inversion polymorphism of Drosophila subobscura: II. European populations. J. Zool. Syst. Evol. Res. 42, 191–201 (2004).

    Article  Google Scholar 

  25. Rodríguez-Trelles, F. & Tarrío, R. Data and code for ‘acceleration of Drosophila subobscura evolutionary response to global warming in Europe’. figshare https://doi.org/10.6084/m9.figshare.24619629 (2024).

  26. Russo, S., Sillmann, J. & Fischer, E. M. Top ten European heatwaves since 1950 and their occurrence in the coming decades. Environ. Res. Lett. 10, 124003 (2015).

    Article  Google Scholar 

  27. Zhang, R., Sun, C., Zhu, J., Zhang, R. & Li, W. Increased European heat waves in recent decades in response to shrinking Arctic sea ice and Eurasian snow cover. NPJ Clim. Atmos. Sci. 3, 7 (2020).

    Article  Google Scholar 

  28. Lhotka, O. & Kyselý, J. The 2021 European heat wave in the context of past major heat waves. Earth Space Sci. 9, e2022EA002567 (2022).

    Article  Google Scholar 

  29. Grant, P. R. et al. Evolution caused by extreme events. Phil. Trans. R. Soc. Lond. B 372, 20160146 (2017).

    Article  Google Scholar 

  30. Ma, C. S., Ma, G. & Pincebourde, S. Survive a warming climate: insect responses to extreme high temperatures. Annu. Rev. Entomol. 66, 163–184 (2021).

    Article  CAS  Google Scholar 

  31. Jørgensen, L. B., Ørsted, M., Malte, H., Wang, T. & Overgaard, J. Extreme escalation of heat failure rates in ectotherms with global warming. Nature 611, 93–98 (2022).

    Article  Google Scholar 

  32. Meehl, G. A. & Tebaldi, C. More intense, more frequent, and longer lasting heat waves in the 21st century. Science 305, 994–997 (2004).

    Article  CAS  Google Scholar 

  33. Rego, C. et al. Clinal patterns of chromosomal inversion polymorphisms in Drosophila subobscura are partly associated with thermal preferences and heat stress resistance. Evolution 64, 385–397 (2010).

    Article  Google Scholar 

  34. Kingsolver, J. G. et al. Complex life cycles and the responses of insects to climate change. Integr. Comp. Biol. 51, 719–732 (2011).

    Article  Google Scholar 

  35. Barrett, R. D. & Schluter, D. Adaptation from standing genetic variation. Trends Ecol. Evol. 23, 38–44 (2008).

    Article  Google Scholar 

  36. Bitter, M. C., Kapsenberg, L., Gattuso, J. P. & Pfister, C. A. Standing genetic variation fuels rapid adaptation to ocean acidification. Nat. Commun. 10, 5821 (2019).

    Article  CAS  Google Scholar 

  37. Matuszewski, S., Hermisson, J. & Kopp, M. Catch me if you can: adaptation from standing genetic variation to a moving phenotypic optimum. Genetics 200, 1255–1274 (2015).

    Article  Google Scholar 

  38. Radchuk, V. et al. Adaptive responses of animals to climate change are most likely insufficient. Nat. Commun. 10, 3109 (2019).

    Article  Google Scholar 

  39. Harvey, J. A., Thakur, M. P. & Ellers, J. The tarnished silver lining of extreme climatic events. Trends Ecol. Evol. 36, 384–385 (2021).

    Article  Google Scholar 

  40. Parmesan, C. & Singer, M. C. Mosaics of climatic stress across species’ ranges: tradeoffs cause adaptive evolution to limits of climatic tolerance. Phil. Trans. R. Soc. Lond. B 377, 20210003 (2022).

    Article  Google Scholar 

  41. Abarca, M. & Spahn, R. Direct and indirect effects of altered temperature regimes and phenological mismatches on insect populations. Curr. Opin. Insect Sci. 47, 67–74 (2021).

    Article  Google Scholar 

  42. Harvey, J. A. et al. Scientists’ warning on climate change and insects. Ecol. Monogr. 93, e1553 (2023).

    Article  Google Scholar 

  43. Des Roches, S. et al. The ecological importance of intraspecific variation. Nat. Ecol. Evol. 2, 57–64 (2018).

    Article  Google Scholar 

  44. Diamond, S. E. & Martin, R. A. Evolution is a double‐edged sword, not a silver bullet, to confront global change. Ann. N. Y. Acad. Sci. 1469, 38–51 (2020).

    Article  Google Scholar 

  45. Roesti, M., Gilbert, K. J. & Samuk, K. Chromosomal inversions can limit adaptation to new environments. Mol. Ecol. 31, 4435–4439 (2022).

    Article  CAS  Google Scholar 

  46. Gossner, M. M., Menzel, F. & Simons, N. K. Less overall, but more of the same: drivers of insect population trends lead to community homogenization. Biol. Lett. 19, 20230007 (2023).

    Article  Google Scholar 

  47. Nunez, J. C. B. et al. A cosmopolitan inversion facilitates seasonal adaptation in overwintering Drosophila. Genetics 226, iyad207 (2024).

    Article  Google Scholar 

  48. Berdan, E. L. et al. How chromosomal inversions reorient the evolutionary process. J. Evol. Biol. 36, 1761–1782 (2023).

    Article  CAS  Google Scholar 

  49. Karageorgiou, C., Tarrío, R. & Rodríguez-Trelles, F. The cyclically seasonal Drosophila subobscura inversion O7 originated from fragile genomic sites and relocated immunity and metabolic genes. Front. Genet. 11, 565836 (2020).

    Article  CAS  Google Scholar 

  50. González-Tokman, D. et al. Insect responses to heat: physiological mechanisms, evolution and ecological implications in a warming world. Biol. Rev. 95, 802–821 (2020).

    Article  Google Scholar 

  51. Smith, S., Edmonds, J., Hartin, C., Mundra, A. & Calvin, K. Near-term acceleration in the rate of temperature change. Nat. Clim. Change 5, 333–336 (2015).

    Article  Google Scholar 

  52. Li, C. et al. Widespread persistent changes to temperature extremes occurred earlier than predicted. Sci. Rep. 8, 1007 (2018).

    Article  Google Scholar 

  53. Diffenbaugh, N. S. & Barnes, E. A. Data-driven predictions of the time remaining until critical global warming thresholds are reached. Proc. Natl Acad. Sci. USA 120, e2207183120 (2023).

    Article  CAS  Google Scholar 

  54. Willcock, S., Cooper, G. S., Addy, J. & Dearing, J. A. Earlier collapse of Anthropocene ecosystems driven by multiple faster and noisier drivers. Nat. Sustain. 6, 1331–1342 (2023).

    Article  Google Scholar 

  55. Shorthouse, D. P. SimpleMappr (2010); https://www.simplemappr.net

  56. Pausas, J. G. & Millán, M. M. Greening and browning in a climate change hotspot: the Mediterranean Basin. BioScience 69, 143–151 (2019).

    Article  Google Scholar 

  57. Rodríguez-Trelles, F. & Rodríguez, M. Á. Comment on “Global genetic change tracks global climate warming in Drosophila subobscura”. Science 315, 1497 (2007).

    Article  Google Scholar 

  58. Solé, E. Análisi dels cambis cromosòmics a llarg termini en poblacions naturals deDrosophila subobscurai la seva relació amb el possible canvi climàtic global. PhD thesis, Univ. of Barcelona (2002); https://www.tesisenred.net/handle/10803/1849#page=1

  59. GISTEMP Team GISS Surface Temperature Analysis (GISTEMP v4) (NASA Goddard Institute for Space Studies, 2021); https://data.giss.nasa.gov/gistemp/

  60. Crawley, M. J. The R Book (John Wiley & Sons, 2013).

  61. Buckley, L. B. & Huey, R. B. Temperature extremes: geographic patterns, recent changes, and implications for organismal vulnerabilities. Glob. Change Biol. 22, 3829–3842 (2016).

    Article  Google Scholar 

  62. European Climate Assessment and Dataset Team MILLENIUM portal. Indices data. European Climate Assessment & Dataset https://www.ecad.eu/download/millennium/millennium.php (2024).

  63. R: a language and environment for statistical computing (R Core Team, 2020).

  64. Mazerolle, M. J. AICcmodavg: model selection and multimodel inference based on (Q)AIC(c). R package version 2.3-1 (2020).

  65. Bivand, R. R packages for analyzing spatial sata: a comparative case study with areal data. Geogr. Anal. 54, 488–518 (2022).

    Article  Google Scholar 

Download references

Acknowledgements

We express our special gratitude to R. B. Huey, C. Parmesan and M. C. Urban for their critical reading and insightful comments on the paper. We acknowledge the data providers in the ECA&D project (https://www.ecad.eu). We acknowledge the financial support from the Ministerio de Ciencia e Innovación (PID2020-116789, RB-C43 and CGL2017-89160P), Spanish Ministerio de Economía y Competitividad (CGL2013-42432-P) and Generalitat de Catalunya (2021-SGR-00731 and 2017SGR 1379).

Author information

Authors and Affiliations

Authors

Contributions

F.R.-T. conceived the study and led the data analysis and the writing of the paper with input from R.T. The two authors contributed to the survey plan, collection and processing of the samples and to interpreting the results.

Corresponding author

Correspondence to Francisco Rodríguez-Trelles.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Climate Change thanks Graham McCulloch and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Fig. 1 and Tables 1–8.

Supplementary Data 1

Statistical source data for Supplementary Fig. 1.

Supplementary Data 2

Data and R code.

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodríguez-Trelles, F., Tarrío, R. Acceleration of Drosophila subobscura evolutionary response to global warming in Europe. Nat. Clim. Chang. 14, 1101–1106 (2024). https://doi.org/10.1038/s41558-024-02128-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41558-024-02128-6

This article is cited by

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene