Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Emerging opportunities for high-temperature solid-state and gas-cycle heat pumps

Abstract

Industrial-sector decarbonization requires the adoption of energy-efficient heating technologies such as heat pumps. Among these, vapour compression is the most efficient method. However, its refrigerants pose environmental and safety concerns and preclude heat-pump operation above 600 K. Many industrial processes operating above this temperature use fossil fuels or resistive electrical heating, which generate a substantial amount of unused waste heat. It is therefore essential to develop technologies that efficiently recover and pump heat at such high temperatures. In this Review, we highlight the opportunities and challenges for emerging and environmentally friendly high-temperature heat-pump technologies based on solids or gases. These technologies have the potential to deliver heat at temperatures up to 1,600 K. We provide an outlook on potential solutions, applications and scalability and a roadmap for future technological progress.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Statistical data on global energy consumption and waste heat, and illustrative example of a high-temperature heat-pump energy chain.
Fig. 2: The most common thermodynamic cycles of the technologies evaluated in this Review.
Fig. 3: Comparison of the material properties of solid-state heat-pump technologies.
Fig. 4: Overview and comparison of the evaluated technologies.
Fig. 5: Research roadmap for the future development of solid-state and gas-cycle high-temperature heat pumps.
Fig. 6: Illustration of potential applications for solid-state and gas-cycle high-temperature heat pumps.
Fig. 7: Proposed extended classification based on the temperature levels and heat source/sink media used in heat pumps.

Similar content being viewed by others

References

  1. Philibert, C. Renewable Energy for Industry: from Green Energy to Green Materials and Fuels (OECD/IEA, 2017).

  2. Firth, A., Zhang, B. & Yang, A. Quantification of global waste heat and its environmental effects. Appl. Energy 235, 1314–1334 (2019).

    Article  Google Scholar 

  3. Forman, C., Muritala, I. K., Pardemann, R. & Meyer, B. Estimating the global waste heat potential. Renew. Sustain. Energy Rev. 57, 1568–1579 (2016). This study estimates waste heat potential across major end-use sectors, highlighting the critical need for its recovery to improve energy efficiency.

    Article  Google Scholar 

  4. Thiel, G. P. & Stark, A. K. To decarbonize industry, we must decarbonize heat. Joule 5, 531–550 (2021).

    Article  Google Scholar 

  5. Maruf, M. N. I., Morales-España, G., Sijm, J., Helistö, N. & Kiviluoma, J. Classification, potential role, and modeling of power-to-heat and thermal energy storage in energy systems: a review. Sustain. Energy Technol. Assess. 53, 102553 (2022).

    Google Scholar 

  6. Dumont, O. et al. Carnot battery technology: a state-of-the-art review. J. Energy Storage 32, 101756 (2020).

    Article  Google Scholar 

  7. Jiang, J. et al. A review and perspective on industry high-temperature heat pumps. Renew. Sustain. Energy Rev. 161, 112106 (2022).

    Article  Google Scholar 

  8. Arpagaus, C. et al. Integration of high-temperature heat pumps in Swiss industrial processes (HTHP-CH). In Proc. 14th IEA Heat Pump Conf., 0476 (International Energy Agency, 2023).

  9. Mateu-Royo, C., Arpagaus, C., Mota-Babiloni, A., Navarro-Esbrí, J. & Bertsch, S. S. Advanced high temperature heat pump configurations using low GWP refrigerants for industrial waste heat recovery: a comprehensive study. Energy Convers. Manag. 229, 113752 (2021).

    Article  Google Scholar 

  10. McLinden, M. O., Brown, J. S., Brignoli, R., Kazakov, A. F. & Domanski, P. A. Limited options for low-global-warming-potential refrigerants. Nat. Commun. 8, 14476 (2017).

    Article  Google Scholar 

  11. Adamson, K.-M. et al. High-temperature and transcritical heat pump cycles and advancements: a review. Renew. Sustain. Energy Rev. 167, 112798 (2022).

    Article  Google Scholar 

  12. Cudok, F. et al. Absorption heat transformer—state-of-the-art of industrial applications. Renew. Sustain. Energy Rev. 141, 110757 (2021).

    Article  Google Scholar 

  13. Zevenhoven, C.A.P. et al. Performance improvement of an industrial Stirling engine heat pump. In Proc. 33rd Int. Conf. on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems (eds Yokoyama, R. et al.) 1042–1053 (ECOS Organizing Committee, 2020).

  14. Längauer, A. & Adler, B. The Joule cycle realised in a rotation heat pump. In Proc. 14th Gustav Lorentzen Conf., 1022 (International Institute of Refrigeration (IIR), 2020).

  15. Wang, R., Hu, J., Jia, Z., Zhang, L. & Luo, E. Study on the temperature adaptability of free-piston Stirling heat pump. Energy Convers. Manag. 249, 114864 (2021).

    Article  Google Scholar 

  16. Shuailing, L., et al. A review of reverse Brayton air cycle refrigerators. Int. J. Refrig. 150, 200–214 (2023). This article reviews the potential of air as a natural refrigerant in reversed Brayton air cycle systems, highlighting current performance limitations and outlining strategies.

    Article  Google Scholar 

  17. Kikuchi, R., Tsuda, K., Bassem, M. M. & Ueda, Y. Measurement of performance of thermoacoustic heat pump in a −3 to 160 °C temperature range. Jpn. J. Appl. Phys. 54, 117101 (2015).

    Article  Google Scholar 

  18. Swift, G.W. Thermoacoustics (Springer, 2017).

  19. Hu, Y. et al. Thermoacoustic heat pump utilizing medium/low-grade heat sources for domestic building heating. Energy Built Environ. 5, 628–639 (2024).

    Article  Google Scholar 

  20. He, J. et al. Advances in the applications of thermoelectric generators. Appl. Therm. Eng. 236, 121813 (2024).

    Article  Google Scholar 

  21. Tomc, U. et al. Small demonstrator of a thermoelectric heat-pump booster for an ultra-low-temperature district-heating substation. Appl. Energy 361, 122899 (2024).

    Article  Google Scholar 

  22. Kitanovski, A. Energy applications of magnetocaloric materials. Adv. Energy Mater. 10, 1903741 (2020). This review explores the magnetocaloric energy conversion interdisciplinary field for environmentally friendly and efficient thermal systems, detailing material properties, system design, and future research directions in refrigeration and power generation.

    Article  Google Scholar 

  23. Klinar, K., Law, J. Y., Franco, V., Moya, X. & Kitanovski, A. Perspectives and energy applications of magnetocaloric, pyromagnetic, electrocaloric, and pyroelectric materials. Adv. Energy Mater. 14, 2401739 (2024). This source summarizes the state of the art and future guidelines for magnetocaloric, pyromagnetic, electrocaloric and pyroelectric materials and devices.

    Article  Google Scholar 

  24. Torelló, A. & Defay, E. Electrocaloric coolers: a review. Adv. Electron. Mater. 8, 2101031 (2022).

    Article  Google Scholar 

  25. Mañosa, L. & Planes, A. Materials with giant mechanocaloric effects: cooling by strength. Adv. Mater. 29, 1603607 (2017).

    Article  Google Scholar 

  26. Hou, H., Qian, S. & Takeuchi, I. Materials, physics and systems for multicaloric cooling. Nat. Rev. Mater. 7, 633–652 (2022). This paper is an overview of all-caloric-based material and devices.

    Article  Google Scholar 

  27. Silva, D. J., Ventura, J. & Araújo, J. P. Caloric devices: a review on numerical modeling and optimization strategies. Int. J. Energy Res. 45, 18498–18539 (2021).

    Article  Google Scholar 

  28. Johra, H. Performance Overview of Caloric Heat Pumps: Magnetocaloric, Elastocaloric, Electrocaloric and Barocaloric Systems: Update 2024 (Department of the Built Environment, Aalborg University, 2024). This review covers the performance and comparison of all up-to-date caloric prototypes.

  29. Kitanovski, A. et al. Magnetocaloric Energy Conversion (Springer, 2015).

  30. Lloveras, P. Barocaloric Effects in the Solid State: Materials and Methods (IOP Publishing, 2023).

  31. Wang, Y. et al. Towards practical elastocaloric cooling. Commun. Eng. 2, 79 (2023).

    Article  Google Scholar 

  32. Frenzel, J. et al. On the effect of alloy composition on martensite start temperatures and latent heats in Ni–Ti-based shape memory alloys. Acta Mater. 90, 213–231 (2015).

    Article  Google Scholar 

  33. Canadinc, D. et al. Ultra-high temperature multi-component shape memory alloys. Scr. Mater. 158, 83–87 (2019).

    Article  Google Scholar 

  34. Luo, K. Q. et al. Numerical investigation on ultra-high-temperature thermoacoustic Stirling heat pump. In Proc. Int. Stirling Engine Conf. (ed. Saverio Marra, F.) 420–433 (Consiglio Nazionale delle Ricerche, 2024).

  35. Sivagnanapalani, P., Ansari, N. I. & Panda, P. K.Nd2Ti2O7 (NTO) with high Curie temperature (Tc) for high temperature sensor applications. Sens. Int. 2, 100093 (2021).

    Article  Google Scholar 

  36. Shi, X.-L., Zou, J. & Chen, Z.-G. Advanced thermoelectric design: from materials and structures to devices. Chem. Rev. 120, 7399–7515 (2020). This reference provides a comprehensive review of thermoelectric materials and applications.

    Article  Google Scholar 

  37. Yang, Z., Zhuo, Y., Ercang, L. & Yuan, Z. Travelling-wave thermoacoustic high-temperature heat pump for industrial waste heat recovery. Energy 77, 397–402 (2014).

    Article  Google Scholar 

  38. Høeg, A., Løver, K. A. & Vartdal, G. Performance of a high-temperature industrial heat pump using helium as refrigerant. In Proc. High-Temperature Heat Pump Symp. (eds Zühlsdorf, B. et al.) 693–698 (Danish Technological Institute SINTEF, 2024).

  39. Our Heat Pump https://airthium.com/our_heat_pump (Airthium, 2025).

  40. Wang, R. et al. Numerical study on a multi-unit heat-driven double-acting free-piston Stirling heat pump system. Energy Convers. Manag. 297, 117747 (2023).

    Article  Google Scholar 

  41. Xiao, L. et al. Sustainable heat-driven sound cooler with super-high efficiency. Innov. Energy 1, 100027 (2024). This study presents a high-efficiency heat-driven thermoacoustic refrigerator with a bypass configuration that achieves an extremely high COP and cooling power, demonstrating strong potential for eco-friendly air-conditioning and advanced cooling applications.

    Article  Google Scholar 

  42. Zühlsdorf, B., Bühler, F., Bantle, M. & Elmegaard, B. Analysis of technologies and potentials for heat pump-based process heat supply above 150 °C. Energy Convers. Manag. X 2, 100011 (2019).

    Google Scholar 

  43. Pettinari, M. et al. Impact of the regulation strategy on the transient behavior of a Brayton heat pump. Energies 17, 1020 (2024).

    Article  Google Scholar 

  44. Ameen, M. T., Ma, Z., Smallbone, A., Norman, R. & Roskilly, A. P. Demonstration system of pumped heat energy storage (PHES) and its round-trip efficiency. Appl. Energy 333, 120580 (2023).

    Article  Google Scholar 

  45. Fu, C. & Gundersen, T. A novel sensible heat pump scheme for industrial heat recovery. Ind. Eng. Chem. Res. 55, 967–977 (2016).

    Article  Google Scholar 

  46. Mahmoudinezhad, S., Sadi, M., Ghiasirad, H. & Arabkoohsar, A. A comprehensive review on the current technologies and recent developments in high-temperature heat exchangers. Renew. Sustain. Energy Rev. 183, 113467 (2023).

    Article  Google Scholar 

  47. Zhang, Y., Chen, J., He, J. & Wu, C. Comparison on the optimum performances of the irreversible Brayton refrigeration cycles with regeneration and non-regeneration. Appl. Therm. Eng. 27, 401–407 (2007).

    Article  Google Scholar 

  48. Tournier, J.-M. P. & El-Genk, M. S. Properties of noble gases and binary mixtures for closed Brayton cycle applications. Energy Convers. Manag. 49, 469–492 (2008).

    Article  Google Scholar 

  49. Dall’Olio, S. et al. Novel design of a high efficiency multi-bed active magnetic regenerator heat pump. Int. J. Refrig. 132, 243–254 (2021).

    Article  Google Scholar 

  50. Torelló, A. et al. Giant temperature span in electrocaloric regenerator. Science 370, 125–129 (2020).

    Article  Google Scholar 

  51. Zhang, J., Cheng, S. & Sun, Q. Roller-cam-driven compressive elastocaloric device with high cooling power density. Device 3, 100677 (2025).

    Article  Google Scholar 

  52. Qian, K. et al. Highly efficient mechanocaloric cooling using colossal barocaloric plastic crystals. Cell Rep. Phys. Sci. 5, 101981 (2024).

    Article  Google Scholar 

  53. Moya, X., Guo, M. & Mathur, N. D. Developments in caloric measurements, materials, and devices at Calorics 2024. MRS Energy Sustain. 12, 131–135 (2024).

    Article  Google Scholar 

  54. Tomc, U., Nosan, S., Klinar, K. & Kitanovski, A. Towards powerful magnetocaloric devices with static electro-permanent magnets. J. Adv. Res. 45, 157–181 (2023).

    Article  Google Scholar 

  55. Mönch, S. et al. A 99.74% efficient capacitor-charging converter using partial power processing for electrocalorics. IEEE J. Emerg. Sel. Top. Power Electron. 11, 4491–4507 (2023).

    Article  Google Scholar 

  56. Fernández-Yáñez, P., Romero, V., Armas, O. & Cerretti, G. Thermal management of thermoelectric generators for waste energy recovery. Appl. Therm. Eng. 196, 117291 (2021).

    Article  Google Scholar 

  57. Zhang, Q., Deng, K., Wilkens, L., Reith, H. & Nielsch, K. Micro-thermoelectric devices. Nat. Electron. 5, 333–347 (2022).

    Article  Google Scholar 

  58. Chen, W., Shi, X., Zou, J. & Chen, Z. Thermoelectric coolers: progress, challenges, and opportunities. Small Methods 6, e2101235 (2022).

    Article  Google Scholar 

  59. Ramousse, J., Sgorlon, D., Fraisse, G. & Perier-Muzet, M. Analytical optimal design of thermoelectric heat pumps. Appl. Therm. Eng. 82, 48–56 (2015).

    Article  Google Scholar 

  60. Ryu, B. et al. Best thermoelectric efficiency of ever-explored materials. iScience 26, 106494 (2023). This review comprehensively summarizes cutting-edge strategies for enhancing thermoelectric materials and devices.

    Article  Google Scholar 

  61. Merienne, R., Lynn, J., McSweeney, E. & O’Shaughnessy, S. M. Thermal cycling of thermoelectric generators: the effect of heating rate. Appl. Energy 237, 671–681 (2019).

    Article  Google Scholar 

  62. Li, Y., Shi, Y., Wang, X., Luo, D. & Yan, Y. Thermal and electrical contact resistances of thermoelectric generator: experimental study and artificial neural network modelling. Appl. Therm. Eng. 225, 120154 (2023).

    Article  Google Scholar 

  63. Hodes, M. Optimal pellet geometries for thermoelectric power generation. IEEE Trans. Compon. Packag. Technol. 33, 307–318 (2010).

    Article  Google Scholar 

  64. Chi, J. et al. A high-efficiency gas–liquid coupled heat-driven thermoacoustic heat pump. Int. J. Refrig. 155, 296–304 (2023).

    Article  Google Scholar 

  65. Annex 58: High-Temperature Heat Pumps, Task 1—Technologies (IEA, 2023). This is a source for the state-of-the art for high-temperature heat pumps authored by an international research initiative focused on developing and promoting high-temperature heat pump technologies for efficient industrial and commercial heating applications.

  66. Swift, G. W. & Backhaus, S. A resonant, self-pumped, circulating thermoacoustic heat exchanger. J. Acoust. Soc. Am. 116, 2923–2938 (2004).

    Article  Google Scholar 

  67. Rotation Heat Pump https://www.ecop.at/en/applications/#High-temperature_application (ECOP, 2025).

  68. White, M. T., Bianchi, G., Chai, L., Tassou, S. A. & Sayma, A. I. Review of supercritical CO2 technologies and systems for power generation. Appl. Therm. Eng. 185, 116447 (2021).

    Article  Google Scholar 

  69. Tian, Z., Jiang, B., Malik, A. & Zheng, Q. Axial helium compressor for high-temperature gas-cooled reactor: a review. Ann. Nucl. Energy 130, 54–68 (2019).

    Article  Google Scholar 

  70. Klinar, K., Swoboda, T., Muñoz Rojo, M. & Kitanovski, A. Fluidic and mechanical thermal control devices. Adv. Electron. Mater. 7, 2000623 (2021).

    Article  Google Scholar 

  71. Swoboda, T., Klinar, K., Yalamarthy, A. S., Kitanovski, A. & Muñoz Rojo, M. Solid-state thermal control devices. Adv. Electron. Mater. 7, 2000625 (2021).

    Article  Google Scholar 

  72. Kitanovski, A. et al. Method for heat transfer in the embedded structure of a heat regenerator and the design thereof. US patent US2021341232A1 (2024).

  73. Xiao, L. et al. A highly efficient heat-driven thermoacoustic cooling system. Cell Rep. Phys. Sci. 5, 101815 (2024).

    Article  Google Scholar 

  74. Angelino, G. & Invernizzi, C. Prospects for real-gas reversed Brayton cycle heat pumps. Int. J. Refrig. 18, 272–280 (1995).

    Article  Google Scholar 

  75. Singh, B. B. in New Materials and Devices for Thermoelectric Power Generation (ed. Ismail, B. I. A.) Ch. 2 (IntechOpen, 2023).

  76. Elghool, A. et al. A review on heat sink for thermo-electric power generation: classifications and parameters affecting performance. Energy Convers. Manag. 134, 260–277 (2017).

    Article  Google Scholar 

  77. Buchalik, R., Nowak, G. & Nowak, I. Modelling transient states of thermoelectric systems. Appl. Therm. Eng. 219, 119647 (2023).

    Article  Google Scholar 

  78. Backhaus, S. & Swift, G. W. Fabrication and use of parallel plate regenerators in thermoacoustic engines. In Proc. IECEC’01 36th Intersociety Energy Conversion Engineering Conf. (eds Erickson, P. A. & Goswami, D. Y.) 453–458 (IEEE, 2001).

  79. Yang, R., Blanc, N. & Ramon, G. Z. Theoretical performance characteristics of a travelling-wave phase-change thermoacoustic heat pump. Energy Convers. Manag. 254, 115202 (2022).

    Article  Google Scholar 

  80. Yokoyama, H., Omori, Y., Kume, M., Nishikawara, M. & Yanada, H. Simulation of thermoacoustic heat pump effects driven by acoustic radiation in a cavity flow. Int. J. Heat Mass Transf. 185, 122424 (2022).

    Article  Google Scholar 

  81. Yu, J., Zhu, Y., Gu, D. & Lee, C. A thermoacoustic heat pump driven by acoustic waves in a hypersonic boundary layer. Phys. Fluids 34, 011703 (2022).

    Article  Google Scholar 

  82. Backhaus, S. & Swift, G. W. A thermoacoustic Stirling heat engine. Nature 399, 335–338 (1999).

    Article  Google Scholar 

  83. Backhaus, S., Tward, E. & Petach, M. Traveling-wave thermoacoustic electric generator. Appl. Phys. Lett. 85, 1085–1087 (2004).

    Article  Google Scholar 

  84. Gupta, P., Lodato, G. & Scalo, C. Spectral energy cascade in thermoacoustic shock waves. J. Fluid Mech. 831, 358–393 (2017).

    Article  MathSciNet  Google Scholar 

  85. Unnikrishnan, U. & Yang, V. A review of cooling technologies for high temperature rotating components in gas turbine. Propuls. Power Res. 11, 293–310 (2022).

    Article  Google Scholar 

  86. Liu, S. Sm–Co high-temperature permanent magnet materials. Chin. Phys. B 28, 017501 (2019).

    Article  Google Scholar 

  87. El Samad, T., Żabnieńska-Góra, A., Jouhara, H. & Sayma, A. I. A review of compressors for high temperature heat pumps. Therm. Sci. Eng. Prog. 51, 102603 (2024).

  88. Pimm, A. J., Cockerill, T. T. & Gale, W. F. Reducing industrial hydrogen demand through preheating with very high temperature heat pumps. Appl. Energy 347, 121464 (2023).

    Article  Google Scholar 

  89. Krasovskii, V. G., Kapustin, G. I., Glukhov, L. M., Chernikova, E. A. & Kustov, L. M. Dicationic ionic liquids as heat transfer fluids in vacuum. Russ. J. Phys. Chem. A 96, 1465–1473 (2022).

    Article  Google Scholar 

  90. Heinzel, A. et al. Liquid metals as efficient high-temperature heat-transport fluids. Energy Technol. 5, 1026–1036 (2017).

    Article  Google Scholar 

  91. Niedermeier, K. A perspective on high-temperature heat storage using liquid metal as heat transfer fluid. Energy Storage 5, e530 (2023).

    Article  Google Scholar 

  92. Wang, X. et al. Performance improvement overview of the supercritical carbon dioxide Brayton cycle. Processes 11, 2795 (2023).

    Article  Google Scholar 

  93. Slaughter, J., Griffith, L., Czernuszewicz, A. & Pecharsky, V. Scalable and compact magnetocaloric heat pump technology. Appl. Energy 377, 124696 (2025).

    Article  Google Scholar 

  94. Chen, Y., Wang, Y., Sun, W., Qian, S. & Liu, J. A compact elastocaloric refrigerator. Innovation 3, 100205 (2022).

    Google Scholar 

  95. Green, M. A. Refrigeration of superconducting magnets. Part. Accel. 1, 213–221 (1970).

    Google Scholar 

  96. Zimm, C. et al. in Advances in Cryogenic Engineering (ed. Kittel, P.) 1759–1766 (Springer, 1998).

  97. Stern-Taulats, E. et al. Multicaloric materials and effects. MRS Bull. 43, 295–299 (2018).

    Article  Google Scholar 

  98. Wu, D., Hu, B. & Wang, R. Z. Vapor compression heat pumps with pure low-GWP refrigerants. Renew. Sustain. Energy Rev. 138, 110571 (2021).

    Article  Google Scholar 

  99. Arpagaus, C., Bless, F., Uhlmann, M., Schiffmann, J. & Bertsch, S. S. High temperature heat pumps: market overview, state of the art, research status, refrigerants, and application potentials. Energy 152, 985–1010 (2018).

    Article  Google Scholar 

  100. TRL Assessment https://horizoneuropencpportal.eu/store/trl-assessment (European Commission, 2025).

  101. Song, C. et al. Biodiesel production process from microalgae oil by waste heat recovery and process integration. Bioresour. Technol. 193, 192–199 (2015).

    Article  Google Scholar 

Download references

Acknowledgements

A.K. and K.K. acknowledge the support of the Slovenian Research and Innovation Agency for the Limited angle PET system project J7-50229 (D) and research core funding P2-0223. M.M.R. acknowledges national project MXENE2DEVICES (PID2023-149764OA-I00) and the Severo Ochoa Centres of Excellence program through Grant CEX2024-001445-S. E.L., R.Y. and K.L. acknowledge financial support from the NSFC, CAS and MOST of China, which are related to heat-pump technology projects. X.M. acknowledges support from the UK EPSRC grant EP/V042262/1, the ERC starting grant 680032 and the Royal Society. We thank S. Djordjević for his artwork.

Author information

Authors and Affiliations

Authors

Contributions

A.K.: conceptualization, methodology, original draft preparation, writing—reviewing and editing, investigation, resources, visualization, funding acquisition. K.K.: original draft preparation, writing—reviewing and editing, investigation, methodology, visualization, funding acquisition. E.L.: original draft preparation, writing—reviewing and editing, methodology, funding acquisition. M.M.R.: original draft preparation, methodology, writing—reviewing and editing, funding acquisition. V.S.: original draft preparation, writing—reviewing and editing, methodology, funding acquisition. L.B.: original draft preparation, methodology, writing—reviewing and editing, funding acquisition. K.L.: original draft preparation, methodology, writing—reviewing and editing, funding acquisition. R.Y.: original draft preparation, writing—reviewing and editing, methodology, funding acquisition. X.M.: original draft preparation, methodology, writing—reviewing and editing, funding acquisition.

Corresponding authors

Correspondence to Andrej Kitanovski, Ercang Luo, Miguel Muñoz Rojo, Vladimir Soldo or Xavier Moya.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Energy thanks Kyle Gluesenkamp and the other, anonymous, reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Source data

Source Data Fig. 3

The source data that are presented in Fig. 3.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kitanovski, A., Klinar, K., Luo, E. et al. Emerging opportunities for high-temperature solid-state and gas-cycle heat pumps. Nat Energy 10, 1412–1426 (2025). https://doi.org/10.1038/s41560-025-01908-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41560-025-01908-4

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing