Abstract
Plankton models form the core of marine ecosystem simulators, with uses from regional resource and ecosystem management to climate change projections. In this Perspective, we suggest that stronger alignment of models with empirical knowledge about plankton physiology, diversity and trophic roles will improve model utility and the reliability of their outputs regarding biodiversity, ecophysiology, trophic dynamics and biogeochemistry. We recommend key steps to resolve the disconnect between empirical research and simulation models accounting for well-established plankton processes with an aim to increase the utility of such models for applied uses. A central challenge is characterizing the complexity of plankton diversity and activity in ways that are amenable to model incorporation. We argue that experts in empirical science are best placed to advise the development of next-generation models to address these challenges, and we propose a series of actions to achieve that engagement, including involvement of these experts in the design and exploitation of plankton digital twins.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to the full article PDF.
USD 39.95
Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others
References
Worden, A. Z. et al. Rethinking the marine carbon cycle: factoring in the multifarious lifestyles of microbes. Science 347, 1257594 (2015).
Falkowski, P. G., Fenchel, T. & Delong, E. F. The microbial engines that drive Earth’s biogeochemical cycles. Science 320, 1034–1039 (2008).
Sommer, U., Paul, C. & Moustaka-Gouni, M. Warming and ocean acidification effects on phytoplankton—from species shifts to size shifts within species in a mesocosm experiment. PLoS ONE 10, e0125239 (2015).
Trimborn, S. et al. Iron sources alter the response of Southern Ocean phytoplankton to ocean acidification. Mar. Ecol. Prog. Ser. 578, 35–50 (2017).
Kléparski, L. et al. Ocean climate and hydrodynamics drive decadal shifts in northeast Atlantic dinoflagellates. Glob. Change Biol. 30, e17163 (2024).
Henson, S. A. et al. Uncertain response of ocean biological carbon export in a changing world. Nat. Geosci. 15, 248–254 (2022).
Martin, P. et al. Iron fertilization enhanced net community production but not downward particle flux during the Southern Ocean iron fertilization experiment LOHAFEX. Glob. Biogeochem. Cycles 27, 871–881 (2013).
Seifert, M. et al. Interaction matters: bottom‐up driver interdependencies alter the projected response of phytoplankton communities to climate change. Glob. Change Biol. 29, 4234–4258 (2023).
Asch, R. G., Stock, C. A. & Sarmiento, J. L. Climate change impacts on mismatches between phytoplankton blooms and fish spawning phenology. Glob. Change Biol. 25, 2544–2559 (2019).
Heneghan, R. F. et al. Disentangling diverse responses to climate change among global marine ecosystem models. Prog. Oceanogr. 198, 102659 (2021).
Tagliabue, A. et al. Persistent uncertainties in ocean net primary production climate change projections at regional scales raise challenges for assessing impacts on ecosystem services. Front. Clim. 3, 738224 (2021).
Li, M. et al. A three-dimensional mixotrophic model of Karlodinium veneficum blooms for a eutrophic estuary. Harmful Algae 113, 102203 (2022).
Flynn, K. J., Torres, R., Irigoien, X. & Blackford, J. C. Plankton digital twins—a new research tool. J. Plankton Res. 44, 805 (2022).
Flynn, K. J. Simulating plankton—getting it right in the era of Digital Twins of the Ocean; projection introduction and executive discussion. Zenodo https://doi.org/10.5281/zenodo.10953377 (2024).
Flynn, K. J. et al. Simulating plankton—getting it right in the era of Digital Twins of the Ocean; building and challenging perceptions. Zenodo https://doi.org/10.5281/zenodo.10952555 (2024).
Lennon, J. T. et al. Priorities, opportunities, and challenges for integrating microorganisms into Earth system models for climate change prediction. mBio, e00455-24 (2024).
Skogen, M. D. et al. Bridging the gap: integrating models and observations for better ecosystem understanding. Mar. Ecol. Prog. Ser. 739, 257–268 (2024).
Friedrichs, M. A. et al. Assessment of skill and portability in regional marine biogeochemical models: role of multiple planktonic groups. J. Geophys. Res. Oceans 112 (2007).
Tagliabue, A. Climate forecasts: bring marine microbes into the equation. Nature 623, 250–252 (2023).
Mitra, A., Flynn, K. J. & Fasham, M. J. R. Accounting correctly for grazing dynamics in nutrient–phytoplankton–zooplankton models. Limnol. Oceanogr. 52, 649–661 (2007).
Sett, S., Schulz, K. G., Bach, L. T. & Riebesell, U. Shift towards larger diatoms in a natural phytoplankton assemblage under combined high-CO2 and warming conditions. J. Plankton Res. 40, 391–406 (2018).
Ibarbalz, F. M. et al. Global trends in marine plankton diversity across kingdoms of life. Cell 179, 1084–1097 (2019).
Ratnarajah, L. et al. Monitoring and modelling marine zooplankton in a changing climate. Nat. Commun. 14, 564 (2023).
Martin, K. et al. The biogeographic differentiation of algal microbiomes in the upper ocean from pole to pole. Nat. Commun. 12, 5483 (2021).
Schmidt, K. et al. Essential omega‐3 fatty acids are depleted in sea ice and pelagic algae of the central Arctic Ocean. Glob. Change Biol. 30, e17090 (2024).
Aumont, O., Éthé, C., Tagliabue, A., Bopp, L. & Gehlen, M. PISCES-v2: an ocean biogeochemical model for carbon and ecosystem studies. Geosci. Model Dev. Discuss. 8, 1375–1509 (2015).
Wright, R. M., Le Quéré, C., Buitenhuis, E., Pitois, S. & Gibbons, M. J. Role of jellyfish in the plankton ecosystem revealed using a global ocean biogeochemical model. Biogeosciences 18, 1291–1320 (2021).
Monod, J. The growth of bacterial cultures. Annu. Rev. Microbiol. 3, 371–394 (1949).
Droop, M. R. Vitamin B12 and marine ecology. IV. The kinetics of uptake, growth, and inhibition in Monochrysis lutheri. J. Mar. Biol. Assoc. UK 48, 689–733 (1968).
Holling, C. S. The functional response of predators to prey density and its role in mimicry and population regulation. Mem. Entomol. Soc. Can. 97, 5–60 (1965).
Shuter, B. A model of physiological adaptation in unicellular algae. J. Theor. Biol. 78, 519–532 (1979).
Fasham, M. J. R., Ducklow, H. W. & Mckelvie, S. M. A nitrogen based model of plankton dynamics in the oceanic mixed layer. J. Mar. Res. 48, 591–639 (1990).
Faktorová, D. et al. Genetic tool development in marine protists: emerging model organisms for experimental cell biology. Nat. Methods 17, 481–494 (2020).
Pomeroy, L. R. The ocean’s food web, a changing paradigm. Bioscience 24, 499–504 (1974).
Azam, F. et al. The ecological role of water-column microbes in the sea. Mar. Ecol. Prog. Ser. 10, 257–263 (1983).
Suttle, C. A. Marine viruses—major players in the global ecosystem. Nat. Rev. Microbiol. 5, 801–812 (2007).
Jiao, N. et al. Microbial production of recalcitrant dissolved organic matter: long-term carbon storage in the global ocean. Nat. Rev. Microbiol. 8, 593–599 (2010).
Pernthaler, J. Predation on prokaryotes in the water column and its ecological implications. Nat. Rev. Microbiol. 3, 537–546 (2005).
Stoecker, D. K. Conceptual models of mixotrophy in planktonic protists and some ecological and evolutionary implications. Eur. J. Protistol. 34, 281–290 (1998).
Glibert, P. M. & Mitra, A. From webs, loops, shunts, and pumps to microbial multitasking: evolving concepts of marine microbial ecology, the mixoplankton paradigm, and implications for a future ocean. Limnol. Oceanogr. 67, 585–597 (2022).
Sterner, R. W. & Elser, J. J. Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere (Princeton Univ. Press, 2002).
Flynn, K. J. Castles built on sand: dysfunctionality in plankton models and the inadequacy of dialogue between biologists and modellers. J. Plankton Res. 27, 1205–1210 (2005).
Yamazaki, H. & Smith, S. L. Advances in plankton modeling and biodiversity evaluation. J. Plankton Res. 38, 944–945 (2016).
Pahlow, M. & Oschlies, A. Chain model of phytoplankton P, N and light colimitation. Mar. Ecol. Prog. Ser. 376, 69–83 (2009).
Follows, M. J. & Dutkiewicz, S. Modeling diverse communities of marine microbes. Annu. Rev. Mar. Sci. 3, 427–451 (2011).
Polimene, L. et al. Decrease in diatom palatability contributes to bloom formation in the western English Channel. Prog. Oceanogr. 137, 484–497 (2015).
Martin, A. P. et al. When to add a new process to a model—and when not: a marine biogeochemical perspective. Ecol. Modell. 498, 110870 (2024).
Stukel, M. R., Décima, M. & Landry, M. R. Quantifying biological carbon pump pathways with a data-constrained mechanistic model ensemble approach. Biogeosciences 19, 3595–3624 (2022).
Nowicki, M., DeVries, T. & Siegel, D. A. Quantifying the carbon export and sequestration pathways of the ocean’s biological carbon pump. Glob. Biogeochem. Cycles 36, e2021GB007083 (2022).
Wilson, J. D. et al. The biological carbon pump in CMIP6 models: 21st century trends and uncertainties. Proc. Natl Acad. Sci. USA 119, e2204369119 (2022).
Pinti, J. et al. Model estimates of metazoans’ contributions to the biological carbon pump. Biogeosciences 20, 997–1009 (2023).
Mitra, A. et al. Bridging the gap between marine biogeochemical and fisheries sciences: configuring the zooplankton link. Prog. Oceanogr. 129, 176–199 (2014).
Rohr, T. et al. Zooplankton grazing is the largest source of uncertainty for marine carbon cycling in CMIP6 models. Commun. Earth Environ. 4, 212 (2023).
Mateus, M. D. Bridging the gap between knowing and modelling viruses in marine systems—an upcoming frontier. Front. Mar. Sci. 3, 284 (2017).
Needham, D. M. & Fuhrman, J. A. Pronounced daily succession of phytoplankton, archaea and bacteria following a spring bloom. Nat. Microbiol. 1, 16005 (2016).
Zhao, Z., Amano, C., Reinthaler, T., Orellana, M. V. & Herndl, G. J. Substrate uptake patterns shape niche separation in marine prokaryotic microbiome. Sci. Adv. 10, eadn5143 (2024).
Flynn, K. J., Speirs, D. C., Heath, M. R. & Mitra, A. Subtle differences in the representation of consumer dynamics have large effects in marine food web models. Front. Mar. Sci. 8, 638892 (2021).
Hansen, B., Bjørnsen, P. K. & Hansen, P. J. The size ratio between planktonic predators and their prey. Limnol. Oceanogr. 39, 395–403 (1994).
Kiørboe, T., Saiz, E. & Viitasalo, M. Prey switching behaviour in the planktonic copepod Acartia tonsa. Mar. Ecol. Prog. Ser. 143, 65–75 (1996).
Helenius, L. K. & Saiz, E. Feeding behaviour of the nauplii of the marine calanoid copepod Paracartia grani Sars: functional response, prey size spectrum, and effects of the presence of alternative prey. PLoS ONE 12, e0172902 (2017).
Follett, C. L. et al. Trophic interactions with heterotrophic bacteria limit the range of Prochlorococcus. Proc. Natl Acad. Sci. USA 119, e2110993118 (2022).
Mitchell, J. F., Lowe, J., Wood, R. A. & Vellinga, M. Extreme events due to human-induced climate change. Philos. Trans. R. Soc. A 364, 2117–2133 (2006).
Bopp, L. et al. Multiple stressors of ocean ecosystems in the 21st century: projections with CMIP5 models. Biogeosciences 10, 6225–6245 (2013).
Babcock, R. C. et al. Severe continental-scale impacts of climate change are happening now: extreme climate events impact marine habitat forming communities along 45% of Australia’s coast. Front. Mar. Sci. 6, 466674 (2019).
Murphy, G. E., Romanuk, T. N. & Worm, B. Cascading effects of climate change on plankton community structure. Ecol. Evol. 10, 2170–2181 (2020).
Cheung, W. W. et al. Marine high temperature extremes amplify the impacts of climate change on fish and fisheries. Sci. Adv. 7, eabh0895 (2021).
Bork, P. et al. Tara Oceans studies plankton at planetary scale. Science 348, 873 (2015).
De Vargas, C. et al. Eukaryotic plankton diversity in the sunlit ocean. Science 348, 1261605 (2015).
Sunagawa, S. et al. Tara Oceans: towards global ocean ecosystems biology. Nat. Rev. Microbiol. 18, 428–445 (2020).
Flynn, K. J. Dynamic Ecology—an Introduction to the Art of Simulating Trophic Dynamics (Swansea Univ., 2018).
Fennel, K. et al. Ocean biogeochemical modelling. Nat. Rev. Methods Prim. 2, 76 (2022).
Allen, J. I. & Polimene, L. Linking physiology to ecology: towards a new generation of plankton models. J. Plankton Res. 33, 989–997 (2011).
Andersen, K. H. et al. Characteristic sizes of life in the oceans, from bacteria to whales. Annu. Rev. Mar. Sci. 8, 217–241 (2016).
Lan, S. S. et al. Flexible phytoplankton functional type (FlexPFT) model: size-scaling of traits and optimal growth. J. Plankton Res. 38, 977–992 (2016).
Anderson, T. R., Hessen, D. O., Mitra, A., Mayor, D. J. & Yool, A. Sensitivity of secondary production and export flux to choice of trophic transfer formulation in marine ecosystem models. J. Mar. Syst. 125, 41–53 (2013).
Atkinson, A. et al. Steeper size spectra with decreasing phytoplankton indicate strong trophic amplification of future marine biomass declines. Nat. Commun. https://doi.org/10.1038/s41467-023-44406-5 (2024).
Flynn, K. J., Skibinski, D. O. & Lindemann, C. Effects of growth rate, cell size, motion, and elemental stoichiometry on nutrient transport kinetics. PLoS Comput. Biol. 14, e1006118 (2018).
Tillmann, U., Mitra, A., Flynn, K. J. & Larsson, M. E. Mucus-trap-assisted feeding is a common strategy of the small mixoplanktonic Prorocentrum pervagatum and P. cordatum (Prorocentrales, Dinophyceae). Microorganisms 11, 1730 (2023).
Mitra, A., Flynn, K. J., Stoecker, D. K. & Raven, J. A. Trait trade-offs in phagotrophic microalgae: the mixoplankton conundrum. Eur. J. Phycol. 59, 51–70 (2024).
Strzepek, R. F. et al. The ongoing need for rates: can physiology and omics come together to co-design the measurements needed to understand complex ocean biogeochemistry? J. Plankton Res. 44, 485–495 (2022).
Mock, T. et al. Bridging the gap between omics and earth system science to better understand how environmental change impacts marine microbes. Glob. Change Biol. 22, 61–75 (2016).
Coles, V. J. et al. Ocean biogeochemistry modeled with emergent trait-based genomics. Science 358, 1149–1154 (2017).
Dam, H. G. et al. Rapid, but limited, zooplankton adaptation to simultaneous warming and acidification. Nat. Clim. Change 11, 780–786 (2021).
Jin, P. et al. Increased genetic diversity loss and genetic differentiation in a model marine diatom adapted to ocean warming compared to high CO2. ISME J. 16, 2587–2598 (2022).
Flynn, K. J. Toxin production in migrating dinoflagellates: a modelling study of PSP producing Alexandrium. Harmful Algae 1, 147–155 (2002).
Hofmann, E. E. et al. Understanding controls on Margalefidinium polykrikoides blooms in the lower Chesapeake Bay. Harmful Algae 107, 102064 (2021).
Xiong, J. et al. Biophysical interactions control the progression of harmful algal blooms in Chesapeake Bay: a novel Lagrangian particle tracking model with mixotrophic growth and vertical migration. Limnol. Oceanogr. Lett. 8, 498–508 (2023).
Menden-Deuer, S., Rowlett, J., Nursultanov, M., Collins, S. & Rynearson, T. Biodiversity of marine microbes is safeguarded by phenotypic heterogeneity in ecological traits. PLoS ONE 16, e0254799 (2021).
de Lorenzo, V. The principle of uncertainty in biology: will machine learning/artificial intelligence lead to the end of mechanistic studies? PLoS Biol. 22, e3002495 (2024).
Glibert, P. M. Phytoplankton Whispering: An Introduction to the Physiology and Ecology of Microalgae (Springer Nature, 2024).
Eppley, R. W. Temperature and phytoplankton growth in the sea. Fish. Bull. 70, 1063–1085 (1972).
Lacour, T., Larivière, J. & Babin, M. Growth, Chl a content, photosynthesis, and elemental composition in polar and temperate microalgae. Limnol. Oceanogr. 62, 43–58 (2017).
Wang, Q. et al. Predicting temperature impacts on aquatic productivity: questioning the metabolic theory of ecology’s ‘canonical’ activation energies. Limnol. Oceanogr. 64, 1172–1185 (2019).
Kreft, J. U. et al. From genes to ecosystems in microbiology: modelling approaches and the importance of individuality. Front. Microbiol. 8, 2299 (2017).
Panahi, B., Farhadian, M. & Hejazi, M. A. Systems biology approach identifies functional modules and regulatory hubs related to secondary metabolites accumulation after transition from autotrophic to heterotrophic growth condition in microalgae. PLoS ONE 15, e0225677 (2020).
Ralston, D. K. & Moore, S. K. Modeling harmful algal blooms in a changing climate. Harmful Algae 91, 101729 (2020).
Harper, A. B. et al. Vegetation distribution and terrestrial carbon cycle in a carbon cycle configuration of JULES4. 6 with new plant functional types. Geosci. Model Dev. 11, 2857–2873 (2018).
Weithoff, G. The concepts of ‘plant functional types’ and ‘functional diversity’ in lake phytoplankton—a new understanding of phytoplankton ecology? Freshw. Biol. 48, 1669–1675 (2003).
Kwiatkowski, L. et al. iMarNet: an ocean biogeochemistry model intercomparison project within a common physical ocean modelling framework. Biogeosciences 11, 7291–7304 (2014).
Intergovernmental Oceanographic Commission. The Science we Need for the Ocean we Want: The United Nations Decade of Ocean Science for Sustainable Development (2021-2030) (2020).
Acknowledgements
This work was funded by UKRI Natural Environment Research Council (NE/X010783/1; ‘Simulating plankton—getting it right in the era of Digital Twins of the Ocean’), under the direction of K.J.F.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Ecology & Evolution thanks Scott Doney and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Flynn, K.J., Atkinson, A., Beardall, J. et al. More realistic plankton simulation models will improve projections of ocean ecosystem responses to global change. Nat Ecol Evol 9, 1562–1570 (2025). https://doi.org/10.1038/s41559-025-02788-3
Received:
Accepted:
Published:
Version of record:
Issue date:
DOI: https://doi.org/10.1038/s41559-025-02788-3


