Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Current and future methane emissions from boreal-Arctic wetlands and lakes

Abstract

Methane emissions from the boreal-Arctic region are likely to increase due to warming and permafrost thaw, but the magnitude of increase is unconstrained. Here we show that distinguishing several wetland and lake classes improves our understanding of current and future methane emissions. Our estimate of net annual methane emission (1988–2019) was 34 (95% CI: 25–43) Tg CH4 yr−1, dominated by five wetland (26 Tg CH4 yr−1) and seven lake (5.7 Tg CH4 yr−1) classes. Our estimate was lower than previous estimates due to explicit characterization of low methane-emitting wetland and lake classes, for example, permafrost bogs, bogs, large lakes and glacial lakes. To reduce uncertainty further, improved wetland maps and further measurements of wetland winter emissions and lake ebullition are needed. Methane emissions were estimated to increase by ~31% under a moderate warming scenario (SSP2-4.5 by 2100), driven primarily by warming rather than permafrost thaw.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Current (1988–2019) boreal-Arctic terrestrial and inland water ecosystem CH4 emissions, areas and uncertainties.
Fig. 2: Future wetland and lake CH4 emissions and drivers.
Fig. 3: Summary of sources of uncertainty and highest model sensitivity for current CH4 emissions from natural ecosystems in the boreal-Arctic region.

Similar content being viewed by others

Data availability

Gridded maps of annual methane emissions from the boreal-Arctic region produced from this study are available at https://doi.org/10.5281/zenodo.14991411 (ref. 58). The BAWLD-CH4 flux dataset is available for download from the Arctic Data Center via https://doi.org/10.18739/A27H1DN5S (ref. 59). The companion BAWLD land-cover spatial dataset is also available at the Arctic Data Center via https://doi.org/10.18739/A2C824F9X (ref. 60). UpCH4 emissions and WAD2m wetland products are available via DOE ORNL DAAC (UpCH4, https://doi.org/10.3334/ORNLDAAC/2253; ref. 61) and Zenodo (WAD2M, https://doi.org/10.5281/zenodo.5553187; ref. 62). Emissions products from Peltola and colleagues47 (RF-PEATMAP, RF-GLWD) are available from https://doi.org/10.5281/zenodo.2560163 (ref. 63). CarbonTracker CT-CH4-2023 results are provided by NOAA GML via https://gml.noaa.gov/ccgg/carbontracker-ch4/. The GCP-BU product is available on reasonable request from Z.Z. (yuisheng@gmail.com). CMIP6 future temperature scenarios can be downloaded from https://www.worldclim.org/. Background political boundaries used in maps are from ref. 64.

Code availability

Code to calculate annual emissions can be found at https://doi.org/10.5281/zenodo.15636336 (ref. 65) and https://github.com/kenziekuhn4/bawldCH4_scaling (ref. 66).

References

  1. Zhang, Z. et al. Development of the global dataset of Wetland Area and Dynamics for Methane Modeling (WAD2M). Earth Syst. Sci. Data 13, 2001–2023 (2021).

    Article  Google Scholar 

  2. Feng, M., Sexton, J. O., Channan, S. & Townshend, J. R. A global, high-resolution (30-m) inland water body dataset for 2000: first results of a topographic–spectral classification algorithm. Int. J. Digital Earth 9, 113–133 (2016).

    Article  Google Scholar 

  3. Saunois, M. et al. The global methane budget 2000–2017. Earth Syst. Sci. Data 12, 1561–1623 (2020).

    Article  Google Scholar 

  4. Svensson, B. H., Veum, A. K. & Kjelvik, S. in Fennoscandian Tundra Ecosystems: Part 1 Plants and Microorganisms (ed. Wielgolaski, F. E.) 279–286 (Springer, 1975).

  5. Kuhn, M. et al. BAWLD-CH 4: a comprehensive dataset of methane fluxes from boreal and Arctic ecosystems. Earth Syst. Sci. Data 13, 5151–5189 (2021).

    Article  Google Scholar 

  6. Thornton, B. F., Wik, M. & Crill, P. M. Double‐counting challenges the accuracy of high‐latitude methane inventories. Geophys. Res. Lett. 43, 12,569–12,577 (2016).

    Article  CAS  Google Scholar 

  7. McNicol, G. et al. Upscaling wetland methane emissions from the FLUXNET‐CH4 eddy covariance network (UpCH4 v1.0): model development, network assessment, and budget comparison. AGU Adv. 4, e2023AV000956 (2023).

    Article  Google Scholar 

  8. Watts, J. D., Kimball, J. S., Bartsch, A. & McDonald, K. C. Surface water inundation in the boreal-Arctic: potential impacts on regional methane emissions. Environ. Res. Lett. 9, 075001 (2014).

    Article  Google Scholar 

  9. Johnson, M. S., Matthews, E., Du, J., Genovese, V. & Bastviken, D. Methane emission from global lakes: new spatiotemporal data and observation-driven modeling of methane dynamics indicates lower emissions. J. Geophys. Res. Biogeosci. 127, e2022JG006793 (2022).

    Article  CAS  Google Scholar 

  10. Walter Anthony, K. M. et al. Estimating methane emissions from northern lakes using ice-bubble surveys. Limnol. Oceanogr. Methods 8, 592–609 (2010).

    Article  Google Scholar 

  11. Oh, Y. et al. CarbonTracker CH4 2023 (NOAA Global Monitoring Laboratory, 2023); https://doi.org/10.25925/40JT-QD67

  12. Thompson, R. L. et al. Methane fluxes in the high northern latitudes for 2005–2013 estimated using a Bayesian atmospheric inversion. Atmos. Chem. Phys. 17, 3553–3572 (2017).

    Article  CAS  Google Scholar 

  13. Webb, E. E. et al. Permafrost thaw drives surface water decline across lake-rich regions of the Arctic. Nat. Clim. Change 12, 841–846 (2022).

    Article  CAS  Google Scholar 

  14. Turetsky, M. R. et al. Carbon release through abrupt permafrost thaw. Nat. Geosci. 13, 138–143 (2020).

    Article  CAS  Google Scholar 

  15. Olefeldt, D. et al. The Boreal-Arctic Wetland and Lake Dataset (BAWLD). Earth Syst. Sci. Data 13, 5127–5149 (2021).

    Article  Google Scholar 

  16. Treat, C. C., Bloom, A. A. & Marushchak, M. E. Nongrowing season methane emissions: a significant component of annual emissions across northern ecosystems. Glob. Chang. Biol. 24, 3331–3343 (2018).

    Article  Google Scholar 

  17. Sieczko, A. K. et al. Diel variability of methane emissions from lakes. Proc. Natl Acad. Sci. USA 117, 21488–21494 (2020).

    Article  CAS  Google Scholar 

  18. Wik, M., Varner, R. K., Anthony, K. W., MacIntyre, S. & Bastviken, D. Climate-sensitive northern lakes and ponds are critical components of methane release. Nat. Geosci. 9, 99–105 (2016).

    Article  CAS  Google Scholar 

  19. Vonk, J. E. et al. High biolability of ancient permafrost carbon upon thaw. Geophys. Res. Lett. 40, 2689–2693 (2013).

    Article  CAS  Google Scholar 

  20. Walter Anthony, K. et al. 21st-Century modeled permafrost carbon emissions accelerated by abrupt thaw beneath lakes. Nat. Commun. 9, 3262 (2018).

    Article  Google Scholar 

  21. Bartsch, A. et al. Circumarctic land cover diversity considering wetness gradients. Hydrol. Earth Syst. Sci. 28, 2421–2481 (2024).

    Article  CAS  Google Scholar 

  22. Kyzivat, E. D. & Smith, L. C. Contemporary and historical detection of small lakes using super resolution Landsat imagery: promise and peril. GISci. Remote Sens. https://doi.org/10.1080/15481603.2023.2207288 (2023).

  23. Rocher-Ros, G. et al. Global methane emissions from rivers and streams. Nature 621, 530–535 (2023).

    Article  CAS  Google Scholar 

  24. Voigt, C. et al. Arctic soil methane sink increases with drier conditions and higher ecosystem respiration. Nat. Clim. Change 13, 1095–1104 (2023).

    Article  CAS  Google Scholar 

  25. Lee, J. et al. Soil organic carbon is a key determinant of CH4 sink in global forest soils. Nat. Commun. 14, 3110 (2023).

    Article  CAS  Google Scholar 

  26. Matthews, E., Johnson, M. S., Genovese, V., Du, J. & Bastviken, D. Methane emission from high latitude lakes: methane-centric lake classification and satellite-driven annual cycle of emissions. Sci. Rep. 10, 12465 (2020).

    Article  CAS  Google Scholar 

  27. Chasmer, L. & Hopkinson, C. Threshold loss of discontinuous permafrost and landscape evolution. Glob. Chang. Biol. 23, 2672–2686 (2017).

    Article  Google Scholar 

  28. Mamet, S. D., Chun, K. P., Kershaw, G. G. L., Loranty, M. M. & Peter Kershaw, G. Recent increases in permafrost thaw rates and areal loss of palsas in the western Northwest Territories, Canada: non-linear palsa degradation. Permafr. Periglac. Process. 28, 619–633 (2017).

    Article  Google Scholar 

  29. Borge, A. F., Westermann, S., Solheim, I. & Etzelmüller, B. Strong degradation of palsas and peat plateaus in northern Norway during the last 60 years. Cryosphere 11, 1–16 (2017).

    Article  Google Scholar 

  30. Bao, T., Jia, G. & Xu, X. Weakening greenhouse gas sink of pristine wetlands under warming. Nat. Clim. Change 13, 462–469 (2023).

    Article  CAS  Google Scholar 

  31. Dorrepaal, E., Aerts, R., Cornelissen, J. H. C., Callaghan, T. V. & Van Logtestijn, R. S. P. Summer warming and increased winter snow cover affect Sphagnum fuscum growth, structure and production in a sub‐Arctic bog. Glob. Chang. Biol. 10, 93–104 (2004).

    Article  Google Scholar 

  32. Norby, R. J., Childs, J., Hanson, P. J. & Warren, J. M. Rapid loss of an ecosystem engineer: Sphagnum decline in an experimentally warmed bog. Ecol. Evol. 9, 12571–12585 (2019).

    Article  Google Scholar 

  33. Lupascu, M. et al. High Arctic wetting reduces permafrost carbon feedbacks to climate warming. Nat. Clim. Change 4, 51–55 (2014).

    Article  CAS  Google Scholar 

  34. de Vrese, P. et al. Sensitivity of Arctic CH4 emissions to landscape wetness diminished by atmospheric feedbacks. Nat. Clim. Change 13, 832–839 (2023).

    Article  Google Scholar 

  35. Zhang, Z. et al. Emerging role of wetland methane emissions in driving 21st century climate change. Proc. Natl. Acad. Sci. USA 114, 9647–9652 (2017).

    Article  CAS  Google Scholar 

  36. Yuan, K. et al. Arctic–boreal wetland methane emissions modulated by warming and vegetation activity. Nat. Clim. Change 14, 282–288 (2024).

  37. Bartsch, A. et al. Circumarctic land-cover diversity considering wetness gradients. EGUsphere 2023, 2421–2481 (2023).

    Google Scholar 

  38. Oh, Y. et al. Reduced net methane emissions due to microbial methane oxidation in a warmer Arctic. Nat. Clim. Chang. 10, 317–321 (2020).

    Article  CAS  Google Scholar 

  39. Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).

    Article  Google Scholar 

  40. Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1‐km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).

    Article  Google Scholar 

  41. Olefeldt, D., Turetsky, M. R., Crill, P. M. & McGuire, A. D. Environmental and physical controls on northern terrestrial methane emissions across permafrost zones. Glob. Change Biol. 19, 589–603 (2013).

    Article  Google Scholar 

  42. Turetsky, M. R. et al. A synthesis of methane emissions from 71 northern, temperate, and subtropical wetlands. Glob. Change Biol. 20, 2183–2197 (2014).

    Article  Google Scholar 

  43. Weyhenmeyer, G. A. et al. Large geographical differences in the sensitivity of ice-covered lakes and rivers in the Northern Hemisphere to temperature changes. Glob. Change Biol. 17, 268–275 (2011).

    Article  Google Scholar 

  44. DelSontro, T., Boutet, L., St-Pierre, A., del Giorgio, P. A. & Prairie, Y. T. Methane ebullition and diffusion from northern ponds and lakes regulated by the interaction between temperature and system productivity. Limnol. Oceanogr. 61, S62–S77 (2016).

    Article  Google Scholar 

  45. Stanley, E. H. et al. GRiMeDB: the global river database of methane concentrations and fluxes. Earth Syst. Sci. Data Discuss. 15, 2879–2926 (2022).

  46. Dieleman, C. M. et al. Wildfire combustion and carbon stocks in the southern Canadian boreal forest: Implications for a warming world. Glob. Chang. Biol. 26, 6062–6079 (2020).

    Article  Google Scholar 

  47. Peltola, O. et al. Monthly gridded data product of northern wetland methane emissions based on upscaling eddy covariance observations. Earth Syst. Sci. Data 1263–1289 (2019).

  48. Liu, L. et al. Uncertainty quantification of global net methane emissions from terrestrial ecosystems using a mechanistically based biogeochemistry model. J. Geophys. Res. Biogeosci. 125, e2019JG005428 (2020).

    Article  CAS  Google Scholar 

  49. Matthews, E. & Fung, I. Methane emission from natural wetlands: global distribution, area, and environmental characteristics of sources. Global Biogeochem. Cycles 1, 61–86 (1987).

    Article  CAS  Google Scholar 

  50. Olefeldt, D. et al. Circumpolar distribution and carbon storage of thermokarst landscapes. Nat. Commun. 7, 13043 (2016).

    Article  CAS  Google Scholar 

  51. Quinton, W. L., Hayashi, M. & Chasmer, L. E. Permafrost-thaw-induced land-cover change in the Canadian subarctic: implications for water resources. Hydrol. Process. 25, 152–158 (2011).

    Article  Google Scholar 

  52. Karlsson, J. M., Lyon, S. W. & Destouni, G. Temporal behavior of lake size-distribution in a thawing permafrost landscape in northwestern Siberia. Remote Sensing 6, 621–636 (2014).

    Article  Google Scholar 

  53. Nitze, I. et al. Landsat-based trend analysis of lake dynamics across northern permafrost regions. Remote Sens. 9, 640 (2017).

    Article  Google Scholar 

  54. Olthof, I., Fraser, R. H., van der Sluijs, J. & Travers-Smith, H. Detecting long-term Arctic surface water changes. Nat. Clim. Change 13, 1191–1193 (2023).

    Article  Google Scholar 

  55. Leppiniemi, O., Karjalainen, O., Aalto, J., Luoto, M. & Hjort, J. Environmental spaces for palsas and peat plateaus are disappearing at a circumpolar scale. Cryosphere 17, 3157–3176 (2023).

    Article  Google Scholar 

  56. Liljedahl, A. K. et al. Pan-Arctic ice-wedge degradation in warming permafrost and its influence on tundra hydrology. Nat. Geosci. 9, 312–318 (2016).

    Article  CAS  Google Scholar 

  57. Zoltai, S. C. Permafrost distribution in peatlands of west-central Canada during the Holocene warm period 6000 years BP. Geogr. Phys. Quat. 49, 45–54 (1995).

    Google Scholar 

  58. Kuhn, M. et al. Gridded product of methane emissions from Boreal-Arctic wetlands and lakes. Zenodo https://doi.org/10.5281/zenodo.14991411 (2025).

  59. Kuhn, M. et al. BAWLD-CH4: Methane Fluxes from Boreal and Arctic Ecosystems (Arctic Data Centre, 2025); https://doi.org/10.18739/A27H1DN5S

  60. Olefeldt, D. et al. The Fractional Land Cover Estimates from the Boreal–Arctic Wetland and Lake Dataset (BAWLD), 2021 (Arctic Data Center, 2021); https://doi.org/10.18739/A2C824F9X

  61. Global Wetland Methane Emissions derived from FLUXNET and the UpCH4 Model, 20012018 (DOE ORNL DAAC, 2024); https://doi.org/10.3334/ORNLDAAC/2253

  62. Zhang, Z. et al. Development of a global dataset of Wetland Area and Dynamics for Methane Modeling (WAD2M). Zenodo https://doi.org/10.5281/zenodo.5553187 (2021).

  63. Peltola, O. et al. Dataset for "Monthly gridded data product of northern wetland methane emissions based on upscaling eddy covariance observations". Zenodo https://doi.org/10.5281/zenodo.2560163 (2019).

  64. Runfola, D. et al. geoBoundaries: a global database of political administrative boundaries. PLoS One 15, e0231866 (2020).

    Article  CAS  Google Scholar 

  65. Kuhn, M. et al. Code for the article 'Current and future methane emissions from boreal-Arctic wetlands and lakes'. Zenodo https://doi.org/10.5281/zenodo.15636336 (2025).

  66. kenziekuhn4/bawldCH4_scaling (GitHub, 2025); https://github.com/kenziekuhn4/bawldCH4_scaling

Download references

Acknowledgements

The work was supported by funding from the Natural Sciences and Engineering Research Council Discovery Grant (grant no. RGPIN-2016-04688 to D.O and M.A.K), and the Campus Alberta Innovates Program (D.O. and M.A.K). We also acknowledge funding by the Northern Scientific Training Program, University of Alberta and UAlberta North, Vanier Canada Graduate Scholarship; the W. Garfield Weston Foundation; NSF award nos. 2109429 (M.A.K.) and NNA 2022561 (K.W.A); the TED Audacious Project (K.A.A. and J.D.W.); the ERC (grant no. H2020 725546 to D.B.); Formas (grant no. 2018-01794 to D.B.); the Swedish VR grant nos. 2022-03841 (to D.B.) and 2022-04839 (to G.H.); ESA AMPAC-Net (G.G. and G.H.); the EU Horizon ILLUQ project (grant no. 773421 to G.H.); COMPASS-FME, a multi-institutional project supported by the US Department of Energy, Office of Science, Biological and Environmental Research as part of the Environmental System Science Program (A.M.,E.F.-C); an NSF Biology Integration Institutes Program Award (no. 2022070 to R.K.V.); the DOE Genomic Sciences program (grant no. DE-SC0023456 to R.K.V.); and an NOAA cooperative agreement (grant no. NA22OAR4320151 to L.B. and Y.O.). The Pacific Northwest National Laboratory is operated for the DOE by Battelle Memorial Institute under contract no. DE-AC05-76RL01830 (A.M. and E.F.-C.). The statements, findings, conclusions and recommendations are those of the author(s) and do not necessarily reflect the views of NOAA or the US Department of Commerce.

Author information

Authors and Affiliations

Authors

Contributions

M.A.K and D.O. conceived of the work. M.A.K. led the data analysis with contributions from D.O. M.A.K led the interpretation of data with contributions from D.O., K.A.A, D.B., L.B., P.C., T.D., E.F.C., G.G., M.H., G.H., S.M., A.M., A.D.M., Y.O., B.P., C.C.T., M.R.T., R.K.V., K.M.W., J.D.W. and Z.Z. M.A.K wrote the manuscript, and D.O., K.A.A, D.B., L.B., P.C., T.D., E.F.C., G.G., G.H., S.M., A.M., A.D.M., Y.O., B.P., C.C.T., M.R.T., R.K.V., K.M.W., J.D.W. and Z.Z edited it.

Corresponding author

Correspondence to McKenzie Kuhn.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nat. Clim. Chang. thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Table 1 Comparison of wetland extent, flux, and emissions from recent emission products from the boreal tundra biomes

Extended Data Fig. 1 Modelled current annual (1988–2019) CH4 emissions.

Annual emissions for lakes are shown on panel a, while annual emissions for wetlands are shown on panel b.

Extended Data Fig. 2 Comparisons of net annual wetland emissions across biomes.

RF-PEATMAP and RF-GLWD fluxes & emissions are based on random-forest upscaling of boreal-Arctic eddy covariance data48 (for years 2013 & 2014). The UpCH4 emissions product uses the WAD2M wetland map and a global eddy covariance random forest model (2000-2017)7. GCP-BU is the Global Carbon Project Bottom-Up ensemble model (2000-2017)3, which also uses the WAD2M wetland map. CT-CH4-2023 is NOAA’s CarbonTracker-CH4-2023 inversion model11 (long-term 1997-2021 average; see Methods for model details). Emissions from this study (BAWLD) only include wetland emissions.

Supplementary information

Supplementary Information

Supplementary Figs 1–13 and captions for Supplementary Tables 1–13.

Supplementary Data 1–13

Excel sheet containing Supplementary Tables 1–13, each on an individual sheet.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuhn, M., Olefeldt, D., Arndt, K.A. et al. Current and future methane emissions from boreal-Arctic wetlands and lakes. Nat. Clim. Chang. 15, 986–991 (2025). https://doi.org/10.1038/s41558-025-02413-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41558-025-02413-y

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology