Abstract
The increasing risk of irreversible ecological transformation under global warming has boosted the need to understand the capacity of organisms to adapt to this change. Here, using a resurvey method of populations of the European fly Drosophila subobscura, we show that a known evolutionary response to global warming has accelerated in the past 20 years, in step with regional warming. This genetic response has come entirely by resorting pre-existing variation—and not from novel inversions—for tolerance to high temperature. Temperate populations are predicted to converge to the typical Mediterranean chromosomal composition by the mid-2050s, at which point this classic example of steep genetic cline will have vanished. Our results suggest that species with broad geographic ranges, large population sizes and high genetic diversity may have the evolutionary potential to cope with climate change.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to the full article PDF.
USD 39.95
Prices may be subject to local taxes which are calculated during checkout





Similar content being viewed by others
Data availability
All data generated in this study are available in the main text and Supplementary Information and can be accessed via figshare at https://doi.org/10.6084/m9.figshare.24619629 (ref. 25). Source data are provided with this paper.
Code availability
The R code for our statistical analyses can be accessed via figshare at https://doi.org/10.6084/m9.figshare.24619629 (ref. 25).
References
Urban, M. C. Climate change. Accelerating extinction risk from climate change. Science 348, 571–573 (2015).
Scheffers, B. R. et al. The broad footprint of climate change from genes to biomes to people. Science 354, aaf7671 (2016).
Climate Change 2023: Synthesis Report (eds Core Writing Team et al.) (IPCC, 2023).
Hughes, L. Biological consequences of global warming: is the signal already apparent? Trends Ecol. Evol. 15, 56–61 (2000).
Parmesan, C. & Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421, 37–42 (2003).
Parmesan, C. Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol. Evol. Syst. 37, 637–669 (2006).
Meester, L. D., Stoks, R. & Brans, K. I. Genetic adaptation as a biological buffer against climate change: potential and limitations. Integr. Zool. 13, 372–391 (2018).
Waldvogel, M. et al. Evolutionary genomics can improve prediction of species’ responses to climate change. Evol. Lett. 14, 4–18 (2020).
Martin, R. A., da Silva, C. R. B., Moore, M. P. & Diamond, S. E. When will a changing climate outpace adaptive evolution? Wiley Interdiscip. Rev. Clim. Change 14, e852 (2023).
Mimura, M. et al. Understanding and monitoring the consequences of human impacts on intraspecific variation. Evol. Appl. 10, 121–139 (2016).
Steinbauer, M. J. et al. Accelerated increase in plant species richness on mountain summits is linked to warming. Nature 556, 231–234 (2018).
Nadeau, C. P. & Urban, M. C. Eco-evolution on the edge during climate change. Ecography 42, 1280–1297 (2019).
Rodríguez-Trelles, F. & Rodríguez, M. A. Rapid micro-evolution and loss of chromosomal diversity in Drosophila in response to climate warming. Evol. Ecol. 12, 829–838 (1998).
Balanyà, J., Oller, J. M., Huey, R. B., Gilchrist, G. W. & Serra, L. Global genetic change tracks global climate warming in Drosophila subobscura. Science 313, 1773–1775 (2006).
Kirkpatrick, M. How and why chromosome inversions evolve. PLoS Biol. 8, e1000501 (2010).
Tigano, A. & Friesen, V. L. Genomics of local adaptation with gene flow. Mol. Ecol. 25, 2144–2164 (2016).
Wellenreuther, M. & Bernatchez, L. Eco-evolutionary genomics of chromosomal inversions. Trends Ecol. Evol. 33, 427–440 (2018).
Faria, R., Johannesson, K., Butlin, R. K. & Westram, A. M. Evolving inversions. Trends Ecol. Evol. 34, 239–248 (2019).
Krimbas, C. B. Drosophila subobscura: Biology, Genetics and Inversion Polymorphism (Verlag Dr. Kovac, 1993).
Karageorgiou, C., Gámez-Visairas, V., Tarrío, R. & Rodríguez-Trelles, F. Long-read based assembly and synteny analysis of a reference Drosophila subobscura genome reveals signatures of structural evolution driven by inversions recombination-suppression effects. BMC Genomics 20, 223 (2019).
Prevosti, A. et al. Colonization of America by Drosophila subobscura: experiment in natural populations that supports the adaptive role of chromosomal-inversion polymorphism. Proc. Natl Acad. Sci. USA 85, 5597–5600 (1988).
Rodríguez-Trelles, F., Alvarez, G. & Zapata, C. Time-series analysis of seasonal changes of the O inversion polymorphism of Drosophila subobscura. Genetics 142, 179–187 (1996).
Rodríguez-Trelles, F., Tarrío, R. & Santos, M. Genome-wide evolutionary response to a heat wave in Drosophila. Biol. Lett. 9, 20130228 (2013).
Balanyà, J., Solé, E., Oller, J. M., Sperlich, D. & Serra, L. Long-term changes in the chromosomal inversion polymorphism of Drosophila subobscura: II. European populations. J. Zool. Syst. Evol. Res. 42, 191–201 (2004).
Rodríguez-Trelles, F. & Tarrío, R. Data and code for ‘acceleration of Drosophila subobscura evolutionary response to global warming in Europe’. figshare https://doi.org/10.6084/m9.figshare.24619629 (2024).
Russo, S., Sillmann, J. & Fischer, E. M. Top ten European heatwaves since 1950 and their occurrence in the coming decades. Environ. Res. Lett. 10, 124003 (2015).
Zhang, R., Sun, C., Zhu, J., Zhang, R. & Li, W. Increased European heat waves in recent decades in response to shrinking Arctic sea ice and Eurasian snow cover. NPJ Clim. Atmos. Sci. 3, 7 (2020).
Lhotka, O. & Kyselý, J. The 2021 European heat wave in the context of past major heat waves. Earth Space Sci. 9, e2022EA002567 (2022).
Grant, P. R. et al. Evolution caused by extreme events. Phil. Trans. R. Soc. Lond. B 372, 20160146 (2017).
Ma, C. S., Ma, G. & Pincebourde, S. Survive a warming climate: insect responses to extreme high temperatures. Annu. Rev. Entomol. 66, 163–184 (2021).
Jørgensen, L. B., Ørsted, M., Malte, H., Wang, T. & Overgaard, J. Extreme escalation of heat failure rates in ectotherms with global warming. Nature 611, 93–98 (2022).
Meehl, G. A. & Tebaldi, C. More intense, more frequent, and longer lasting heat waves in the 21st century. Science 305, 994–997 (2004).
Rego, C. et al. Clinal patterns of chromosomal inversion polymorphisms in Drosophila subobscura are partly associated with thermal preferences and heat stress resistance. Evolution 64, 385–397 (2010).
Kingsolver, J. G. et al. Complex life cycles and the responses of insects to climate change. Integr. Comp. Biol. 51, 719–732 (2011).
Barrett, R. D. & Schluter, D. Adaptation from standing genetic variation. Trends Ecol. Evol. 23, 38–44 (2008).
Bitter, M. C., Kapsenberg, L., Gattuso, J. P. & Pfister, C. A. Standing genetic variation fuels rapid adaptation to ocean acidification. Nat. Commun. 10, 5821 (2019).
Matuszewski, S., Hermisson, J. & Kopp, M. Catch me if you can: adaptation from standing genetic variation to a moving phenotypic optimum. Genetics 200, 1255–1274 (2015).
Radchuk, V. et al. Adaptive responses of animals to climate change are most likely insufficient. Nat. Commun. 10, 3109 (2019).
Harvey, J. A., Thakur, M. P. & Ellers, J. The tarnished silver lining of extreme climatic events. Trends Ecol. Evol. 36, 384–385 (2021).
Parmesan, C. & Singer, M. C. Mosaics of climatic stress across species’ ranges: tradeoffs cause adaptive evolution to limits of climatic tolerance. Phil. Trans. R. Soc. Lond. B 377, 20210003 (2022).
Abarca, M. & Spahn, R. Direct and indirect effects of altered temperature regimes and phenological mismatches on insect populations. Curr. Opin. Insect Sci. 47, 67–74 (2021).
Harvey, J. A. et al. Scientists’ warning on climate change and insects. Ecol. Monogr. 93, e1553 (2023).
Des Roches, S. et al. The ecological importance of intraspecific variation. Nat. Ecol. Evol. 2, 57–64 (2018).
Diamond, S. E. & Martin, R. A. Evolution is a double‐edged sword, not a silver bullet, to confront global change. Ann. N. Y. Acad. Sci. 1469, 38–51 (2020).
Roesti, M., Gilbert, K. J. & Samuk, K. Chromosomal inversions can limit adaptation to new environments. Mol. Ecol. 31, 4435–4439 (2022).
Gossner, M. M., Menzel, F. & Simons, N. K. Less overall, but more of the same: drivers of insect population trends lead to community homogenization. Biol. Lett. 19, 20230007 (2023).
Nunez, J. C. B. et al. A cosmopolitan inversion facilitates seasonal adaptation in overwintering Drosophila. Genetics 226, iyad207 (2024).
Berdan, E. L. et al. How chromosomal inversions reorient the evolutionary process. J. Evol. Biol. 36, 1761–1782 (2023).
Karageorgiou, C., Tarrío, R. & Rodríguez-Trelles, F. The cyclically seasonal Drosophila subobscura inversion O7 originated from fragile genomic sites and relocated immunity and metabolic genes. Front. Genet. 11, 565836 (2020).
González-Tokman, D. et al. Insect responses to heat: physiological mechanisms, evolution and ecological implications in a warming world. Biol. Rev. 95, 802–821 (2020).
Smith, S., Edmonds, J., Hartin, C., Mundra, A. & Calvin, K. Near-term acceleration in the rate of temperature change. Nat. Clim. Change 5, 333–336 (2015).
Li, C. et al. Widespread persistent changes to temperature extremes occurred earlier than predicted. Sci. Rep. 8, 1007 (2018).
Diffenbaugh, N. S. & Barnes, E. A. Data-driven predictions of the time remaining until critical global warming thresholds are reached. Proc. Natl Acad. Sci. USA 120, e2207183120 (2023).
Willcock, S., Cooper, G. S., Addy, J. & Dearing, J. A. Earlier collapse of Anthropocene ecosystems driven by multiple faster and noisier drivers. Nat. Sustain. 6, 1331–1342 (2023).
Shorthouse, D. P. SimpleMappr (2010); https://www.simplemappr.net
Pausas, J. G. & Millán, M. M. Greening and browning in a climate change hotspot: the Mediterranean Basin. BioScience 69, 143–151 (2019).
Rodríguez-Trelles, F. & Rodríguez, M. Á. Comment on “Global genetic change tracks global climate warming in Drosophila subobscura”. Science 315, 1497 (2007).
Solé, E. Análisi dels cambis cromosòmics a llarg termini en poblacions naturals de “Drosophila subobscura” i la seva relació amb el possible canvi climàtic global. PhD thesis, Univ. of Barcelona (2002); https://www.tesisenred.net/handle/10803/1849#page=1
GISTEMP Team GISS Surface Temperature Analysis (GISTEMP v4) (NASA Goddard Institute for Space Studies, 2021); https://data.giss.nasa.gov/gistemp/
Crawley, M. J. The R Book (John Wiley & Sons, 2013).
Buckley, L. B. & Huey, R. B. Temperature extremes: geographic patterns, recent changes, and implications for organismal vulnerabilities. Glob. Change Biol. 22, 3829–3842 (2016).
European Climate Assessment and Dataset Team MILLENIUM portal. Indices data. European Climate Assessment & Dataset https://www.ecad.eu/download/millennium/millennium.php (2024).
R: a language and environment for statistical computing (R Core Team, 2020).
Mazerolle, M. J. AICcmodavg: model selection and multimodel inference based on (Q)AIC(c). R package version 2.3-1 (2020).
Bivand, R. R packages for analyzing spatial sata: a comparative case study with areal data. Geogr. Anal. 54, 488–518 (2022).
Acknowledgements
We express our special gratitude to R. B. Huey, C. Parmesan and M. C. Urban for their critical reading and insightful comments on the paper. We acknowledge the data providers in the ECA&D project (https://www.ecad.eu). We acknowledge the financial support from the Ministerio de Ciencia e Innovación (PID2020-116789, RB-C43 and CGL2017-89160P), Spanish Ministerio de Economía y Competitividad (CGL2013-42432-P) and Generalitat de Catalunya (2021-SGR-00731 and 2017SGR 1379).
Author information
Authors and Affiliations
Contributions
F.R.-T. conceived the study and led the data analysis and the writing of the paper with input from R.T. The two authors contributed to the survey plan, collection and processing of the samples and to interpreting the results.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Climate Change thanks Graham McCulloch and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Supplementary Fig. 1 and Tables 1–8.
Supplementary Data 1
Statistical source data for Supplementary Fig. 1.
Supplementary Data 2
Data and R code.
Source data
Source Data Fig. 1
Statistical source data.
Source Data Fig. 2
Statistical source data.
Source Data Fig. 3
Statistical source data.
Source Data Fig. 4
Statistical source data.
Source Data Fig. 5
Statistical source data.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Rodríguez-Trelles, F., Tarrío, R. Acceleration of Drosophila subobscura evolutionary response to global warming in Europe. Nat. Clim. Chang. 14, 1101–1106 (2024). https://doi.org/10.1038/s41558-024-02128-6
Received:
Accepted:
Published:
Version of record:
Issue date:
DOI: https://doi.org/10.1038/s41558-024-02128-6


