Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The structure of genotype-phenotype maps makes fitness landscapes navigable

Abstract

Fitness landscapes are often described in terms of ‘peaks’ and ‘valleys’, indicating an intuitive low-dimensional landscape of the kind encountered in everyday experience. The space of genotypes, however, is extremely high dimensional, which results in counter-intuitive structural properties of genotype-phenotype maps. Here we show that these properties, such as the presence of pervasive neutral networks, make fitness landscapes navigable. For three biologically realistic genotype-phenotype map models—RNA secondary structure, protein tertiary structure and protein complexes—we find that, even under random fitness assignment, fitness maxima can be reached from almost any other phenotype without passing through fitness valleys. This in turn indicates that true fitness valleys are very rare. By considering evolutionary simulations between pairs of real examples of functional RNA sequences, we show that accessible paths are also likely to be used under evolutionary dynamics. Our findings have broad implications for the prediction of natural evolutionary outcomes and for directed evolution.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: High-dimensional bypasses facilitate landscape navigability.
Fig. 2: The relationship of navigability to the GP map properties of redundancy, deleterious frequency and mean genotypic robustness.
Fig. 3: The relationship of navigability to neutral correlations, dimensionality and ruggedness with the associations visualized for an RNA phenotype network.
Fig. 4: Example of an accessible path for a specific L = 30 fRNA source–target pair.
Fig. 5: Navigability under evolutionary dynamics with source and target phenotypes sampled from the fRNAdb with random and Hamming fitness assignments under monomorphic (left) and polymorphic (right) evolutionary dynamics.

Similar content being viewed by others

Data availability

The dataset containing fRNA (fRNAdb) used in this paper is available at: https://doi.org/10.18908/lsdba.nbdc00452-001. The GP maps analysed are available in the Code availability section.

Code availability

The ViennaRNA package (v.1.8.5), RNAshape package https://anaconda.org/bioconda/rnashapes and custom C++ and Python source code was used to construct GP maps and perform computational simulations. The source code is available at: https://github.com/sgreenbury/gp-maps-nav.

References

  1. Wright, S. The roles of mutation, inbreeding, crossbreeding, and selection in evolution. In Proc. 6th International Congress on Genetics Vol. 1, 356–366 (1932).

  2. Kauffman, S. A. The Origins of Order: Self-Organization and Selection in Evolution (Oxford Univ. Press, 1993).

  3. Svensson, E. & Calsbeek, R. The Adaptive Landscape in Evolutionary Biology (Oxford Univ. Press, 2012).

  4. Pigliucci, M. in The Adaptive Landscape in Evolutionary Biology (eds Svensson, E. & Calsbeek, R.) 26–38 (Oxford Univ. Press, 2012).

  5. Arjan, J., de Visser, G. M. & Krug, J. Empirical fitness landscapes and the predictability of evolution. Nat. Rev. Genetics 15, 480–490 (2014).

    Article  Google Scholar 

  6. Fragata, Inês, Blanckaert, A., António Dias Louro, M., Liberles, D. A. & Bank, C. Evolution in the light of fitness landscape theory. Trends Ecol. Evol. 34, 69–82 (2019).

    Article  PubMed  Google Scholar 

  7. Fisher, R. A. The Genetical Theory of Natural Selection (Clarendon Press, 1958).

  8. May, R. M. Stability and Complexity in Model Ecosystems (Princeton Univ. Press, 1973).

  9. Conrad, M. & Ebeling, W. M.V. Volkenstein, evolutionary thinking and the structure of fitness landscapes. BioSystems 27, 125–128 (1992).

    Article  CAS  PubMed  Google Scholar 

  10. Gavrilets, S. Fitness Landscapes and the Origin of Species (MPB-41) (Princeton Univ. Press, 2004).

  11. Franke, J., Klözer, A., Arjan, J., de Visser, G. M. & Krug, J. Evolutionary accessibility of mutational pathways. PLoS Comput. Biol. 7, e1002134 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Das, S. G., Direito, SusanaO. L., Waclaw, B., Allen, R. J. & Krug, J. Predictable properties of fitness landscapes induced by adaptational tradeoffs. eLife 9, 1–24 (2020).

    Article  Google Scholar 

  13. Weinreich, D. M., Watson, R. A. & Chao, L. Perspective: sign epistasis and genetic constraint on evolutionary trajectories. Evolution 59, 1165–1174 (2005).

    CAS  PubMed  Google Scholar 

  14. Carneiro, Maurício & Hartl, D. L. Adaptive landscapes and protein evolution. Proc. Natl Acad. Sci. USA 107, 1747–1751 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wu, N. C., Dai, L., Olson, C. A., Lloyd-Smith, J. O. & Sun, R. Adaptation in protein fitness landscapes is facilitated by indirect paths. eLife 5, 1–21 (2016).

    Article  Google Scholar 

  16. Bank, C., Matuszewski, S., Hietpas, R. T. & Jensen, J. D. On the (un)predictability of a large intragenic fitness landscape. Proc. Natl Acad. Sci. USA 113, 14085–14090 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Aguilar-Rodríguez, José, Payne, J. L. & Wagner, A. A thousand empirical adaptive landscapes and their navigability. Nat. Ecol. Evol. 1, 0045 (2017).

    Article  Google Scholar 

  18. Domingo, J. úlia, Diss, G. & Lehner, B. Pairwise and higher-order genetic interactions during the evolution of a tRNA. Nature 558, 117–121 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zheng, J., Payne, J. L. & Wagner, A. Cryptic genetic variation accelerates evolution by opening access to diverse adaptive peaks. Science 365, 347–353 (2019).

    Article  CAS  PubMed  Google Scholar 

  20. Pokusaeva, V. O. et al. An experimental assay of the interactions of amino acids from orthologous sequences shaping a complex fitness landscape. PLOS Genet. 15, e1008079 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wagner, A. Life Finds a Way: What Evolution Teaches Us about Creativity (Oneworld Publications, 2019).

  22. Poelwijk, F. J., Kiviet, D. J., Weinreich, D. M. & Tans, S. J. Empirical fitness landscapes reveal accessible evolutionary paths. Nature 445, 383–386 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. Lobkovsky, A. E. & Koonin, E. V. Replaying the tape of life: quantification of the predictability of evolution. Front. Genet. 3, 246 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Hartl, D. L. What can we learn from fitness landscapes? Curr. Opin. Microbiol. 21, 51–57 (2014).

    Article  PubMed  Google Scholar 

  25. Louis, A. A. Contingency, convergence and hyper-astronomical numbers in biological evolution. Stud. Hist. Philos. Sci. C. Stud. Hist. Philos. Biol. Biomed. Sci. 58, 107–116 (2016).

    Article  Google Scholar 

  26. Kauffman, S. & Levin, S. Towards a general theory of adaptive walks on rugged landscapes. J. Theo. Biol. 128, 11–45 (1987).

    Article  CAS  Google Scholar 

  27. Zagorski, M., Burda, Z. & Waclaw, B. Beyond the hypercube: evolutionary accessibility of fitness landscapes with realistic mutational networks. PLoS Comput. Biol. 12, e1005218 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Kingman, J. F. C. A simple model for the balance between selection and mutation. J. Appl. Probab. https://doi.org/10.2307/3213231 (1978).

  29. Østman, B. & Adami, C. in Recent Advances in the Theory and Application of Fitness Landscapes (eds Richter, H. & Engelbrecht, A.) 509–526 (Springer, 2014).

  30. Greenbury, S. F., Schaper, S., Ahnert, S. E. & Louis, A. A. Genetic correlations greatly increase mutational robustness and can both reduce and enhance evolvability. PLoS Comput. Biol. 12, 1–27 (2016).

    Article  Google Scholar 

  31. Ahnert, S. E. Structural properties of genotype–phenotype maps. J. R. Soc. Int. 14, 20170275 (2017).

    Article  Google Scholar 

  32. Manrubia, S. et al. From genotypes to organisms: state-of-the-art and perspectives of a cornerstone in evolutionary dynamics. Phys. Life Rev. 38, 55–106 (2021).

    Article  CAS  PubMed  Google Scholar 

  33. van Nimwegen, E., Crutchfield, J. P. & Huynen, M. Neutral evolution of mutational robustness. Proc. Natl Acad. Sci. USA 96, 9716–9720 (1999).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Greenbury, S. F. & Ahnert, S. E. The organization of biological sequences into constrained and unconstrained parts determines fundamental properties of genotype-phenotype maps. J. R. Soc. Interface 12, 20150724 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Manrubia, S. & Cuesta, JoséA. Distribution of genotype network sizes in sequence-to-structure genotype-phenotype maps. J. R. Soc. Interface 14, 20160976 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Weiß, M. & Ahnert, S. E. Phenotypes can be robust and evolvable if mutations have non-local effects on sequence constraints. J. R. Soc. Interface 15, 20170618 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Camargo, C. Q. & Louis, A. A. in Complex Networks XI (eds Barbosa, H. et al.) 143–155 (Springer, 2020).

  38. Wagner, A. Robustness and evolvability: a paradox resolved. Proc. R. Soc. B: Bio. Sci. 275, 91–100 (2008).

    Article  Google Scholar 

  39. Schaper, S., Johnston, I. G. & Louis, A. A. Epistasis can lead to fragmented neutral spaces and contingency in evolution. Proc. R. Soc. B: Bio. Sci. 279, 1777–1783 (2012).

    Article  CAS  Google Scholar 

  40. Kin, T. et al. fRNAdb: a platform for mining/annotating functional RNA candidates from non-coding RNA sequences. Nucleic Acids Res. 35, 145–148 (2007).

    Article  Google Scholar 

  41. Schuster, P., Fontana, W., Stadler, P. F. & Hofacker, I. L. From sequences to shapes and back: a case study in RNA secondary structures. Proc. R. Soc. B. Bio. Sci. 255, 279–284 (1994).

    Article  CAS  Google Scholar 

  42. Hofacker, I. L. et al. Fast folding and comparison of RNA secondary structures. Monatshefte Chem. 125, 167–188 (1994).

    Article  CAS  Google Scholar 

  43. Fontana, W. Modelling ‘evo-devo’ with RNA. BioEssays 24, 1164–1177 (2002).

    Article  CAS  PubMed  Google Scholar 

  44. Cowperthwaite, M. C., Economo, E. P., Harcombe, W. R., Miller, E. L. & Meyers, LaurenAncel The ascent of the abundant: how mutational networks constrain evolution. PLoS Comput. Biol. 4, e1000110 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Aguirre, J., Buldú, J. M., Stich, M. & Manrubia, S. C. Topological structure of the space of phenotypes: the case of RNA neutral networks. PLoS ONE 6, e26324 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Schaper, S. & Louis, A. A. The arrival of the frequent: how bias in genotype-phenotype maps can steer populations to local optima. PLoS ONE 9, e86635 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Wagner, A. The Origins of Evolutionary Innovations: A Theory of Transformative Change in Living Systems (Oxford Univ. Press, 2011).

  48. Greenbury, S. F., Johnston, I. G., Louis, A. A. & Ahnert, S. E. A tractable genotype–phenotype map modelling the self-assembly of protein quaternary structure. J. R. Soc. Interface 11, 20140249 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Johnston, I. G. et al. Symmetry and simplicity spontaneously emerge from the algorithmic nature of evolution. Proc. Natl Acad. Sci. USA 119, e2113883119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Dill, K. A. Theory for the folding and stability of globular proteins. Biochemistry 24, 1501–1509 (1985).

    Article  CAS  PubMed  Google Scholar 

  51. Irbäck, A. & Troein, C. Enumerating designing sequences in the HP model. J. Biol. Phys. 28, 1–15 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Ferrada, E. & Wagner, A. A comparison of genotype-phenotype maps for RNA and proteins. Biophysical J. 102, 1916–1925 (2012).

    Article  CAS  Google Scholar 

  53. Jörg, T., Martin, O. & Wagner, A. Neutral network sizes of biological RNA molecules can be computed and are not atypically small. BMC Bioinformatics 9, 464 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Borg, I. & Groenen, P. J. F. Modern Multidimensional Scaling: Theory and Applications (Springer Science & Business Media, 2005).

  55. Dingle, K., Ghaddar, F., Šulc, P. & Louis, A. A. Phenotype bias determines how natural RNA structures occupy the morphospace of all possible shapes. Mol. Biol. Evol. 39, msab280 (2021).

  56. Dingle, K., Schaper, S. & Louis, A. A. The structure of the genotype-phenotype map strongly constrains the evolution of non-coding RNA. Int. Focus 5, 20150053 (2015).

    Google Scholar 

  57. McCandlish, D. M. & Stoltzfus, A. Modeling evolution using the probability of fixation: history and implications. Quart. Rev. Biol. 89, 225–252 (2014).

    Article  PubMed  Google Scholar 

  58. Kimura, M. On the probability of fixation of mutant genes in a population. Genetics 47, 713–719 (1962).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Giegerich, R., Voß, Björn & Rehmsmeier, M. Abstract shapes of RNA. Nucleic Acids Res. 32, 4843–4851 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Martin, N. S. & Ahnert, S. E. Insertions and deletions in the RNA sequence-structure map. J. R. Soc. Interface 18, 20210380 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Catalán, P., Arias, C. F., Cuesta, J. A. & Manrubia, S. Adaptive multiscapes: an up-to-date metaphor to visualize molecular adaptation. Biol. Direct 12, 7 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Ogbunugafor, C. B., Wylie, C. S., Diakite, I., Weinreich, D. M. & Hartl, D. L. Adaptive landscape by environment interactions dictate evolutionary dynamics in models of drug resistance. PLoS Comput. Biol. https://doi.org/10.1371/journal.pcbi.1004710 (2016).

  63. Nichol, D., Robertson-Tessi, M., Anderson, AlexanderR. A. & Jeavons, P. Model genotype-phenotype mappings and the algorithmic structure of evolution. J. R. Soc. Interface 16, 20190332 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Diaz-Uriarte, R. Cancer progression models and fitness landscapes: a many-to-many relationship. Bioinformatics 34, 836–844 (2018).

    Article  CAS  PubMed  Google Scholar 

  65. Gabbutt, C. & Graham, T. A. Evolution’s cartographer: mapping the fitness landscape in cancer. Cancer Cell 39, 1311–1313 (2021).

    Article  CAS  PubMed  Google Scholar 

  66. Lau, KitFun & Dill, K. A. A lattice statistical mechanics model of the conformational and sequence spaces of proteins. Macromolecules 22, 3986–3997 (1989).

    Article  CAS  Google Scholar 

  67. Li, H., Helling, R., Tang, C. & Wingreen, N. Emergence of preferred structures in a simple model of protein folding. Science 273, 666–669 (1996).

    Article  CAS  PubMed  Google Scholar 

  68. Weinreich, D. M. Darwinian evolution can follow only very few mutational paths to fitter proteins. Science 312, 111–114 (2006).

    Article  CAS  PubMed  Google Scholar 

  69. Ewens, W. J. Mathematical Population Genetics: Theoretical Introduction Vol. 1 (Springer, 2004).

  70. Imhof, L. A. & Nowak, M. A. Evolutionary game dynamics in a Wright-Fisher process. J. Math. Biol. 52, 667–681 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

S.E.A. was supported by the Royal Society and the Gatsby Foundation. S.F.G. was supported by the Engineering and Physical Sciences Research Council. We thank M. Weiß for helpful discussions and insights.

Author information

Authors and Affiliations

Authors

Contributions

S.F.G., A.A.L. and S.E.A. conceived and designed the experiments. S.F.G. performed the experiments. S.F.G., A.A.L. and S.E.A. analysed the data. S.E.A. supervised the work. S.F.G., A.A.L. and S.E.A. wrote the paper.

Corresponding authors

Correspondence to Sam F. Greenbury, Ard A. Louis or Sebastian E. Ahnert.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Ecology & Evolution thanks Jacobo Aguirre and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Depiction of the different biological systems, specific GP maps considered and example genotype, phenotype and encoding of phenotype.

Each row is a specific GP map included in this work and is situated within one of the four categories of system: RNA, Polyomino, HP (compact), and HP (non-compact). RNA and HP genotypes are depicted with distinct colours for their constituent bases. Polyomino genotypes are shown as numerical sequences that map to the edges of distinctly coloured tiles with arrows used to indicate the tile orientation. The corresponding phenotype (the structure that is formed following the self-assembly process on the example genotype) is shown with the colours and arrows used in the genotype depiction highlighting the mechanism by which bonds are formed. The encoding of the example phenotypes are shown in the final column: dot-bracket and shape notation for RNA, grid coordinates for tile placements of polyominoes, and the lattice directions for the HP lattice fold.

Extended Data Table 1 GP map properties and navigability estimates. All GP maps studied with their properties (base K, sequence length L, number of phenotypes NP, proportion of genotypes with the deleterious phenotype fdel, average redundancy \({\log }_{10}R\), mean genotypic robustness \(\left\langle {\rho }_{g}\right\rangle\)) and estimate with standard error of navigability \(\left\langle \psi \right\rangle \pm SE(\left\langle \psi \right\rangle )\). RNA, Polyomino and compact HP GP maps all have navigable fitness landscapes (\(\left\langle \psi \right\rangle > 0.6\)) under random fitness assignment. By contrast, non-compact HP models have very low navigability (\(\left\langle \psi \right\rangle \le 0.013\))
Extended Data Table 2 Terminology. A summary of terms and their representations used in the paper. The first column (left) provides the term used and its description, while the second column (right) has the corresponding mathematical symbol and equation where relevant

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Greenbury, S.F., Louis, A.A. & Ahnert, S.E. The structure of genotype-phenotype maps makes fitness landscapes navigable. Nat Ecol Evol 6, 1742–1752 (2022). https://doi.org/10.1038/s41559-022-01867-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41559-022-01867-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing