Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Evolutionary drivers of divergent collateral sensitivity responses during antibiotic therapy

Abstract

With antibiotic resistance on the rise and the development of new antibiotics stagnating, novel antimicrobial strategies that slow down resistance evolution and extend the lifetime of existing drugs are urgently needed. One possible solution focuses on rationalizing antimicrobial combination and cycling therapies on the basis of the concept of collateral sensitivity, in which resistance mutations acquired against one antibiotic increase the susceptibility towards a second antibiotic. However, the clinical potential of collateral sensitivity is still uncertain as collateral responses for the same combination of antibiotics may vary from collateral sensitivity to cross-resistance, depending on stochasticity, environmental conditions and the genetic background of the pathogen. This Review therefore discusses the drivers behind this variability and proposes that they can influence collateral sensitivity either by selecting different resistance mutations with distinct collateral responses or by modulating how a given resistance mutation affects the cell, thereby altering or even inverting the collateral response. Moreover, we discuss the dynamics of collateral sensitivity in duotherapy and highlight how the selection of multi-drug resistance may contribute to the variability in treatment outcomes. To aid the translation of collateral sensitivity to a clinical setting, we finally present several strategies that could circumvent the variability in collateral sensitivity outcomes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Concept of CS.
Fig. 2: Molecular mechanisms of CS.
Fig. 3: Evolutionary trajectories on a fitness landscape in the presence of an antibiotic.
Fig. 4: Evolutionary dynamics of a collaterally sensitive bacterium during cycling and combination therapy.

Similar content being viewed by others

References

  1. Naghavi, M. et al. Global burden of bacterial antimicrobial resistance 1990–2021: a systematic analysis with forecasts to 2050. Lancet 404, 1199–1226 (2024).

    Article  Google Scholar 

  2. Coates, A. R. M., Halls, G. & Hu, Y. Novel classes of antibiotics or more of the same? Br. J. Pharmacol. 163, 184–194 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. O’Neill, J. et al. Tackling Drug-Resistant Infections Globally: Final Report and Recommendations (Review on Antimicrobial Resistance, 2016).

  4. Taylor, J. et al. Estimating the Economic Costs of Antimicrobial Resistance: Model and Results (RAND, 2014).

  5. Lázár, V. et al. Bacterial evolution of antibiotic hypersensitivity. Mol. Syst. Biol. 9, 700 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Imamovic, L. & Sommer, M. O. A. Use of collateral sensitivity networks to design drug cycling protocols that avoid resistance development. Sci. Transl. Med. 5, 204ra132 (2013).

    Article  PubMed  Google Scholar 

  7. Szybalski, W. & Bryson, V. Genetic studies on microbial cross resistance to toxic agents. I. Cross resistance of Escherichia coli to fifteen antibiotics. J. Bacteriol. 64, 489–499 (1952).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Imamovic, L. et al. Drug-driven phenotypic convergence supports rational treatment strategies of chronic infections. Cell 172, 121–134.e14 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Barbosa, C., Römhild, R., Rosenstiel, P. & Schulenburg, H. Evolutionary stability of collateral sensitivity to antibiotics in the model pathogen Pseudomonas aeruginosa. eLife 8, e51481 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kim, S., Lieberman, T. D. & Kishony, R. Alternating antibiotic treatments constrain evolutionary paths to multidrug resistance. Proc. Natl Acad. Sci. USA 111, 14494–14499 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Rodriguez de Evgrafov, M., Gumpert, H., Munck, C., Thomsen, T. T. & Sommer, M. O. A. Collateral resistance and sensitivity modulate evolution of high-level resistance to drug combination treatment in Staphylococcus aureus. Mol. Biol. Evol. 32, 1175–1185 (2015).

    Article  CAS  PubMed  Google Scholar 

  12. Perron, G. G., Gonzalez, A. & Buckling, A. Source–sink dynamics shape the evolution of antibiotic resistance and its pleiotropic fitness cost. Proc. R. Soc. B 274, 2351–2356 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Roemhild, R., Barbosa, C., Beardmore, R. E., Jansen, G. & Schulenburg, H. Temporal variation in antibiotic environments slows down resistance evolution in pathogenic Pseudomonas aeruginosa. Evol. Appl. 8, 945–955 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Angst, D. C., Tepekule, B., Sun, L., Bogos, B. & Bonhoeffer, S. Comparing treatment strategies to reduce antibiotic resistance in an in vitro epidemiological setting. Proc. Natl Acad. Sci. USA 118, e2023467118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Jahn, L. J. et al. Compatibility of evolutionary responses to constituent antibiotics drive resistance evolution to drug pairs. Mol. Biol. Evol. 38, 2057–2069 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Pena-Miller, R. et al. When the most potent combination of antibiotics selects for the greatest bacterial load: the smile–frown transition. PLoS Biol. 11, e1001540 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hegreness, M., Shoresh, N., Damian, D., Hartl, D. & Kishony, R. Accelerated evolution of resistance in multidrug environments. Proc. Natl Acad. Sci. USA 105, 13977–13981 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Michel, J.-B., Yeh, P. J., Chait, R., Moellering, R. C. & Kishony, R. Drug interactions modulate the potential for evolution of resistance. Proc. Natl Acad. Sci. USA 105, 14918–14923 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Torella, J. P., Chait, R. & Kishony, R. Optimal drug synergy in antimicrobial treatments. PLoS Comput. Biol. 6, e1000796 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Bognár, B., Spohn, R. & Lázár, V. Drug combinations targeting antibiotic resistance. NPJ Antimicrob. Resist. 2, 29 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Roemhild, R. & Schulenburg, H. Evolutionary ecology meets the antibiotic crisis: can we control pathogen adaptation through sequential therapy? Evol. Med. Public Health 2019, 37–45 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Zhou, D.-H. & Zhang, Q.-G. Fast drug rotation reduces bacterial resistance evolution in a microcosm experiment. J. Evol. Biol. 36, 641–649 (2023).

    Article  CAS  PubMed  Google Scholar 

  23. Batra, A. et al. High potency of sequential therapy with only β-lactam antibiotics. eLife 10, e68876 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. van Duijn, P. J. et al. The effects of antibiotic cycling and mixing on antibiotic resistance in intensive care units: a cluster-randomised crossover trial. Lancet Infect. Dis. 18, 401–409 (2018).

    Article  PubMed  Google Scholar 

  25. Munck, C., Gumpert, H. K., Wallin, A. I. N., Wang, H. H. & Sommer, M. O. A. Prediction of resistance development against drug combinations by collateral responses to component drugs. Sci. Transl. Med. 6, ra156 (2014).

    Article  Google Scholar 

  26. Barbosa, C., Beardmore, R., Schulenburg, H. & Jansen, G. Antibiotic combination efficacy (ACE) networks for a Pseudomonas aeruginosa model. PLoS Biol. 16, e2004356 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Gonzales, P. R. et al. Synergistic, collaterally sensitive β-lactam combinations suppress resistance in MRSA. Nat. Chem. Biol. 11, 855–861 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yoshida, M. et al. Time-programmable drug dosing allows the manipulation, suppression and reversal of antibiotic drug resistance in vitro. Nat. Commun. 8, 15589 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lozano-Huntelman, N. A. et al. Evolution of antibiotic cross-resistance and collateral sensitivity in Staphylococcus epidermidis using the mutant prevention concentration and the mutant selection window. Evol. Appl. 13, 808–823 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Podnecky, N. L. et al. Conserved collateral antibiotic susceptibility networks in diverse clinical strains of Escherichia coli. Nat. Commun. 9, 3673 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Aulin, L. B. S., Liakopoulos, A., van der Graaf, P. H., Rozen, D. E. & van Hasselt, J. G. C. Design principles of collateral sensitivity-based dosing strategies. Nat. Commun. 12, 5691 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yen, P. & Papin, J. A. History of antibiotic adaptation influences microbial evolutionary dynamics during subsequent treatment. PLoS Biol. 15, e2001586 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Santos-Lopez, A. et al. The roles of history, chance, and natural selection in the evolution of antibiotic resistance. eLife 10, e70676 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Beckley, A. M. & Wright, E. S. Identification of antibiotic pairs that evade concurrent resistance via a retrospective analysis of antimicrobial susceptibility test results. Lancet Microbe 2, e545–e554 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lázár, V. et al. Genome-wide analysis captures the determinants of the antibiotic cross-resistance interaction network. Nat. Commun. 5, 4352 (2014).

    Article  PubMed  Google Scholar 

  36. Barbosa, C. et al. Alternative evolutionary paths to bacterial antibiotic resistance cause distinct collateral effects. Mol. Biol. Evol. 34, 2229–2244 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sakenova, N. et al. Systematic mapping of antibiotic cross-resistance and collateral sensitivity with chemical genetics. Nat. Microbiol. 10, 202–216 (2025).

    Article  CAS  PubMed  Google Scholar 

  38. Roemhild, R. & Andersson, D. I. Mechanisms and therapeutic potential of collateral sensitivity to antibiotics. PLoS Pathog. 17, e1009172 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Oz, T. et al. Strength of selection pressure is an important parameter contributing to the complexity of antibiotic resistance evolution. Mol. Biol. Evol. 31, 2387–2401 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Nichol, D. et al. Antibiotic collateral sensitivity is contingent on the repeatability of evolution. Nat. Commun. 10, 334 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Liakopoulos, A. et al. Allele-specific collateral and fitness effects determine the dynamics of fluoroquinolone resistance evolution. Proc. Natl Acad. Sci. USA 119, e2121768119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ardell, S. M. & Kryazhimskiy, S. The population genetics of collateral resistance and sensitivity. eLife 10, e73250 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Maltas, J. & Wood, K. B. Pervasive and diverse collateral sensitivity profiles inform optimal strategies to limit antibiotic resistance. PLoS Biol. 17, e3000515 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Apjok, G. et al. Limited evolutionary conservation of the phenotypic effects of antibiotic resistance mutations. Mol. Biol. Evol. 36, 1601–1611 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hernando-Amado, S., Sanz-García, F. & Martínez, J. L. Antibiotic resistance evolution is contingent on the quorum-sensing response in Pseudomonas aeruginosa. Mol. Biol. Evol. 36, 2238–2251 (2019).

    Article  CAS  PubMed  Google Scholar 

  46. Lukačišinová, M., Fernando, B. & Bollenbach, T. Highly parallel lab evolution reveals that epistasis can curb the evolution of antibiotic resistance. Nat. Commun. 11, 3105 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Melnyk, A. H., Wong, A. & Kassen, R. The fitness costs of antibiotic resistance mutations. Evol. Appl. 8, 273–283 (2015).

    Article  PubMed  Google Scholar 

  48. Hernando-Amado, S., Sanz-García, F. & Martínez, J. L. Rapid and robust evolution of collateral sensitivity in Pseudomonas aeruginosa antibiotic-resistant mutants. Sci. Adv. 6, eaba5493 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hernando-Amado, S., Laborda, P., Valverde, J. R. & Martínez, J. L. Mutational background influences P. aeruginosa ciprofloxacin resistance evolution but preserves collateral sensitivity robustness. Proc. Natl Acad. Sci. USA 119, e2109370119 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Allen, R. C., Pfrunder-Cardozo, K. R. & Hall, A. R. Collateral sensitivity interactions between antibiotics depend on local abiotic conditions. mSystems 6, e0105521 (2021).

    Article  PubMed  Google Scholar 

  51. Santos-Lopez, A., Marshall, C. W., Scribner, M. R., Snyder, D. J. & Cooper, V. S. Evolutionary pathways to antibiotic resistance are dependent upon environmental structure and bacterial lifestyle. eLife 8, e47612 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Brepoels, P. et al. Antibiotic cycling affects resistance evolution independently of collateral sensitivity. Mol. Biol. Evol. 39, msac257 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Card, K. J., LaBar, T., Gomez, J. B. & Lenski, R. E. Historical contingency in the evolution of antibiotic resistance after decades of relaxed selection. PLoS Biol. 17, e3000397 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Knöppel, A., Näsvall, J. & Andersson, D. I. Evolution of antibiotic resistance without antibiotic exposure. Antimicrob. Agents Chemother. 61, e01495–17 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Card, K. J., Thomas, M. D., Graves, J. L., Barrick, J. E. & Lenski, R. E. Genomic evolution of antibiotic resistance is contingent on genetic background following a long-term experiment with Escherichia coli. Proc. Natl Acad. Sci. USA 118, e2016886118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Vogwill, T., Kojadinovic, M. & MacLean, R. C. Epistasis between antibiotic resistance mutations and genetic background shape the fitness effect of resistance across species of Pseudomonas. Proc. R. Soc. B 283, 20160151 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Porse, A., Jahn, L. J., Ellabaan, M. M. H. & Sommer, M. O. A. Dominant resistance and negative epistasis can limit the co-selection of de novo resistance mutations and antibiotic resistance genes. Nat. Commun. 11, 1199 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Trindade, S. et al. Positive epistasis drives the acquisition of multidrug resistance. PLoS Genet. 5, e1000578 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Jochumsen, N. et al. The evolution of antimicrobial peptide resistance in Pseudomonas aeruginosa is shaped by strong epistatic interactions. Nat. Commun. 7, 13002 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Gifford, D. et al. Identifying and exploiting genes that potentiate the evolution of antibiotic resistance. Nat. Ecol. Evol. 2, 1033–1039 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Weinreich, D. M., Delaney, N. F., Depristo, M. A. & Hartl, D. L. Darwinian evolution can follow only very few mutational paths to fitter proteins. Science 312, 111–114 (2006).

    Article  CAS  PubMed  Google Scholar 

  62. Zwep, L. B. et al. Identification of antibiotic collateral sensitivity and resistance interactions in population surveillance data. JAC Antimicrob. Resist. 3, dlab175 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Jansen, G. et al. Association between clinical antibiotic resistance and susceptibility of Pseudomonas in the cystic fibrosis lung. Evol. Med. Public Health 2016, 182–194 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Vanderwoude, J., Azimi, S., Read, T. D. & Diggle, S. P. The role of hypermutation and collateral sensitivity in antimicrobial resistance diversity of Pseudomonas aeruginosa populations in cystic fibrosis lung infection. mBio 15, e0310923 (2024).

    Article  PubMed  Google Scholar 

  65. Lagator, M., Uecker, H. & Neve, P. Adaptation at different points along antibiotic concentration gradients. Biol. Lett. 17, 20200913 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Wistrand-Yuen, E. et al. Evolution of high-level resistance during low-level antibiotic exposure. Nat. Commun. 9, 1599 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Sanz-García, F., Sánchez, M. B., Hernando-Amado, S. & Martínez, J. L. Evolutionary landscapes of Pseudomonas aeruginosa towards ribosome-targeting antibiotic resistance depend on selection strength. Int. J. Antimicrob. Agents 55, 105965 (2020).

    Article  PubMed  Google Scholar 

  68. Hermsen, R., Deris, J. B. & Hwa, T. On the rapidity of antibiotic resistance evolution facilitated by a concentration gradient. Proc. Natl Acad. Sci. USA 109, 10775–10780 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Tseng, B. S. et al. The extracellular matrix protects Pseudomonas aeruginosa biofilms by limiting the penetration of tobramycin. Environ. Microbiol. 15, 2865–2878 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Jahn, L. J., Munck, C., Ellabaan, M. M. H. & Sommer, M. O. A. Adaptive laboratory evolution of antibiotic resistance using different selection regimes lead to similar phenotypes and genotypes. Front. Microbiol. 8, 816 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Lindsey, H. A., Gallie, J., Taylor, S. & Kerr, B. Evolutionary rescue from extinction is contingent on a lower rate of environmental change. Nature 494, 463–467 (2013).

    Article  CAS  PubMed  Google Scholar 

  72. Cisneros-Mayoral, S., Graña-Miraglia, L., Pérez-Morales, D., Peña-Miller, R. & Fuentes-Hernández, A. Evolutionary history and strength of selection determine the rate of antibiotic resistance adaptation. Mol. Biol. Evol. 39, msac185 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Maltas, J., Huynh, A. & Wood, K. B. Dynamic collateral sensitivity profiles highlight opportunities and challenges for optimizing antibiotic treatments. PLoS Biol. 23, e3002970 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Laborda, P., Martínez, J. L. & Hernando-Amado, S. Evolution of habitat-dependent antibiotic resistance in Pseudomonas aeruginosa. Microbiol. Spectr. 10, e0024722 (2022).

    Article  PubMed  Google Scholar 

  75. Delhaye, A., Collet, J.-F. & Laloux, G. Fine-tuning of the Cpx envelope stress response is required for cell wall homeostasis in Escherichia coli. mBio 7, e00047-16 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Flemming, H.-C. & Wuertz, S. Bacteria and archaea on Earth and their abundance in biofilms. Nat. Rev. Microbiol. 17, 247–260 (2019).

    Article  CAS  PubMed  Google Scholar 

  77. Steenackers, H., Hermans, K., Vanderleyden, J. & De Keersmaecker, S. C. J. Salmonella biofilms: an overview on occurrence, structure, regulation and eradication. Food Res. Int. 45, 502–531 (2012).

    Article  CAS  Google Scholar 

  78. Steenackers, H. P., Parijs, I., Foster, K. R. & Vanderleyden, J. Experimental evolution in biofilm populations. FEMS Microbiol. Rev. 40, 373–397 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Crabbé, A., Jensen, P. Ø., Bjarnsholt, T. & Coenye, T. Antimicrobial tolerance and metabolic adaptations in microbial biofilms. Trends Microbiol. 27, 850–863 (2019).

    Article  PubMed  Google Scholar 

  80. Trampari, E. et al. Exposure of Salmonella biofilms to antibiotic concentrations rapidly selects resistance with collateral tradeoffs. NPJ Biofilms Microbiomes 7, 3 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Ahmed, M. N., Porse, A., Sommer, M. O. A., Høiby, N. & Ciofu, O. Evolution of antibiotic resistance in biofilm and planktonic Pseudomonas aeruginosa populations exposed to subinhibitory levels of ciprofloxacin. Antimicrob. Agents Chemother. 62, e00320–18 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Ahmed, M. N. et al. The evolutionary trajectories of P. aeruginosa in biofilm and planktonic growth modes exposed to ciprofloxacin: beyond selection of antibiotic resistance. NPJ Biofilms Microbiomes 6, 28 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Scribner, M. R., Santos-Lopez, A., Marshall, C. W., Deitrick, C. & Cooper, V. S. Parallel evolution of tobramycin resistance across species and environments. mBio 11, e00932-20 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Anderson, A., Kinahan, M. W., Gonzalez, A. H., Udekwu, K. & Hernandez-Vargas, E. A. Invariant set theory for predicting potential failure of antibiotic cycling. Infect. Dis. Model. 10, 897–908 (2025).

    PubMed  PubMed Central  Google Scholar 

  85. Nyhoegen, C. & Uecker, H. Sequential antibiotic therapy in the laboratory and in the patient. J. R. Soc. Interface 20, 20220793 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Udekwu, K. I. & Weiss, H. Pharmacodynamic considerations of collateral sensitivity in design of antibiotic treatment regimen. Drug Des. Dev. Ther. 12, 2249–2257 (2018).

    Article  CAS  Google Scholar 

  87. Nichol, D. et al. Steering evolution with sequential therapy to prevent the emergence of bacterial antibiotic resistance. PLoS Comput. Biol. 11, e1004493 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Jiao, Y. J., Baym, M., Veres, A. & Kishony, R. Population diversity jeopardizes the efficacy of antibiotic cycling. Preprint at bioRxiv https://doi.org/10.1101/082107 (2016).

  89. Laborda, P., Martínez, J. L. & Hernando‐Amado, S. Convergent phenotypic evolution towards fosfomycin collateral sensitivity of Pseudomonas aeruginosa antibiotic‐resistant mutants. Microb. Biotechnol. 15, 613–629 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Hernando-Amado, S. et al. Rapid phenotypic convergence towards collateral sensitivity in clinical isolates of Pseudomonas aeruginosa presenting different genomic backgrounds. Microbiol. Spectr. 0, e02276–22 (2022).

    Google Scholar 

  91. Hernando-Amado, S., Laborda, P. & Martínez, J. L. Tackling antibiotic resistance by inducing transient and robust collateral sensitivity. Nat. Commun. 14, 1723 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Merker, M. et al. Evolutionary approaches to combat antibiotic resistance: opportunities and challenges for precision medicine. Front. Immunol. 11, 1938 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Koch, G. et al. Evolution of resistance to a last-resort antibiotic in Staphylococcus aureus via bacterial competition. Cell 158, 1060–1071 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Svet, L. et al. Competitive interactions facilitate resistance development against antimicrobials. Appl. Environ. Microbiol. 89, e0115523 (2023).

    Article  PubMed  Google Scholar 

  95. De Wit, G., Svet, L., Lories, B. & Steenackers, H. P. Microbial interspecies interactions and their impact on the emergence and spread of antimicrobial resistance. Annu. Rev. Microbiol. 76, 179–192 (2022).

    Article  PubMed  Google Scholar 

  96. Schenk, M. F. et al. Population size mediates the contribution of high-rate and large-benefit mutations to parallel evolution. Nat. Ecol. Evol. 6, 439–447 (2022).

    Article  PubMed  Google Scholar 

  97. Lázár, V. et al. Antibiotic-resistant bacteria show widespread collateral sensitivity to antimicrobial peptides. Nat. Microbiol. 3, 718–731 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Goedseels, M. & Michiels, C. W. Cell envelope modifications generating resistance to hop beta acids and collateral sensitivity to cationic antimicrobials in Listeria monocytogenes. Microorganisms 11, 2024 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Dawan, J., Liao, X., Ding, T. & Ahn, J. Phenotypic and genotypic responses of foodborne pathogens to sublethal concentrations of lactic acid and sodium chloride. Microb. Drug Resist. 30, 332–340 (2024).

    Article  CAS  PubMed  Google Scholar 

  100. Maltas, J., Krasnick, B. & Wood, K. B. Using selection by nonantibiotic stressors to sensitize bacteria to antibiotics. Mol. Biol. Evol. 37, 1394–1406 (2020).

    Article  CAS  PubMed  Google Scholar 

  101. Acton, L. et al. Collateral sensitivity increases the efficacy of a rationally designed bacteriophage combination to control Salmonella enterica. J. Virol. 98, e0147623 (2024).

    Article  PubMed  Google Scholar 

  102. Hasan, M., Dawan, J. & Ahn, J. Assessment of the potential of phage–antibiotic synergy to induce collateral sensitivity in Salmonella Typhimurium. Microb. Pathog. 180, 106134 (2023).

    Article  CAS  PubMed  Google Scholar 

  103. Qin, K. et al. Phage–antibiotic synergy suppresses resistance emergence of Klebsiella pneumoniae by altering the evolutionary fitness. mBio 15, e0139324 (2024).

    Article  PubMed  Google Scholar 

  104. Mu, Y. et al. Leveraging collateral sensitivity to counteract the evolution of bacteriophage resistance in bacteria. mLife 4, 143–154 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Carolus, H. et al. Collateral sensitivity counteracts the evolution of antifungal drug resistance in Candida auris. Nat. Microbiol. 9, 2954–2969 (2024).

    Article  CAS  PubMed  Google Scholar 

  106. Pluchino, K. M., Hall, M. D., Goldsborough, A. S., Callaghan, R. & Gottesman, M. M. Collateral sensitivity as a strategy against cancer multidrug resistance. Drug Resist. Updat. 15, 98–105 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Danisik, N., Yilmaz, K. C. & Acar, A. Identification of collateral sensitivity and evolutionary landscape of chemotherapy-induced drug resistance using cellular barcoding technology. Front. Pharmacol. 14, 1178489 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Zhao, B. et al. Exploiting temporal collateral sensitivity in tumor clonal evolution. Cell 165, 234–246 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Mandt, R. E. K. et al. Diverse evolutionary pathways challenge the use of collateral sensitivity as a strategy to suppress resistance. eLife 12, e85023 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Hsu, H.-C. et al. Structures revealing mechanisms of resistance and collateral sensitivity of Plasmodium falciparum to proteasome inhibitors. Nat. Commun. 14, 8302 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Ross, L. S. et al. Identification of collateral sensitivity to dihydroorotate dehydrogenase inhibitors in Plasmodium falciparum. ACS Infect. Dis. 4, 508–515 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Linkevicius, M., Anderssen, J. M., Sandegren, L. & Andersson, D. I. Fitness of Escherichia coli mutants with reduced susceptibility to tigecycline. J. Antimicrob. Chemother. 71, 1307–1313 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Nicoloff, H. & Andersson, D. I. Lon protease inactivation, or translocation of the lon gene, potentiate bacterial evolution to antibiotic resistance. Mol. Microbiol. 90, 1233–1248 (2013).

    Article  CAS  PubMed  Google Scholar 

  114. Roemhild, R., Linkevicius, M. & Andersson, D. I. Molecular mechanisms of collateral sensitivity to the antibiotic nitrofurantoin. PLoS Biol. 18, e3000612 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

S.K.C. discloses support for the research in this work from Research Foundation—Flanders (grant number 11PKI24N). H.P.S. discloses support from Research Foundation—Flanders ERC Runner Up grant (grant number G0AI624N), Research Foundation—Flanders SBO project (project number S004824N) and Research Foundation—Flanders SRN (project number W000921N).

Author information

Authors and Affiliations

Authors

Contributions

S.K.C. and B.L. designed the manuscript outline. S.K.C. drafted the manuscript and created the figures. S.K.C., B.L. and H.P.S. contributed equally to the conceptualization of ideas and critical revision of the manuscript. All authors reviewed and edited the draft and approved the final version for submission.

Corresponding author

Correspondence to Hans P. Steenackers.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Ecology & Evolution thanks Hinrich Schulenburg and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Casier, S.K., Lories, B. & Steenackers, H.P. Evolutionary drivers of divergent collateral sensitivity responses during antibiotic therapy. Nat Ecol Evol (2025). https://doi.org/10.1038/s41559-025-02831-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41559-025-02831-3

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology