Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The expanding Indo-Pacific freshwater pool and changing freshwater pathway in the South Indian Ocean

Abstract

Understanding ocean freshwater variability is key to assessing the global water cycle and climate change, but changes in freshwater storage and transport remain unclear. Here we show that the South Indian Ocean—a vital conduit for interocean exchange—has experienced the strongest freshening in the Southern Hemisphere since the 1960s. This freshening drives a southward expansion of the Indo-Pacific freshwater pool into the South Indian Ocean, where freshwater has increased by 6.5 ± 0.5% per decade, as indicated by the shrinking 35.3 psu isohaline. Strengthened Indonesian Throughflow and intensified Subtropical Gyre inflow are the primary causes. In the upper ~200 m, freshening follows a new subtropical pathway rather than the usual tropical route. These changes arise from wind shifts linked to the Hadley cell’s poleward expansion and a stronger Indonesian Throughflow, both driven by warm-pool warming. Ongoing warming will further expand the freshwater pool and broaden the subtropical pathway, affecting climate, interocean exchange and marine ecosystems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Salinity, current and evaporation–precipitation climatology and salinity trend from eight datasets.
Fig. 2: Linear trend of the RFWC and horizontal freshwater transport for the 1960–2022 period.
Fig. 3: Variations in wind and current patterns and their relationship HC expansion.
Fig. 4: Trends of SSH, SST and surface wind stress.
Fig. 5: Trends of salinity and ocean current.
Fig. 6: Trends of barrier-layer thickness, mixed-layer depth, buoyancy frequency and ocean heat content.

Data availability

IAP global ocean salinity and ocean geostrophic current 0.5° gridded dataset are available via http://www.ocean.iap.ac.cn/pages/dataService/dataService.html. EN.4.2.2 is available via https://www.metoffice.gov.uk/hadobs/en4/download-en4-2-2.html. NCEI is available via https://www.ncei.noaa.gov/access/global-ocean-heat-content/. WOA23 is available via https://www.ncei.noaa.gov/access/world-ocean-atlas-2023/. MOAA is available via https://www.jamstec.go.jp/argo_research/dataset/moaagpv/moaa_en.html. ORAS5 is available via https://www.ecmwf.int/en/forecasts/dataset/ocean-reanalysis-system-5. SODA3.12.2 is available via https://www2.atmos.umd.edu/~ocean/index_files/soda3.12.2_mn_download_b.htm. GOFS 3.1 is available via https://www.hycom.org/dataserver/gofs-3pt1/reanalysis. GLORYS is available via https://data.marine.copernicus.eu/product/GLOBAL_MULTIYEAR_PHY_001_030/description. JRA55 is available via https://rda.ucar.edu/datasets/d628001/. JRA55-do is available via https://climate.mri-jma.go.jp/pub/ocean/JRA55-do/. ERA5 is available via https://cds.climate.copernicus.eu/datasets/reanalysis-era5-pressure-levels-monthly-means?tab=overview. CCMP is available via https://www.remss.com/measurements/ccmp/. NCEP1 is available via https://psl.noaa.gov/data/gridded/data.ncep.reanalysis.html. NCEP2 is available via https://psl.noaa.gov/data/gridded/data.ncep.reanalysis2.html. HadISST1 is available via https://www.metoffice.gov.uk/hadobs/hadisst/data/download.html. ERSST V5 is available via https://psl.noaa.gov/data/gridded/data.noaa.ersst.v5.html. COBE-SST2 is available via https://www.data.jma.go.jp/tcc/tcc/products/elnino/cobesst2_doc.html. SST from CMIT6 is available via https://cds.climate.copernicus.eu/datasets/projections-cmip6?tab=download. CESM-LE is available via https://www.cesm.ucar.edu/community-projects/lens/data-sets. WP pacemaker ensemble is available via https://www.cesm.ucar.edu/working-groups/climate/simulations/cesm1-indian-ocean-pacemaker. TPO pacemaker ensemble is available via https://www.cesm.ucar.edu/working-groups/climate/simulations/cesm1-pacific-pacemaker.

Code availability

Codes for the main results are available via Zenodo at https://zenodo.org/records/17877372 (ref. 97).

References

  1. Lagerloef, G., Schmitt, R., Schanze, J. & Kao, H. Y. The ocean and the global water cycle. Oceanography 23, 82–93 (2010).

    Article  Google Scholar 

  2. Schmitt, R. W. Salinity and the global water cycle. Oceanography 21, 12–19 (2008).

    Article  Google Scholar 

  3. Durack, P. J. Ocean salinity and the global water cycle. Oceanography 28, 20–31 (2015).

    Article  Google Scholar 

  4. Durack, P. J., Wijffels, S. E. & Matear, R. J. Ocean salinities reveal strong global water cycle intensification during 1950 to 2000. Science 336, 455–458 (2012).

    Article  CAS  Google Scholar 

  5. Ummenhofer, C. C., Murty, S. A., Sprintall, J., Lee, T. & Abram, N. J. Heat and freshwater changes in the Indian Ocean region. Nat. Rev. Earth Env. 2, 525–541 (2021).

    Article  Google Scholar 

  6. Fine, R. A. Direct evidence using tritium data for throughflow from the Pacific into the Indian Ocean. Nature 315, 478–480 (1985).

    Article  CAS  Google Scholar 

  7. Gordon, A. L. Interocean exchange of thermocline water. J. Geophys. Res. Oceans 91, 5037–5046 (1986).

    Article  Google Scholar 

  8. Guo, Y. R., Li, Y. L. & Wang, F. Destinations and pathways of the Indonesian Throughflow water in the Indian Ocean. J. Climate 36, 3717–3735 (2023).

    Article  Google Scholar 

  9. Sprintall, J. et al. The Indonesian seas and their role in the coupled ocean–climate system. Nat. Geosci. 7, 487–492 (2014).

    Article  CAS  Google Scholar 

  10. Domingues, C. M., Maltrud, M. E., Wijffels, S. E., Church, J. A. & Tomczak, M. Simulated Lagrangian pathways between the Leeuwin Current System and the upper-ocean circulation of the southeast Indian Ocean. Deep Sea Res. Pt II 54, 797–817 (2007).

    Article  Google Scholar 

  11. Koch-Larrouy, A., Madec, G., Blanke, B. & Molcard, R. Water mass transformation along the Indonesian Throughflow in an OGCM. Ocean Dyn. 58, 289–309 (2008).

    Article  Google Scholar 

  12. Xu, T. F. et al. Observed water exchange between the South China Sea and Java Sea through Karimata Strait. J. Geophys. Res. Oceans 126, e2020JC016608 (2021).

    Article  Google Scholar 

  13. Makarim, S. et al. Previously unidentified Indonesian Throughflow pathways and freshening in the Indian Ocean during recent decades. Sci. Rep. 9, 7364 (2019).

    Article  Google Scholar 

  14. Ridgway, K. R. & Dunn, J. R. Observational evidence for a Southern Hemisphere oceanic supergyre. Geophys. Res. Lett. 34, L13612 (2007).

    Article  Google Scholar 

  15. Furue, R. The three-dimensional structure of the Leeuwin Current System in density coordinates in an eddy-resolving OGCM. Ocean Model. 138, 36–50 (2019).

    Article  Google Scholar 

  16. Hufford, G. E., McCartney, M. S. & Donohue, K. A. Northern boundary currents and adjacent recirculations off southwestern Australia. Geophys. Res. Lett. 24, 2797–2800 (1997).

    Article  Google Scholar 

  17. Middleton, J. F. & Cirano, M. A northern boundary current along Australia's southern shelves: the Flinders Current. J. Geophys. Res. Oceans 107, 3129 (2002).

    Article  Google Scholar 

  18. Beal, L. M. et al. A road map to IndOOS-2 better observations of the rapidly warming Indian Ocean. Bull. Am. Meteorol. Soc. 101, E1891–E1913 (2020).

    Article  Google Scholar 

  19. Du, Y. et al. Decadal trends of the upper ocean salinity in the tropical Indo-Pacific since mid-1990s. Sci. Rep. 5, 16050 (2015).

    Article  CAS  Google Scholar 

  20. Fox-Kemper, B. et al. in Climate Change 2021 – The Physical Science Basis (eds Masson-Delmotte, V. et al.) Ch. 9 (IPCC, Cambridge Univ. Press, 2021).

  21. IPCC Climate Change 2023: Synthesis Report (eds Core Writing Team, Lee, H. & Romero, J.) (IPCC, 2023).

  22. Durack, P. J. & Wijffels, S. E. Fifty-year trends in global ocean salinities and their relationship to broad-scale warming. J. Climate 23, 4342–4362 (2010).

    Article  Google Scholar 

  23. Feng, M., Wijffels, S., Godfrey, S. & Meyers, G. Do eddies play a role in the momentum balance of the Leeuwin Current? J. Phys. Oceanogr. 35, 964–975 (2005).

    Article  Google Scholar 

  24. Waite, A. M. et al. The Leeuwin Current and its eddies: an introductory overview. Deep Sea Res. Pt II 54, 789–796 (2007).

    Article  Google Scholar 

  25. Napitu, A. M., Gordon, A. L. & Bohman, S. M. Indonesian Throughflow into the Leeuwin Current and subtropical Indian Ocean. Deep Sea Res. Pt II 224, 105555 (2025).

    Article  Google Scholar 

  26. Qu, T. D., Fukumori, I. & Fine, R. A. Spin-up of the Southern Hemisphere super gyre. J. Geophys Res. Oceans 124, 154–170 (2019).

    Article  Google Scholar 

  27. Furue, R., Guerreiro, K., Phillips, H. E., McCreary, J. P. & Bindoff, N. L. On the Leeuwin Current system and its linkage to zonal flows in the South Indian Ocean as inferred from a gridded hydrography. J. Phys. Oceanogr. 47, 583–602 (2017).

    Article  Google Scholar 

  28. Yang, H. et al. Poleward shift of the major ocean gyres detected in a warming climate. Geophys. Res. Lett. 47, e2019GL085868 (2020).

    Article  Google Scholar 

  29. Lucas, C., Nguyen, H. & Timbal, B. An observational analysis of Southern Hemisphere tropical expansion. J. Geophys. Res. Atmos. 117, D17112 (2012).

    Article  Google Scholar 

  30. Roemmich, D. et al. Decadal spinup of the South Pacific subtropical gyre. J. Phys. Oceanogr. 37, 162–173 (2007).

    Article  Google Scholar 

  31. Lionello, P., D’Agostino, R., Ferreira, D., Nguyen, H. & Singh, M. S. The Hadley circulation in a changing climate. Ann. N.Y. Acad. Sci. 1534, 69–93 (2024).

    Article  Google Scholar 

  32. Burls, N. J. et al. The Cape Town ‘Day Zero’ drought and Hadley cell expansion. npj Clim. Atmos. Sci. 2, 27 (2019).

    Article  Google Scholar 

  33. Scheff, J. & Frierson, D. M. W. Robust future precipitation declines in CMIP5 largely reflect the poleward expansion of model subtropical dry zones. Geophys. Res. Lett. 39, L18704 (2012).

    Article  Google Scholar 

  34. Davis, S. M. & Rosenlof, K. H. A multidiagnostic intercomparison of tropical-width time series using reanalyses and satellite observations. J. Climate 25, 1061–1078 (2012).

    Article  Google Scholar 

  35. Staten, P. W., Lu, J., Grise, K. M., Davis, S. M. & Birner, T. Re-examining tropical expansion. Nat. Clim. Change 8, 768–775 (2018).

    Article  Google Scholar 

  36. Birner, T., Davis, S. M. & Seidel, D. J. The changing width of Earth’s tropical belt. Phys. Today 67, 38–44 (2014).

    Article  Google Scholar 

  37. Grise, K. M. & Davis, S. M. Hadley cell expansion in CMIP6 models. Atmos. Chem. Phys. 20, 5249–5268 (2020).

    Article  CAS  Google Scholar 

  38. Seidel, D. J., Fu, Q., Randel, W. J. & Reichler, T. J. Widening of the tropical belt in a changing climate. Nat. Geosci. 1, 21–24 (2008).

    Article  CAS  Google Scholar 

  39. Douville, H. et al. in Climate Change 2021 – The Physical Science Basis (eds Masson-Delmotte, V. et al.) Ch. 8 (IPCC, Cambridge Univ. Press, 2021).

  40. Duran, E. R., Phillips, H. E., Furue, R., Spence, P. & Bindoff, N. L. Southern Australia Current System based on a gridded hydrography and a high-resolution model. Prog. Oceanogr. 181, 102254 (2020).

    Article  Google Scholar 

  41. Feng, M., Zhang, N. N., Liu, Q. Y. & Wijffels, S. The Indonesian throughflow, its variability and centennial change. Geosci. Lett. 5, 3 (2018).

    Article  Google Scholar 

  42. Han, W. Q. et al. Indian Ocean decadal variability: a review. Bull. Am. Meteorol. Soc. 95, 1679–1703 (2014).

    Article  Google Scholar 

  43. Coats, S. & Karnauskas, K. B. Are simulated and observed twentieth century tropical Pacific sea surface temperature trends significant relative to internal variability?. Geophys. Res. Lett. 44, 9928–9937 (2017).

    Article  Google Scholar 

  44. Zhang, L., Han, W. Q. & Sienz, F. Unraveling causes for the changing behavior of the tropical Indian Ocean in the past few decades. J. Clim. 31, 2377–2388 (2018).

    Article  Google Scholar 

  45. Zhang, L. et al. Indian Ocean warming trend reduces Pacific warming response to anthropogenic greenhouse gases: an interbasin thermostat mechanism. Geophys. Res. Lett. 46, 10882–10890 (2019).

    Article  CAS  Google Scholar 

  46. Lee, T. et al. Consistency and fidelity of Indonesian-throughflow total volume transport estimated by 14 ocean data assimilation products. Dyn. Atmos. Oceans 50, 201–223 (2010).

    Article  Google Scholar 

  47. Seager, R., Henderson, N. & Cane, M. Persistent discrepancies between observed and modeled trends in the tropical Pacific Ocean. J. Climate 35, 4571–4584 (2022).

    Article  Google Scholar 

  48. Jiang, F., Seager, R. & Cane, M. A. A climate change signal in the tropical Pacific emerges from decadal variability. Nat. Commun. 15, 8291 (2024).

    Article  Google Scholar 

  49. Wills, R. C. J., Dong, Y., Proistosecu, C., Armour, K. C. & Battisti, D. S. Systematic climate model biases in the large-scale patterns of recent sea-surface temperature and sea-level pressure change. Geophys. Res. Lett. 49, e2022GL100011 (2022).

    Article  Google Scholar 

  50. Zhang, L. & Karnauskas, K. B. The role of tropical interbasin SST gradients in forcing Walker circulation trends. J. Climate 30, 499–508 (2017).

    Article  Google Scholar 

  51. Dong, L. & Zhou, T. J. The Indian Ocean sea surface temperature warming simulated by CMIP5 models during the twentieth century: competing forcing roles of GHGs and anthropogenic aerosols. J. Climate 27, 3348–3362 (2014).

    Article  Google Scholar 

  52. Du, Y. & Xie, S. P. Role of atmospheric adjustments in the tropical Indian Ocean warming during the 20th century in climate models. Geophys. Res. Lett. 35, L08712 (2008).

    Article  Google Scholar 

  53. Han, W. Q. et al. Patterns of Indian Ocean sea-level change in a warming climate. Nat. Geosci. 3, 546–550 (2010).

    Article  CAS  Google Scholar 

  54. Han, W. Q. et al. Decadal variability of the Indian and Pacific Walker cells since the 1960s: do they covary on decadal time scales? J. Climate 30, 8447–8468 (2017).

    Article  Google Scholar 

  55. Jin, X. L. et al. Influences of Pacific climate variability on decadal subsurface ocean heat content variations in the Indian Ocean. J. Climate 31, 4157–4174 (2018).

    Article  Google Scholar 

  56. Hu, S. J. et al. Interannual to decadal variability of upper-ocean salinity in the Southern Indian Ocean and the role of the Indonesian throughflow. J. Climate 32, 6403–6421 (2019).

    Article  Google Scholar 

  57. Li, M. T., Gordon, A. L., Wei, J., Gruenburg, L. K. & Jiang, G. Q. Multi-decadal timeseries of the Indonesian throughflow. Dyn. Atmos. Oceans 81, 84–95 (2018).

    Article  CAS  Google Scholar 

  58. Wang, S. Y. et al. Freshwater contributions to decadal variability of the Indonesian throughflow. Geophys. Res. Lett. 50, e2023GL103906 (2023).

    Article  Google Scholar 

  59. Watanabe, M. et al. Possible shift in controls of the tropical Pacific surface warming pattern. Nature 630, 315–324 (2024).

    Article  CAS  Google Scholar 

  60. Li, G. C. et al. Increasing ocean stratification over the past half-century. Nat. Clim. Change 10, 1116–U1176 (2020).

    Article  Google Scholar 

  61. Ding, Y. W. et al. Emergence of decadal linkage between Western Australian coast and Western-central tropical Pacific. Nat. Commun. 15, 4458 (2024).

    Article  CAS  Google Scholar 

  62. Ivanova, D. P., McClean, J. L., Sprintall, J. & Chen, R. The oceanic barrier layer in the eastern Indian Ocean as a predictor for rainfall over Indonesia and Australia. Geophys. Res. Lett. 48, e2021GL094519 (2021).

    Article  Google Scholar 

  63. Li, Y. L. et al. Bay of Bengal salinity stratification and Indian summer monsoon intraseasonal oscillation: 1. Intraseasonal variability and causes. J. Geophys. Res. Oceans 122, 4291–4311 (2017).

    Article  Google Scholar 

  64. Maes, C., Picaut, J. & Belamari, S. Importance of the salinity barrier layer for the buildup of El Nino. J. Climate 18, 104–118 (2005).

    Article  Google Scholar 

  65. Hu, S. N. & Fedorov, A. V. Indian Ocean warming can strengthen the Atlantic meridional overturning circulation. Nat. Clim. Change 9, 747–751 (2019).

    Article  Google Scholar 

  66. Liu, W., Fedorov, A. V., Xie, S. P. & Hu, S. N. Climate impacts of a weakened Atlantic Meridional Overturning Circulation in a warming climate. Sci. Adv. 6, eaaz4876 (2020).

    Article  Google Scholar 

  67. Röthig, T. et al. Human-induced salinity changes impact marine organisms and ecosystems. Global Change Biol. 29, 4731–4749 (2023).

    Article  Google Scholar 

  68. Haya, L. M. Y., Palupi, R. D., Subhan, S. & Rahmadani, R. Patterns of coral diseases linked to the impact of climate change: a case study of scleractinia corals in Southeast Sulawesi, Indonesia’s coral triangle. Model. Earth Syst. Env. 9, 4265–4277 (2023).

    Article  Google Scholar 

  69. Pearce-Kelly, P. et al. Considerations for determining warm-water coral reef tipping points. Earth Syst. Dynam. 16, 275–292 (2025).

    Article  Google Scholar 

  70. Leliaert, F. et al. Patterns and drivers of species diversity in the Indo-Pacific red seaweed. J. Biogeogr. 45, 2299–2313 (2018).

    Article  Google Scholar 

  71. Tittensor, D. P. et al. Global patterns and predictors of marine biodiversity across taxa. Nature 466, 1098–1101 (2010).

    Article  CAS  Google Scholar 

  72. Galindo, H. M., Olson, D. B. & Palumbi, S. R. Seascape genetics: a coupled oceanographic-genetic model predicts population structure of Caribbean corals. Curr. Biol. 16, 1622–1626 (2006).

    Article  CAS  Google Scholar 

  73. Li, J. J. et al. Oceanic currents drove population genetic connectivity of the brown alga Sargassum thunbergii in the north-west Pacific. J. Biogeogr. 44, 230–242 (2017).

    Article  Google Scholar 

  74. Li, G. C. et al. A global gridded ocean salinity dataset with 0.5° horizontal resolution since 1960 for the upper 2000 m. Front. Mar. Sci. 10, 1108919 (2023).

    Article  Google Scholar 

  75. Good, S. A., Martin, M. J. & Rayner, N. A. EN4: quality controlled ocean temperature and salinity profiles and monthly objective analyses with uncertainty estimates. J. Geophys. Res. Oceans 118, 6704–6716 (2013).

    Article  Google Scholar 

  76. Hosoda, S., Ohira, T. & Nakamura, T. A monthly mean dataset of global oceanic temperature and salinity derived from Argo float observations. JAMSTEC Rep. Res. Dev. 8, 47–59 (2008).

    Article  Google Scholar 

  77. Zuo, H., Balmaseda, M. A., Tietsche, S., Mogensen, K. & Mayer, M. The ECMWF operational ensemble reanalysis–analysis system for ocean and sea ice: a description of the system and assessment. Ocean Sci. 15, 779–808 (2019).

    Article  Google Scholar 

  78. Carton, J. A., Chepurin, G. A. & Chen, L. G. SODA3: a new ocean climate reanalysis. J. Climate 31, 6967–6983 (2018).

    Article  Google Scholar 

  79. Cummings, J. A. Operational multivariate ocean data assimilation. Q. J. R. Meteorol. Soc. 131, 3583–3604 (2005).

    Article  Google Scholar 

  80. Jean-Michel, L. et al. The Copernicus global 1/12° oceanic and sea ice GLORYS12 reanalysis. Front. Earth. Sci. 9, 698876 (2021).

    Article  Google Scholar 

  81. Kalnay, E. et al. The NCEP/NCAR 40-year reanalysis project. Bull. Am. Meteorol. Soc. 77, 437–471 (1996).

    Article  Google Scholar 

  82. Hersbach, H. et al. ERA5 monthly averaged data on pressure levels from 1940 to present. Climate Data Store https://doi.org/10.24381/cds.6860a573 (2023).

  83. Ebita, A. et al. The Japanese 55-year reanalysis ‘JRA-55’: an interim report. Sola 7, 149–152 (2011).

    Article  Google Scholar 

  84. Tsujino, H. et al. JRA-55 based surface dataset for driving ocean-sea-ice models (JRA55-do). Ocean Model. 130, 79–139 (2018).

    Article  Google Scholar 

  85. Yu, L. S., Weller, R. A. & Sun, B. M. Improving latent and sensible heat flux estimates for the Atlantic Ocean (1988–99) by a synthesis approach. J. Climate 17, 373–393 (2004).

    Article  Google Scholar 

  86. Rayner, N. A. et al. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res. Atmos. 108, 4407 (2003).

    Article  Google Scholar 

  87. Hirahara, S., Ishii, M. & Fukuda, Y. Centennial-scale sea surface temperature analysis and its uncertainty. J. Climate 27, 57–75 (2014).

    Article  Google Scholar 

  88. Hurrell, J. W. et al. The community Earth system model: a framework for collaborative research. Bull. Am. Meteorol. Soc. 94, 1339–1360 (2013).

    Article  Google Scholar 

  89. Deser, C., Simpson, I. R., McKinnon, K. A. & Phillips, A. S. The Northern Hemisphere extratropical atmospheric circulation response to ENSO: how well do we know it and how do we evaluate models accordingly. J. Climate 30, 5059–5082 (2017).

    Article  Google Scholar 

  90. Yang, D. X. et al. Role of tropical variability in driving decadal shifts in the Southern Hemisphere summertime eddy-driven jet. J. Climate 33, 5445–5463 (2020).

    Article  Google Scholar 

  91. Zhang, L. et al. Diverse impacts of the Indian Ocean dipole on El Nino-southern oscillation. J. Climate 34, 9057–9070 (2021).

    Google Scholar 

  92. Haine, T. W. N. et al. Arctic freshwater export: status, mechanisms, and prospects. Global Planet. Change 125, 13–35 (2015).

    Article  Google Scholar 

  93. Talley, L. D. Freshwater transport estimates and the global overturning circulation: shallow, deep and throughflow components. Prog. Oceanogr. 78, 257–303 (2008).

    Article  Google Scholar 

  94. Oort, A. H. & Yienger, J. J. Observed interannual variability in the Hadley circulation and its connection to ENSO. J. Climate 9, 2751–2767 (1996).

    Article  Google Scholar 

  95. Lu, J., Vecchi, G. A. & Reichler, T. Expansion of the Hadley cell under global warming. Geophys. Res. Lett. 34, L06805 (2007).

    Google Scholar 

  96. Greene, C. A. et al. The Climate Data Toolbox for MATLAB. Geochem. Geophys. Geosyst. 20, 3774–3781 (2019).

    Article  Google Scholar 

  97. Chen, G. Codes and source data for ‘The expanding Indo-Pacific freshwater pool and changing freshwater pathway in the South Indian Ocean’. Zenodo https://zenodo.org/records/17877372 (2025).

Download references

Acknowledgements

G.C. is supported by National Key Research and Development Program of China (grant no. 2023YFF0805300), NSFC (grant nos 42476199 and 42476022), the GuangDong Basic and Applied Basic Research Foundation (grant no. 2024B1515040024), the Open Research Cruise (grant no. NORC2022-10+NORC2022-303) supported by NSFC Shiptime Sharing Projects 42149910 and Youth Innovation Promotion Association CAS (Y2021093). W.H. is supported by the National Science Foundation awards NSF-OCE 2242193 and NSF-AGS 1935279. The CESM1 experiments were run on Cheyenne, the high-performance computing resources (https://doi.org/10.5065/D6RX99HX) provided by NCAR’s Computational and Information Systems Laboratory, sponsored by the National Science Foundation. Portions of this study were supported by the Regional and Global Model Analysis (RGMA) component of the Earth and Environmental System Modeling Program of the U.S. Department of Energy's Office of Biological & Environmental Research (BER) under Lawrence Livermore National Lab subaward DE-AC52-07NA27344, Lawrence Berkeley National Lab subaward DE-AC02-05CH11231, and Pacific Northwest National Lab subaward DE-AC05-76RL01830. This work was also supported by the National Science Foundation (NSF) National Center for Atmospheric Research, which is a major facility sponsored by NSF under Cooperative Agreement No. 1852977.

Author information

Authors and Affiliations

Authors

Contributions

G.C. and W.H. designed the study and wrote the paper. G.C. conducted the analysis and produced the figures. A.H., G.A.M., N.R. and L.Z. carried out the numerical model experiments. A.H., A.L.G., T.S., L.Z. and Y.M. contributed to the refinement of the paper.

Corresponding authors

Correspondence to Gengxin Chen or Weiqing Han.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Climate Change thanks Noir Purba and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Salinity, current and current trend.

(a) The climatological salinity (color; unit: psu) and current (vector; scale: 0.1 m s−1) in the upper 200 m from the blended dataset for the 1960-2022 period. (b) Same as (a) but for 200-600 m. (c) Same as (a) but for the current trend (scale: 10−2m s−1/10 yr). Figure created with MATLAB version 9.11.0.

Extended Data Fig. 2 Trends of Evaporation–Precipitation and Salinity in the upper 200 m.

(a)The linear trend map from the blended salinity dataset (see Methods) in the global Southern Hemisphere’s subtropical oceans for the 1960-2022 period averaged in the upper 200 m. Unit: 10−2 psu/30 yr. Color contours show trend values exceed 95% significance and white areas are below 95% significance. (b) The linear trend map of evaporation-precipitation for the 1960-2022 period from the blended data (see Method). The black line labels 15°S. Unit:10−5 kg/m2/s/30 yr. Stippled areas denote the trend values are statistically significant at the 95% confidence level. Figure created with MATLAB version 9.11.0.

Extended Data Fig. 3 Salinity variation in the South Indian Ocean (SIO).

(a) The salinity differences between the recent 30 years (1990-2019) and the first 30 years (1960-1989). Unit: 10−2 psu. (b) The salinity trend for a zonal-vertical (x-z) section averaged for 30-20°S latitudes of the SIO from the blended dataset. Unit: 10−2 psu/30 yr. Figure created with MATLAB version 9.11.0.

Extended Data Fig. 4 Horizontal freshwater transport (FWH) along sections.

The meridional FWH averaged at 100-120°E along (a) 15°S and (b) 35°S. (c) The zonal FWH (westward) averaged at 24-26°E in the upper 200 m. Unit :104 m3/10 yr. Figure created with MATLAB version 9.11.0.

Extended Data Fig. 5 The RFWC differences on isopycnal surfaces between the last 30 years (1990-2019) and the first 30 years (1960-1989).

(a-f) The differences on isopycnal surfaces of sigma=24.2, 25, 25.4, 26.2, 26.6, and 27σ0, respectively (unit: 10−4m3). σ0 is the potential density of seawater referenced to the surface, minus 1000 kg/m3. (g-i) The differences along sections 15°S, 20°S, and 30°S (unit: 10−4m3). Contours indicate the climatological depth (unit: m) of the corresponding isopycnals. Figure created with MATLAB version 9.11.0.

Extended Data Fig. 6 Southward expansion of ocean circulation, the Hadley Cell (HC), and wind stress.

(a) The climatological thermocline depth (represented by the depth of 20 °C isotherm) during 1960-1989 (black contours) and 1990-2019 (red contours). SCTR: Seychelles-Chagos Thermocline Ridge; STG: Subtropical Gyre. (b) Yearly variation of the HC edge. (c) Yearly variation of zonal wind transition position of the counterclockwise wind stress in the subtropical SIO (refer to the sketched white circle in Fig. 3a in Main text). Figure created with MATLAB version 9.11.0.

Extended Data Fig. 7 Trends of SST and surface wind stress.

(a) Trends of SST from ERSSTV5 and wind stress from JRA55-do during 1960-2019. (b) Same as (a) but for HadiSST1 and NCEP1 wind. (c) Same as (a) but for COBE-SST v2 and EAR5 wind. (d) Trends of wind stress from JRA55. Unit for SST trend is oC/30 yr. Shading areas denote the trend values are statistically significant at the 95% confidence level. The vector scale for trend of wind stress is 5×10−3N m2/30 yr. Figure created with MATLAB version 9.11.0.

Extended Data Fig. 8 Trends of wind, salinity, current and sea surface temperature (SST).

Trends of (a) wind stress, (b) salinity in the upper 600 m and current in the upper 200 m from the 40-member ensemble mean of CESM1 (CESM1-LE) during 1960-2019, measuring the effects of external forcing. (c-d) Same as (a-b) but from the 10-member ensemble mean of experiment WP, measuring the effects of external forcing and Indo-Pacific warm pool SST forcing. (e) Indo-Pacific warm-pool SST anomaly (curves) and trend (straight lines) from the blended SST (black) and 24-member ensembles of CMIP6 (red). (f) Same as (e) but for tropical eastern Pacific Ocean SST. Time series of interannual IPO index and its trend are also shown in this subplot (blue). (g-h) Trends for SST and wind from the 10-member ensemble mean of experiment WP–CESM1-LE measuring the effects of Indo-Pacific warm pool SST forcing, and TPO–CESM1-LE measuring the effects of tropical east Pacific SST forcing during 1920-2019. The vector scales for (a, c, g, h) and (b, d) are 5×10−3N m2/10 y and 0.5 m s−1/10 y, respectively. Units for salinity trend in (b, d), and SST trend in (g, h) are 10−2psu/30 yr and oC/30 yr, respectively. Shading areas and stippled areas denote the trend values are statistically significant at the 95% confidence level. Figure created with MATLAB version 9.11.0.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, G., Han, W., Hu, A. et al. The expanding Indo-Pacific freshwater pool and changing freshwater pathway in the South Indian Ocean. Nat. Clim. Chang. (2026). https://doi.org/10.1038/s41558-025-02553-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41558-025-02553-1

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing