Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Co-crystal engineering of a two-dimensional perovskite phase for perovskite solar modules with improved efficiency and stability

Abstract

The use of two-dimensional perovskite interlayers enables high efficiency in perovskite solar cells and modules but presents challenges for their long-term operational stability. Here we use a co-crystal engineering approach to improve the long-term stability of these devices. We use a neutral molecule, benzoguanamine, as a linker in low-dimensional perovskites, replacing conventional ionic molecules, and form a co-crystal. By applying this co-crystal layer onto the perovskite layer, we achieve power conversion efficiency of 23.4% in small-area solar cells, and 23.1% and 18.5% on solar modules with active areas of 9.0 cm2 and 48 cm2, respectively. The solar modules retain more than 95% and 98% of their initial efficiency after >5,000 h of 1-sun light soaking and >1,000 h of ultraviolet-ray exposure, respectively, at maximum power point conditions. They also retain more than 91% of their initial efficiency after >5,000 h of continuous thermal stress at 85 °C.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Co-crystal perovskite formation versus conventional structures.
Fig. 2: Structural and photophysical characterization of perovskite films with different linkers.
Fig. 3: Analysis of the impact of a 2D perovskite overlayer on the performance and charge dynamics of PSCs.
Fig. 4: Large-area fabrication and enhanced stability of PSMs through co-crystal engineering.
Fig. 5: Stability mechanisms of 3D/2D PSCs: a structural and kinetic analysis.
Fig. 6: Schematic representing the co-crystal 2D perovskite overlayer phase formation mechanism on the DCP layer.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available in the Article and its Supplementary Information. Source data are provided with this paper. These data are available via Zenodo at https://doi.org/10.5281/zenodo.17334221 (ref. 74).

References

  1. Zhang, F. et al. Advances in two-dimensional organic–inorganic hybrid perovskites. Energy Environ. Sci. 13, 1154–1186 (2020).

    Article  Google Scholar 

  2. Becker, M., Klüner, T. & Wark, M. Formation of hybrid ABX3 perovskite compounds for solar cell application: first-principles calculations of effective ionic radii and determination of tolerance factors. Dalton Trans. 46, 3500–3509 (2017).

    Article  Google Scholar 

  3. Li, H. et al. Sensitive and stable 2D perovskite single-crystal X-ray detectors enabled by a supramolecular anchor. Adv. Mater. 32, 2003790 (2020).

    Article  Google Scholar 

  4. Ren, M., Cao, S., Zhao, J., Zou, B. & Zeng, R. Advances and challenges in two-dimensional organic–inorganic hybrid perovskites toward high-performance light-emitting diodes. Nanomicro Lett. 13, 163 (2021).

    Google Scholar 

  5. Kim, E.-B., Akhtar, M. S., Shin, H.-S., Ameen, S. & Nazeeruddin, M. K. A review on two-dimensional (2D) and 2D-3D multidimensional perovskite solar cells: perovskites structures, stability, and photovoltaic performances. J. Photochem. Photobiol. C 48, 100405 (2021).

    Article  Google Scholar 

  6. Soe, C. M. M. et al. Structural and thermodynamic limits of layer thickness in 2D halide perovskites. Proc. Natl Acad. Sci. USA 116, 58–66 (2019).

    Article  Google Scholar 

  7. Ortiz-Cervantes, C., Carmona-Monroy, P. & Solis-Ibarra, D. Two-dimensional halide perovskites in solar cells: 2D or not 2D? ChemSusChem 12, 1560–1575 (2019).

    Article  Google Scholar 

  8. Huang, W., Bu, T., Huang, F. & Cheng, Y.-B. Stabilizing high efficiency perovskite solar cells with 3D-2D heterostructures. Joule 4, 975–979 (2020).

    Article  Google Scholar 

  9. Liu, Y. et al. Ultrahydrophobic 3D/2D fluoroarene bilayer-based water-resistant perovskite solar cells with efficiencies exceeding 22%. Sci. Adv. 5, eaaw2543 (2019).

    Article  Google Scholar 

  10. Cai, Y. et al. Graded 2D/3D (CF3-PEA)2FA0.85MA0.15Pb2I7/FA0.85MA0.15PbI3 heterojunction for stable perovskite solar cell with an efficiency over 23.0%. J. Energy Chem. 65, 480–489 (2022).

    Article  Google Scholar 

  11. Jeong, S. et al. Cyclohexylammonium-based 2D/3D perovskite heterojunction with funnel-like energy band alignment for efficient solar cells (23.91%). Adv. Energy Mater. 11, 2102236 (2021).

    Article  Google Scholar 

  12. Yang, J. et al. A review on improving the quality of perovskite films in perovskite solar cells via the weak forces induced by additives. Appl. Sci. 9, 4393 (2019).

    Article  Google Scholar 

  13. Su, L. et al. Performance enhancement of perovskite solar cells using trimesic acid additive in the two-step solution method. J. Power Sources 426, 11–15 (2019).

    Article  Google Scholar 

  14. Gunes, U. et al. A thienothiophene-based cation treatment allows semitransparent perovskite solar cells with improved efficiency and stability. Adv. Funct. Mater. https://doi.org/10.1002/adfm.202103130 (2021).

  15. Yoo, J. J. et al. An interface stabilized perovskite solar cell with high stabilized efficiency and low voltage loss. Energy Environ. Sci. 12, 2192–2199 (2019).

    Article  Google Scholar 

  16. Zendehdel, M., Yaghoobi Nia, N., Paci, B., Generosi, A. & Di Carlo, A. Zero-waste scalable blade–spin coating as universal approach for layer-by-layer deposition of 3D/2D perovskite films in high-efficiency perovskite solar modules. Sol. RRL https://doi.org/10.1002/solr.202100637 (2021).

  17. Sidhik, S. et al. Deterministic fabrication of 3D/2D perovskite bilayer stacks for durable and efficient solar cells. Science 377, 1425–1430 (2022).

    Article  Google Scholar 

  18. Li, C.-H., Liao, M.-Y., Chen, C.-H. & Chueh, C.-C. Recent progress of anion-based 2D perovskites with different halide substitutions. J. Mater. Chem. C 8, 4294–4302 (2020).

    Article  Google Scholar 

  19. Wu, T., Li, X., Qi, Y., Zhang, Y. & Han, L. Defect passivation for perovskite solar cells: from molecule design to device performance. ChemSusChem 14, 4354–4376 (2021).

    Article  Google Scholar 

  20. Li, D. et al. A review on scaling up perovskite solar cells. Adv. Funct. Mater. 31, 2008621 (2021).

    Article  Google Scholar 

  21. Yaghoobi Nia, N. et al. Beyond 17% stable perovskite solar module via polaron arrangement of tuned polymeric hole transport layer. Nano Energy 82, 105685 (2021).

    Article  Google Scholar 

  22. Yaghoobi Nia, N. et al. Solution-based heteroepitaxial growth of stable mixed cation/anion hybrid perovskite thin film under ambient condition via a scalable crystal engineering approach. Nano Energy 69, 104441 (2020).

    Article  Google Scholar 

  23. Park, N.-G. & Zhu, K. Scalable fabrication and coating methods for perovskite solar cells and solar modules. Nat. Rev. Mater. 5, 333–350 (2020).

    Article  Google Scholar 

  24. Yaghoobi Nia, N. et al. Doping strategy for efficient and stable triple cation hybrid perovskite solar cells and module based on poly(3-hexylthiophene) hole transport layer. Small 15, 1904399 (2019).

    Article  Google Scholar 

  25. Liu, C. et al. Tuning structural isomers of phenylenediammonium to afford efficient and stable perovskite solar cells and modules. Nat. Commun. 12, 6394 (2021).

    Article  Google Scholar 

  26. Bi, E. et al. Efficient perovskite solar cell modules with high stability enabled by iodide diffusion barriers. Joule 3, 2748–2760 (2019).

    Article  Google Scholar 

  27. Liu, Z. et al. A holistic approach to interface stabilization for efficient perovskite solar modules with over 2,000-hour operational stability. Nat. Energy 5, 596–604 (2020).

    Article  Google Scholar 

  28. Christians, J. A. et al. Stability at scale: challenges of module interconnects for perovskite photovoltaics. ACS Energy Lett. 3, 2502–2503 (2018).

    Article  Google Scholar 

  29. Yaghoobi Nia, N. et al. A crystal engineering approach for scalable perovskite solar cells and module fabrication: a full out of glove box procedure. J. Mater. Chem. A 6, 659–671 (2018).

    Article  Google Scholar 

  30. Zhao, L. et al. Redox chemistry dominates the degradation and decomposition of metal halide perovskite optoelectronic devices. ACS Energy Lett. 1, 595–602 (2016).

    Article  Google Scholar 

  31. Yu, P., Zhen, Y., Dong, H. & Hu, W. Crystal engineering of organic optoelectronic materials. Chem 5, 2814–2853 (2019).

    Article  Google Scholar 

  32. Ye, X. et al. 1D versus 2D cocrystals growth via microspacing in-air sublimation. Nat. Commun. 10, 761 (2019).

    Article  Google Scholar 

  33. Wang, Y. et al. in Molecular-Scale Electronics (ed. Guo, X.) 229–262 (Springer, 2019).

  34. Park, K. et al. Preparation of covalent triazine frameworks with imidazolium cations embedded in basic sites and their application for CO2 capture. J. Mater. Chem. A 5, 8576–8582 (2017).

    Article  Google Scholar 

  35. Khattab, S. N. et al. Design and synthesis of new s-triazine polymers and their application as nanoparticulate drug delivery systems. New J. Chem. 40, 9565–9578 (2016).

    Article  Google Scholar 

  36. Habibi, M. H., Zendehdel, M., Barati, K., Harrington, R. W. & Clegg, W. A 1:1 cocrystal of 4-(dimethylamino)benzaldehyde and 6-phenyl-1,3,5-triazine-2,4-diamine. Acta Crystallogr. C 63, o474–o476 (2007).

    Article  Google Scholar 

  37. Jeyanthi, G. & Gnana Sambandam, C. Spectral profiling, structural, molecular docking and ELF elucidation of bioactive molecule benzoguanamine. J. Mol. Struct. 1243, 130879 (2021).

    Article  Google Scholar 

  38. Yao, W., Song, N., Xie, J., Zhao, H. & Li, X. Solubility of acetoguanamine in twelve neat solvents from 283.15 to 323.15 K. J. Chem. Eng. Data 64, 4546–4550 (2019).

    Article  Google Scholar 

  39. Stoumpos, C. C. et al. Ruddlesden–Popper hybrid lead iodide perovskite 2D homologous semiconductors. Chem. Mater. 28, 2852–2867 (2016).

    Article  Google Scholar 

  40. Shibuya, K., Koshimizu, M., Nishikido, F., Saito, H. & Kishimoto, S. Poly[bis(phenethylammonium) [dibromidoplumbate(II)]-di-μ-bromido]]. Acta Crystallogr. E 65, m1323–m1324 (2009).

    Article  Google Scholar 

  41. Bartlett, P. N. et al. Haloplumbate salts as reagents for the non-aqueous electrodeposition of lead. RSC Adv. 6, 73323–73330 (2016).

    Article  Google Scholar 

  42. Lorena, G. S., Hasegawa, H., Takahashi, Y., Harada, J. & Inabe, T. Hole doping of tin bromide and lead bromide organic–inorganic hybrid semiconductors. Chem. Lett. 43, 1535–1537 (2014).

    Article  Google Scholar 

  43. Fu, W. et al. Tailoring the functionality of organic spacer cations for efficient and stable quasi-2D perovskite solar cells. Adv. Funct. Mater. 29, 1900221 (2019).

    Article  Google Scholar 

  44. Li, M.-H. et al. Highly efficient 2D/3D hybrid perovskite solar cells via low-pressure vapor-assisted solution process. Adv. Mater. 30, 1801401 (2018).

    Article  Google Scholar 

  45. Cordero, F. et al. Stability of cubic FAPbI3 from X-ray diffraction, anelastic, and dielectric measurements. J. Phys. Chem. Lett. 10, 2463–2469 (2019).

    Article  Google Scholar 

  46. Cordero, F. et al. Influence of temperature, pressure, and humidity on the stabilities and transition kinetics of the various polymorphs of FAPbI3. J. Phys. Chem. C 124, 22972–22980 (2020).

    Article  Google Scholar 

  47. Liang, C. et al. Ruddlesden-Popper perovskite for stable solar cells. Energy Environ. Mater. 1, 221–231 (2018).

    Article  Google Scholar 

  48. Schlipf, J. et al. Shedding light on the moisture stability of 3D/2D hybrid perovskite heterojunction thin films. ACS Appl. Energy Mater. 2, 1011–1018 (2019).

    Article  Google Scholar 

  49. Li, X. et al. Two-dimensional Dion–Jacobson hybrid lead iodide perovskites with aromatic diammonium cations. J. Am. Chem. Soc. 141, 12880–12890 (2019).

    Article  Google Scholar 

  50. Chen, P. et al. In situ growth of 2D perovskite capping layer for stable and efficient perovskite solar cells. Adv. Funct. Mater. 28, 1706923 (2018).

    Article  Google Scholar 

  51. Lee, M.-S., Park, M., Kim, H. Y. & Park, S.-J. Effects of microporosity and surface chemistry on separation performances of N-containing pitch-based activated carbons for CO2/N2 binary mixture. Sci. Rep. 6, 23224 (2016).

    Article  Google Scholar 

  52. Kumar, S. N., Bouyssoux, G. & Gaillard, F. Electronic and structural characterization of electrochemically synthesized conducting polyaniline from XPS studies. Surf. Interface Anal. 15, 531–536 (1990).

    Article  Google Scholar 

  53. Lin, Y.-P. et al. Self-assembled melamine monolayer on Cu(111). J. Phys. Chem. C 117, 9895–9902 (2013).

    Article  Google Scholar 

  54. Wang, Y. et al. Stitching triple cation perovskite by a mixed anti-solvent process for high performance perovskite solar cells. Nano Energy 39, 616–625 (2017).

    Article  Google Scholar 

  55. Shi, D. et al. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science 347, 519–522 (2015).

    Article  Google Scholar 

  56. Stewart, R. J., Grieco, C., Larsen, A. V., Maier, J. J. & Asbury, J. B. Approaching bulk carrier dynamics in organo-halide perovskite nanocrystalline films by surface passivation. J. Phys. Chem. Lett. 7, 1148–1153 (2016).

    Article  Google Scholar 

  57. Krückemeier, L., Krogmeier, B., Liu, Z., Rau, U. & Kirchartz, T. Understanding transient photoluminescence in halide perovskite layer stacks and solar cells. Adv. Energy Mater. 11, 2003489 (2021).

    Article  Google Scholar 

  58. Guerrero, A. et al. Properties of contact and bulk impedances in hybrid lead halide perovskite solar cells including inductive loop elements. J. Phys. Chem. C 120, 8023–8032 (2016).

    Article  Google Scholar 

  59. Abdulrahim, S. M., Ahmad, Z., Bhadra, J. & Al-Thani, N. J. Long-term stability analysis of 3D and 2D/3D hybrid perovskite solar cells using electrochemical impedance spectroscopy. Molecules 25, 5794 (2020).

    Article  Google Scholar 

  60. Liao, P., Zhao, X., Li, G., Shen, Y. & Wang, M. A new method for fitting current–voltage curves of planar heterojunction perovskite solar cells. Nanomicro Lett. 10, 5 (2018).

    Google Scholar 

  61. Sherkar, T. S. et al. Recombination in perovskite solar cells: significance of grain boundaries, interface traps, and defect Ions. ACS Energy Lett. 2, 1214–1222 (2017).

  62. Khenkin, M. V. et al. Consensus statement for stability assessment and reporting for perovskite photovoltaics based on ISOS procedures. Nat. Energy 5, 35–49 (2020).

    Article  Google Scholar 

  63. Deng, Y., Xiao, Z. & Huang, J. Light-induced self-poling effect on organometal trihalide perovskite solar cells for increased device efficiency and stability. Adv. Energy Mater. 5, 1500721 (2015).

    Article  Google Scholar 

  64. Reinoso, M. Á, Otálora, C. A. & Gordillo, G. Improvement properties of hybrid halide perovskite thin films prepared by sequential evaporation for planar solar cells. Materials 12, 1394 (2019).

    Article  Google Scholar 

  65. Chen, B., Rudd, P. N., Yang, S., Yuan, Y. & Huang, J. Imperfections and their passivation in halide perovskite solar cells. Chem. Soc. Rev. 48, 3842–3867 (2019).

    Article  Google Scholar 

  66. Campos, T. et al. Unraveling the formation mechanism of the 2D/3D perovskite heterostructure for perovskite solar cells using multi-method characterization. J. Phys. Chem. C 126, 13527–13538 (2022).

    Article  Google Scholar 

  67. Sardashti, M. K., Zendehdel, M., Nia, N. Y., Karimian, D. & Sheikhi, M. High efficiency MAPbI3 perovskite solar cell using a pure thin film of polyoxometalate as scaffold layer. ChemSusChem 10, 3773–3779 (2017).

    Article  Google Scholar 

  68. Yaghoobi Nia, N. et al. Analysis of the efficiency losses in hybrid perovskite/PTAA solar cells with different molecular weights: morphology versus kinetics. ACS Appl. Energy Mater. 3, 6853–6859 (2020).

    Article  Google Scholar 

  69. Jiang, Z. GIXSGUI: a MATLAB toolbox for grazing-incidence X-ray scattering data visualization and reduction, and indexing of buried three-dimensional periodic nanostructured films. J. Appl. Crystallogr. 48, 917–926 (2015).

    Article  Google Scholar 

  70. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  Google Scholar 

  71. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  Google Scholar 

  72. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article  Google Scholar 

  73. Monkhorst, H. J. & Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976).

    Article  MathSciNet  Google Scholar 

  74. Yaghoobi Nia, N. Cocrystal engineering of 2D perovskite phase for perovskite solar modules with improved efficiency and stability. Zenodo https://doi.org/10.5281/zenodo.17334221 (2025).

  75. Deng, Y. et al. Defect compensation in formamidinium–caesium perovskites for highly efficient solar mini-modules with improved photostability. Nat. Energy 6, 633–641 (2021).

    Article  Google Scholar 

  76. Zeng, H. et al. Improved performance and stability of perovskite solar modules by regulating interfacial ion diffusion with nonionic cross-linked 1D lead-iodide. Adv. Energy Mater. 12, 2102820 (2022).

    Article  Google Scholar 

  77. Zhang, S. et al. Improved performance and stability of perovskite solar modules by interface modulating with graphene oxide crosslinked CsPbBr3 quantum dots. Energy Environ. Sci. 15, 244–253 (2022).

    Article  Google Scholar 

  78. Yang, Z. et al. Slot-die coating large-area formamidinium-cesium perovskite film for efficient and stable parallel solar module. Sci. Adv. 7, eabg3749 (2021).

    Article  Google Scholar 

  79. Kobayashi, E., Tsuji, R., Martineau, D., Hinsch, A. & Ito, S. Light-induced performance increase of carbon-based perovskite solar module for 20-year stability. Cell Rep. Phys. Sci. 2, 100648 (2021).

    Article  Google Scholar 

  80. Jiang, Y. et al. Negligible-Pb-waste and upscalable perovskite deposition technology for high-operational-stability perovskite solar modules. Adv. Energy Mater. 9, 1803047 (2019).

    Article  Google Scholar 

Download references

Acknowledgements

N.Y.N. gratefully acknowledges the Ministry of University and Research (MUR) for PON/FSE-REACT EU. M.Z. and A.D.C. gratefully acknowledge the funding from the Ministry of University and Research (MUR) with PRIN project CONPER (2022CBBEHN). J.X. and C.L. acknowledge the funding from the United States Department of Energy (US DOE), Office of Fossil Energy and Carbon Management (FECM) (contract number TCF-20-24815) under the Horizon 2020 (ERA-NET ACT 2021, NEXTCCUS project). N.Y.N. acknowledges P. Schouwink (platform leader at EPFL SB ISIC-XRDSAP) for his support for extraction of the GIWAXS results. The computational effort in this work was done utilizing computational resources provided by the Laboratory Computing Research Center (LCRC) at the Argonne National Laboratory.

Author information

Authors and Affiliations

Authors

Contributions

M.Z. and N.Y.N. conceived the idea, methodology and conceptualization and M.Z. and N.Y.N. conducted devices and modules fabrication and optimization processes. N.Y.N. performed the encapsulation of modules for thermal stability and UV exposure tests. N.Y.N. conducted the laser patterning procedures. M.Z. and N.Y.N. fabricated all the samples for PL, XRD, GIWAXS, XPS, SEM, UV–vis absorbance spectroscopy and diffuse reflectance spectroscopy measurements. M.Z. performed the SEM measurements. M.Z. performed the EIS and dark JV measurements and relevant discussion. M.Z. and N.Y.N. performed the PL, UV–vis absorbance spectroscopy and diffuse reflectance spectroscopy measurements and TRPL, TPV and TPC measurements from the cells and fitting the relevant results. M.Z. performed the IV measurements for all devices and modules. M.Z. and N.Y.N. also conducted the XRD analyses of the 3D + 2D and 3D/2D thin films formed on the glass substrates. M.Z. and N.Y.N. performed the stability assessments of the modules under light, UV-ray and thermal stresses. B.P., A.G. and M. Guaragno conducted the X-ray analysis and stability test via X-ray analysis and relevant discussion. E.L. encapsulated the medium-size modules for the light soaking tests. M.D.G. and G.C. performed the XPS analysis and relevant discussion. J.X. and C.L. performed the DFT computations and relevant discussion. M.Z. and N.Y.N. supervised the work. A.D.C. suggested the research topic. M.Z. and N.Y.N. prepared the original draft. M. Grätzel and all the authors contributed to the review and editing of the paper. All authors have read and agreed to the published version of the paper.

Corresponding authors

Correspondence to Narges Yaghoobi Nia, Mahmoud Zendehdel or Aldo Di Carlo.

Ethics declarations

Competing interests

N.Y.N. is president and co-founder of IRITALY Trading Company S.r.l., a company that part of its activity is commercializing perovskite photovoltaics. E.L. is a senior researcher employer of Halocell Europe Srl (formerly known as Greatcell Solar Italia Srl), a company commercializing solar-grade materials. The other authors declare no competing interests.

Peer review

Peer review information

Nature Energy thanks Fei Zhang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–27, Table 1, Notes 1–3 and references.

Reporting Summary

Supplementary Data

Supplementary data.

Source data

Source Data Fig. 4

Source data files of Fig. 4b–h.

Source Data Fig. 3

Source data files of Fig. 3b,c.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yaghoobi Nia, N., Zendehdel, M., Paci, B. et al. Co-crystal engineering of a two-dimensional perovskite phase for perovskite solar modules with improved efficiency and stability. Nat Energy 11, 135–149 (2026). https://doi.org/10.1038/s41560-025-01903-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41560-025-01903-9

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing