Abstract
There is concern that climate change might lead to abrupt and irreversible changes in parts of the Earth system at so-called tipping points. Theoretical considerations suggest that statistical measures can be used to detect early warning signals (EWSs) for reduced resilience, which could be interpreted as an increased proximity to climate tipping points. Here we discuss limitations of commonly used EWSs and their detection and discuss how alternative explanations can lead to resilience loss in the absence of tipping points. We argue for better testing of the existence of tipping points, beyond the application of EWSs, and propose a method to better quantify the probability of approaching tipping points using EWSs.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to the full article PDF.
USD 39.95
Prices may be subject to local taxes which are calculated during checkout




Similar content being viewed by others
Code availability
All code is publicly available via Zenodo at https://doi.org/10.5281/zenodo.14185461 (ref. 108).
References
Scheffer, M., Carpenter, S., Foley, J. A., Folke, C. & Walker, B. Catastrophic shifts in ecosystems. Nature 413, 591–596 (2001).
Lenton, T. M. et al. Tipping elements in the Earth’s climate system. Proc. Natl Acad. Sci. USA 105, 1786–1793 (2008).
Armstrong McKay, D. I. et al. Exceeding 1.5 °C global warming could trigger multiple climate tipping points. Science 377, eabn7950 (2022).
Lenton, T. M. et al. The Global Tipping Points Report 2023 (Univ. Exeter, 2023).
IPCC Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) (Cambridge Univ. Press, 2021).
Scheffer, M. et al. Early warning signals for critical transitions. Nature 461, 53–59 (2009).
Boers, N. & Rypdal, M. Critical slowing down suggests that the western Greenland Ice Sheet is close to a tipping point. Proc. Natl Acad. Sci. USA 118, e2024192118 (2021).
Boers, N. Observation-based early-warning signals for a collapse of the Atlantic meridional overturning circulation. Nat. Clim. Change 11, 680–688 (2021).
Boulton, C. A., Lenton, T. M. & Boers, N. Pronounced loss of Amazon rainforest resilience since the early 2000s. Nat. Clim. Change 12, 271–278 (2022).
Ditlevsen, P. & Ditlevsen, S. Warning of a forthcoming collapse of the Atlantic meridional overturing circulation. Nat. Commun. 14, 4254 (2023).
Boettiger, C. & Hastings, A. Early warning signals and the prosecutor’s fallacy. Proc. R. Soc. B 279, 4734–4739 (2012).
Kéfi, S., Dakos, V., Scheffer, M., Van Nes, E. H. & Rietkerk, M. Early warning signals also precede non-catastrophic transitions. Oikos 122, 641–648 (2013).
Ben-Yami, M., Morr, A., Bathiany, S. & Boers, N. Uncertainties too large to predict tipping times of major Earth system components from historical data. Sci. Adv. 10, eadl4841 (2024).
Van Nes, E. H. et al. What do you mean, ‘tipping point’? Trends Ecol. Evol. 31, 622–632 (2016).
Ashwin, P., Wieczorek, S., Vitolo, R. & Cox, P. Tipping points in open systems: bifurcation, noise-induced and rate-dependent examples in the climate system. Phil. Trans. R. Soc. A 370, 1166–1184 (2012).
Titz, S., Kuhlbrodt, T., Rahmstorf, S. & Freudel, U. On freshwater-dependent bifurcations in box models of the interhemispheric thermohaline circulations. Tellus A 54, 89–98 (2002).
Lux, K., Ashwin, P., Wood, R. & Kuehn, C. Assessing the impact of parametric uncertainty on tipping points of the Atlantic meridional overturing circulation. Environ. Res. Lett. 17, 075002 (2022).
Lohmann, J., Dijkstra, H. A., Jochum, M., Lucarini, V. & Ditlevsen, P. D. Multistability and intermediate tipping of the Atlantic ocean circulation. Sci. Adv. 10, eadi4253 (2024).
Drijfhout, S. et al. Catalogue of abrupt shifts in Intergovernmental Panel on Climate Change climate models. Proc. Natl Acad. Sci. USA 112, E5777–E5786 (2015).
Bathiany, S., Notz, D., Mauritsen, T., Raedel, G. & Brovkin, V. On the potential for abrupt Arctic winter sea ice loss. J. Clim. 29, 2703–2719 (2016).
Stommel, H. Thermohaline convection with two stable regimes of flow. Tellus 13, 224–230 (1961).
Cessi, P. A. A simple box model of stochastically forced thermohaline flow. J. Phys. Oceanogr. 24, 1911–1920 (1994).
Liu, W., Liu, Z. & Brady, E. C. Why is the AMOC monostable in coupled general circulation models? J. Clim. 27, 2427–2443 (2014).
Jackson, L. C. et al. Understanding AMOC stability: the North Atlantic Hosing Model Intercomparison Project. Geosci. Model Dev. 16, 1975–1995 (2023).
Van Westen, R. M., Kliphuis, M. & Dijkstra, H. A. Physics-based early warning signal shows that AMOC is on tipping course. Sci. Adv. 10, eadk1189 (2024).
Gildor, H. & Tziperman, E. Physical mechanisms behind biogeochemical glacial–interglacial CO2 variations. Geophys. Res. Lett. 28, 2421–2424 (2001).
Alkhayoun, H. M., Ashwin, P., Jackson, L. C., Quinn, C. & Wood, R. A. Basin bifurcation, oscillatory instability and scale induced thresholds for the Atlantic meridional overturning circulation in a global box model. Proc. R. Soc. A 475, 20190051 (2019).
Rietkerk, M. et al. Evasion of tipping in complex systems through spatial pattern formation. Science 374, eabj0359 (2021).
Bastiaansen, R., Dijkstra, H. A. & Von der Heydt, A. S. Fragmented tipping in a spatially heterogeneous world. Environ. Res. Let. 17, 045006 (2022).
Laepple, T. et al. Regional but not global temperature variability underestimated by climate models at supradecadal timescales. Nat. Geosci. 16, 958–966 (2024).
Dekker, M. M., von der Heydt, A. S. & Dijkstra, H. A. Cascading transitions in the climate system. Earth Syst. Dyn. 9, 1243–1260 (2018).
Klose, A. K., Karle, V., Winkelmann, R. & Donges, J. F. Emergence of cascading dynamics in interacting tipping elements of ecology and climate. R. Soc. Open Sci. 7, 200599 (2020).
Klose, A. K., Wunderling, N., Winkelmann, R. & Donges, J. F. What do we mean, ‘tipping cascade’? Environ. Res. Let. 16, 125011 (2021).
Liu, T. et al. Teleconnections among tipping elements in the Earth system. Nat. Clim. Change 13, 67–74 (2023).
Wunderling, N. et al. Global warming overshoots increase risks of climate tipping cascades in a network model. Nat. Clim. Change 13, 75–82 (2023).
Wunderling, N., Donges, J. F., Kurths, J. & Winkelmann, R. Interacting tipping elements increase risk of climate domino effects under global warming. Earth Syst. Dyn. 12, 601–619 (2021).
Wunderling, N. et al. Climate tipping point interactions and cascades: a review. Earth Syst. Dyn. 15, 41–74 (2024).
Held, H. & Kleinen, T. Detection of climate system bifurcations by degenerate fingerprinting. Geophys. Res. Let. 31, L23207 (2004).
Weinans, E., Ouax, R., Van Nes, E. H. & Van de Leemput, I. A. Evaluating the performance of multivariate indicators of resilience loss. Sci. Rep. 11, 9148 (2021).
Laitinen, V. & Lahti, L. in Computational Methods in Systems Biology (eds Petre, I. & Păun, A.) 259–274 (Springer, 2022).
Benson, V. et al. Measuring tropical rainforest resilience under non-Gaussian disturbances. Environ. Res. Lett. 19, 024029 (2024).
Morr, A. & Boers, N. Detection of approaching critical transitions in natural systems driven by red noise. Phys. Rev. X 14, 021037 (2024).
Dakos, V. et al. Tipping point detection and early warnings in climate, ecological, and human systems. Earth Syst. Dyn. 15, 1117–1135 (2024).
Hastings, A. et al. Transient phenomena in ecology. Science 361, eaat6412 (2018).
Sánchez-Pinillos, M., Dakos, V. & Kéfi, S. Ecological dynamic regimes: a key concept for assessing ecological resilience. Biol. Conserv. 289, 110409 (2024).
Dablander, F. et al. Overlapping timescales obscure early warning signals of the second COVID-19 wave. Proc. R. Soc. B 289, 20211809 (2022).
Bury, T. M., Bauch, C. T. & Anand, M. Detecting and distinguishing tipping points using spectral early warning signals. J. R. Soc. Interface 17, 20200482 (2020).
Bury, T. M. et al. Deep learning for early warning signals of tipping points. Proc. Natl Acad. Sci. USA 118, e2106140118 (2021).
Ghil, M. in Encyclopedia of Global Environmental Change Vol. 1 (eds Munn, T. E. et al.) 544–549 (John Wiley & Sons, 2002).
Ditlevsen, P. D. & Johnsen, S. J. Tipping points: early warning and wishful thinking. Geophys. Res. Let. 37, L19703 (2010).
Dijkstra, H. A. & Ghil, M. Low-frequency variability of the large-scale ocean circulation: a dynamical systems approach. Rev. Geophys. 43, RG3002 (2005).
Bascompte, J. & Solé, R. V. Rethinking complexity: modelling spatiotemporal dynamics in ecology. Trends Ecol. Evol. 10, 361–366 (1995).
Solé, R. & Bascompte, J. Self-Organization in Complex Ecosystems (Princeton Univ. Press, 2006).
Staal, A. et al. Forest-rainfall cascades buffer against drought across the Amazone. Nat. Clim. Change 8, 539–543 (2018).
Meron, E. Nonlinear Physics of Ecosystems (CRC Press, 2015).
Bastiaansen, R. et al. Multistability of model and real dryland ecosystems through spatial self-organization. Proc. Natl Acad. Sci. USA 115, 11256–11261 (2018).
Dakos, V. et al. Slowing down as an early warning signal for abrupt climate change. Proc. Natl Acad. Sci. USA 105, 14308–14312 (2008).
Boers, N. Early-warning signals for Dansgaard–Oeschger events in a high-resolution ice core record. Nat. Commun. 9, 2556 (2018).
Michel, S. L. et al. Early warning signal for a tipping point suggested by a millennial Atlantic multidecadal variability reconstruction. Nat. Commun. 13, 5176 (2022).
Verbesselt, J. et al. Remotely sensed resilience of tropical forests. Nat. Clim. Change 6, 1028–1031 (2016).
Smith, T. et al. Reliability of resilience estimation based on multi-instrument time series. Earth Syst. Dyn. 14, 173–183 (2023).
Rocha, J. C. Ecosystems are showing symptoms of resilience loss. Environ. Res. Let. 17, 065013 (2022).
Dakos, V. et al. Methods for detecting early warnings of critical transitions in time series illustrated using simulated ecological data. PLoS ONE 7, e41010 (2012).
Ben-Yami, M., Skiba, V., Bathiany, S. & Boers, N. Uncertainties in critical slowing down indicators of observation-based fingerprints of the Atlantic overturing circulation. Nat. Commun. 14, 8344 (2023).
Anchukaitis, K. J. & Smerdon, J. E. Progress and uncertainties in global and hemispheric temperature reconstructions of the Common Era. Quat. Sci. Rev. 286, 107537 (2022).
Kennedy, J. J., Rayner, N. A., Atkinson, C. P. & Killick, R. E. An ensemble data set of sea surface temperature change from 1850: the Met Office Hadley Centre HadSST. 4.0. 0.0 data set. J. Geophys. Res. Atmos. 124, 7719–7763 (2019).
King, J. M. et al. A data assimilation approach to last millennium temperature field reconstruction using a limited high-sensitivity proxy network. J. Clim. 34, 7091–7111 (2021).
Huntingford, C., Jones, P. D., Livina, V. N., Lenton, T. M. & Cox, P. M. No increase in global temperature variability despite changing regional patterns. Nature 500, 327–330 (2013).
Bathiany, S. et al. Statistical indicators of Arctic sea ice stability—prospects and limitations. Cryosphere 10, 1631–1645 (2016).
Lenton, T. M. et al. Observed trends in the magnitude and persistence of monthly temperature variability. Sci. Rep. 7, 5940 (2017).
Rehfeld, K., Münch, T., Ho, S. L. & Laepple, T. Global patterns of declining temperature variability from the Last Glacial Maximum to the Holocene. Nature 554, 356–359 (2018).
Lovejoy, S. & Varotsos, C. Scaling regimes and linear/nonlinear responses of last millennium climate to volcanic and solar forces. Earth Syst. Dyn. 7, 133–150 (2016).
Livezey, R. E. & Chen, W. Y. Statistical field significance and its determination by Monte Carlo techniques. Mon. Weather Rev. 111, 46–59 (1983).
Dolman, A. M. & Laepple, T. Sedproxy: a forward model for sediment-archived climate proxies. Clim. Past 14, 1851–1868 (2018).
Hirsch, N. et al. Stratigraphic noise and its potential drivers across the plateau of Dronning Maud Land, East Antarctica. Cryosphere 17, 4207–4221 (2023).
Davis, R. E. Predictability of sea surface temperature and sea level pressure anomalies over the North Pacific Ocean. J. Phys. Oceanogr. 6, 249–266 (1976).
Clements, C. F., Drake, J. M., Griffiths, J. I. & Ozgul, A. Factors influencing the detectability of early warning signals of population collapse. Am. Nat. 186, 50–58 (2015).
Dablander, F., Pichler, A., Cika, A. & Bacilieri, A. Anticipating critical transitions in psychological systems using early warning signals: theoretical and practical considerations. Psychol. Methods 28, 765–790 (2023).
Thompson, W. C. & Schumann, E. L. Interpretation of statistical evidence in criminal trials: the prosecutor’s fallacy and the defense attorney’s fallacy. Law Hum. Behav. 11, 167–187 (1987).
Evett, I. W. Avoiding the transposed conditional. Sci. Justice 2, 127–131 (1995).
Neath, A. A. Statistical inference, statistics education, and the fallacy of the transposed conditional. In Proc. Joint Statistical Meeting 3348–3350 (2010).
Shepherd, T. G. Bringing physical reasoning into statistical practice in climate-change science. Climatic Change 169, 2 (2021).
Boettiger, C. & Hastings, A. Quantifying limits to detection of early warning for critical transitions. J. R. Soc. Interface 9, 2527–2539 (2012).
Brovkin, V. et al. Past abrupt changes, tipping points and cascading impacts in the Earth system. Nat. Geosci. 14, 550–558 (2021).
NEEM community members. Eemian interglacial reconstructed from a Greenland folded ice core. Nature 493, 489–494 (2013).
Greenland, S. et al. Statistical tests, P values, confidence intervals, and power: a guide to misinterpretations. Eur. J. Epidemiol. 31, 337–350 (2016).
Ives, A. R. et al. Statistical inference for trends in spatiotemporal data. Remote Sens. Environ. 266, 112678 (2021).
Watkins, N. W., Pruessner, G., Chapman, S. C., Crosby, N. B. & Jensen, H. J. 25 years of self-organized criticality: concepts and controversies. Space Sci. Rev. 198, 3–44 (2016).
Srokosz, M. A., Holliday, N. P. & Bryden, H. L. Atlantic overturning: new observations and challenges. Phil. Trans. R. Soc. A 381, 20220196 (2023).
Cranmer, K., Brehmer, J. & Louppe, G. The frontier of simulation-based inference. Proc. Natl Acad. Sci. USA 117, 30055–30062 (2020).
Shepherd, T. G. et al. Storylines: an alternative approach to representing uncertainty in physical aspects of climate change. Climatic Change 151, 555–571 (2018).
Ritchie, P. D. L. et al. Shifts in national land use and food production in Great Britain after a climate tipping point. Nat. Food 1, 76–83 (2020).
Sahlin, U., Helle, I. & Perepolking, D. ‘This is what we don’t know’: treating epistemic uncertainty in Bayesian networks for risk assessment. Integr. Environ. Assess. Manage. 17, 221–232 (2021).
Lenton, T. M. et al. Climate tipping points—too risky to bet against. Nature 575, 592–595 (2019).
Morrison, T. H. et al. Radical interventions for climate-impacted systems. Nat. Clim. Change 12, 1100–1106 (2022).
Patterson, A. C., Strang, A. G. & Abbott, K. C. When and where can we expect to see early warning signals in multispecies systems approaching tipping points: insights from theory. Am. Nat. 198, E12 (2021).
Morr, A., Boers, N. & Ashwin, P. Internal noise interference to warnings of tipping points in generic multi-dimensional dynamical systems. SIAM J. Appl. Dyn. Syst. 23, 2793–2806 (2024).
Drake, J. M. & Griffin, B. D. Early warning signals of extinction in deteriorating environments. Nature 467, 456–459 (2010).
Ricker, W. E. Stock and recruitment. Can. J. Fish. Aquat. Sci. 11, 559–623 (1954).
Rietkerk, M., Ketner, P., Stroosnijder, L. & Prins, H. H. Sahelian rangeland development; a catastrophe? J. Range Manage. 49, 512–519 (1996).
Wissel, C. A. Universal law of the characteristic return time near thresholds. Oecologia 65, 101–107 (1984).
Boettner, C. & Boers, N. Critical slowing down in dynamical systems driven by non-stationary correlated noise. Phys. Rev. Res. 4, 013230 (2022).
Heßler, M. & Kamps, O. Bayesian on-line anticipation of critical transitions. N. J. Phys. 24, 063021 (2022).
Clarke, J. J., Huntingford, C., Ritchie, P. D. & Cox, P. M. Seeking more robust early warning signals for climate tipping points: the ratio of spectra method (ROSA). Environ. Res. Let. 18, 035006 (2023).
Smith, T., Traxl, D. & Boers, N. Empirical evidence for recent global shifts in vegetation resilience. Nat. Clim. Change 12, 477–484 (2022).
Huybers, P. & Curry, W. Links between annual, Milankovitch and continuum temperature variability. Nature 441, 329–332 (2006).
Van Doorn, J. et al. The JASP guidelines for conducting and reporting a Bayesian analysis. Psychon. Bull. Rev. 28, 813–826 (2021).
Skiba, V., Hébert, R. & Weinans, E. Code to produce figures for the manuscript ‘Ambiguity of statistical early warning signals for climate tipping points’. Zenodo https://doi.org/10.5281/zenodo.14185461 (2024).
Acknowledgements
The research of M.R. is supported by the European Research Council (ERC-Synergy project RESILIENCE, proposal no. 101071417) and by the Dutch Research Council (NWO ‘Resilience in complex systems through adaptive spatial pattern formation’, project no. OCENW.M20.169). This work was conducted as part of the EMBRACER programme, the Earth System Feedback Research Centre, and was financially supported by the SUMMIT programme of the Dutch Research Council (NWO). The research of T.L. is supported by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (ERC-Starting project SPACE, grant agreement no. 716092) and through the Cluster of Excellence, The Ocean Floor—Earth’s Uncharted Interface funded by the German Research Foundation (DFG; EXC 2077, grant no. 390741603). The research of V.S. was supported by German Federal Ministry of Education and Research (BMBF) as Research for Sustainability initiative (FONA); www.fona.de through the Palmod project (FKZ: 01LP2310B). We thank B. Grusdt, A. Dolman, T. Shepherd and P. Zaspel for fruitful discussions. S. Bathiany, A. van der Kaaden and A. Staal are acknowledged for critically reviewing earlier drafts of this paper.
Author information
Authors and Affiliations
Contributions
M.R. and T.L. conceived of the study. M.R. and V.S. wrote the first draft of the paper. T.L. and V.S. provided the drafts of the statistical concepts. M.R., V.S., E.W., R.H. and T.L. reviewed and edited the text. V.S., E.W. and R.H. provided the figures.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Climate Change thanks Fabian Dablander, Juan Rocha and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Supplementary Figs. 1 and 2.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Rietkerk, M., Skiba, V., Weinans, E. et al. Ambiguity of early warning signals for climate tipping points. Nat. Clim. Chang. 15, 479–488 (2025). https://doi.org/10.1038/s41558-025-02328-8
Received:
Accepted:
Published:
Version of record:
Issue date:
DOI: https://doi.org/10.1038/s41558-025-02328-8
This article is cited by
-
Destabilization of Earth system tipping elements
Nature Geoscience (2025)
-
Unified description model and typology classification of coastal tipping points
Science China Earth Sciences (2025)
-
Adaptation planning in the context of a weakening and possibly collapsing Atlantic Meridional Overturning Circulation (AMOC)
Regional Environmental Change (2025)


