Recent breakthroughs have led to the development of biodegradable sensors which, after collecting data, break down into byproducts that are harmless to their surroundings. Using these sensors to collect ecological data on vast scales and in fine resolution could transform our management and understanding of natural ecosystems.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
The DroneHub: a multi-environment testbed for sustainability robotics
npj Robotics Open Access 12 January 2026
-
Adaptive continuous-shape-changing solar-powered microfliers enabled by a drone-mounted releasing module
Communications Engineering Open Access 11 November 2025
-
Sodium carboxymethylcellulose/carbon nanotube composite coatings: a sustainable approach to water detection
Cellulose Open Access 10 October 2025
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to the full article PDF.
USD 39.95
Prices may be subject to local taxes which are calculated during checkout


References
Rundel, P. W., Graham, E. A., Allen, M. F., Fisher, J. C. & Harmon, T. C. New Phytol. 182, 589–607 (2009).
Gibb, R., Browning, E., Glover‐Kapfer, P. & Jones, K. E. Methods Ecol. Evol. 10, 169–185 (2019).
O'Connell, A. F. (ed) Camera Traps in Animal Ecology: Methods and Analyses. Vol. 271 (Springer, 2011).
Hale, R. C., Seeley, M. E., Guardia, M. J. L., Mai, L. & Zeng, E. Y. J. Geophys. Res. Oceans 125, e2018JC014719 (2020).
Widmer, R., Oswald-Krapf, H., Sinha-Khetriwal, D., Schnellmann, M. & Böni, H. Environ. Impact Assess. Rev. 25, 436–458 (2005).
Hwang, S.-W. et al. Science 337, 1640–1644 (2012).
Ashammakhi, N. et al. Adv. Funct. Mater. 31, 2104149 (2021).
Boutry, C. M. et al. Nat. Biomed. Eng. 3, 47–57 (2019).
Boutry, C. M. et al. Nat. Electron. 1, 314–321 (2018).
Hori, K., Inami, A., Kan, T. & Onoe, H. In Proc. 21st International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers) 863–866 (IEEE, Orlando, 2021).
Dincer, C. et al. Adv. Mater. 31, 1806739 (2019).
Kocer, B. B. et al. In Proc. Aerial Robotic Systems Physically Interacting with the Environment (AIRPHARO) 1–8 (IEEE, Biograd na Moru, 2021).
Pandolfi, C. & Izzo, D. Bioinspir. Biomim. 8, 025003 (2013).
Wiesemüller, F., Miriyev, A. & Kovac, M. In Proc. Aerial Robotic Systems Physically Interacting with the Environment (AIRPHARO) 1–6 (IEEE, Biograd na Moru, 2021).
Boutry, C. M. et al. Sens. Actuators A Phys. 189, 344–355 (2013).
Tsang, M., Armutlulu, A., Martinez, A. W., Allen, S. A. B. & Allen, M. G. Microsyst. Nanoeng. 1, 15024 (2015).
Lee, G. et al. Adv. Energy Mater. 7, 1700157 (2017).
Dagdeviren, C. et al. Small 9, 3398–3404 (2013).
Sadasivuni, K. K. et al. J. Mater. Sci. Mater. Electron. 30, 951–974 (2019).
Luvisi, A., Panattoni, A. & Materazzi, A. Comput. Electron. Agric. 123, 135–141 (2016).
Yin, L. et al. Adv. Mater. 26, 3879–3884 (2014).
Demetillo, A. T., Japitana, M. V. & Taboada, E. B. Sustain. Environ. Res. 29, 12 (2019).
Salvatore, G. A. et al. Adv. Funct. Mater. 27, 1702390 (2017).
Farinha, A., Zufferey, R., Zheng, P., Armanini, S. F. & Kovac, M. IEEE Robot. Autom. Lett. 5, 6623–6630 (2020).
Miriyev, A. & Kovač, M. Nat. Mach. Intell. 2, 658–660 (2020).
Kang, S.-K., Koo, J., Lee, Y. K. & Rogers, J. A. Acc. Chem. Res. 51, 988–998 (2018).
Goel, V., Luthra, P., Kapur, G. S. & Ramakumar, S. S. V. J. Polym. Environ. 29, 3079–3104 (2021).
Acknowledgements
Thank you to Nuria Melisa Morales Garcia for her artistic contributions and to Amelia Holcomb for feedback on an early draft. We received support from the University of Cambridge’s Herchel Smith Postdoctoral Research Fellowship (S.S.S.), the Royal Society Wolfson Fellowship (M.K.), the Engineering and Physical Sciences Research Council (M.K.), and the Empa/Imperial College London Materials and Technology Center of Robotics (F.W. and M.K.).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Rights and permissions
About this article
Cite this article
Sethi, S.S., Kovac, M., Wiesemüller, F. et al. Biodegradable sensors are ready to transform autonomous ecological monitoring. Nat Ecol Evol 6, 1245–1247 (2022). https://doi.org/10.1038/s41559-022-01824-w
Published:
Version of record:
Issue date:
DOI: https://doi.org/10.1038/s41559-022-01824-w
This article is cited by
-
The DroneHub: a multi-environment testbed for sustainability robotics
npj Robotics (2026)
-
Adaptive continuous-shape-changing solar-powered microfliers enabled by a drone-mounted releasing module
Communications Engineering (2025)
-
Edible aquatic robots with Marangoni propulsion
Nature Communications (2025)
-
Materials advances for distributed environmental sensor networks at scale
Nature Reviews Materials (2025)
-
Sodium carboxymethylcellulose/carbon nanotube composite coatings: a sustainable approach to water detection
Cellulose (2025)