Abstract
Industrial-sector decarbonization requires the adoption of energy-efficient heating technologies such as heat pumps. Among these, vapour compression is the most efficient method. However, its refrigerants pose environmental and safety concerns and preclude heat-pump operation above 600 K. Many industrial processes operating above this temperature use fossil fuels or resistive electrical heating, which generate a substantial amount of unused waste heat. It is therefore essential to develop technologies that efficiently recover and pump heat at such high temperatures. In this Review, we highlight the opportunities and challenges for emerging and environmentally friendly high-temperature heat-pump technologies based on solids or gases. These technologies have the potential to deliver heat at temperatures up to 1,600 K. We provide an outlook on potential solutions, applications and scalability and a roadmap for future technological progress.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to the full article PDF.
USD 39.95
Prices may be subject to local taxes which are calculated during checkout







Similar content being viewed by others
References
Philibert, C. Renewable Energy for Industry: from Green Energy to Green Materials and Fuels (OECD/IEA, 2017).
Firth, A., Zhang, B. & Yang, A. Quantification of global waste heat and its environmental effects. Appl. Energy 235, 1314–1334 (2019).
Forman, C., Muritala, I. K., Pardemann, R. & Meyer, B. Estimating the global waste heat potential. Renew. Sustain. Energy Rev. 57, 1568–1579 (2016). This study estimates waste heat potential across major end-use sectors, highlighting the critical need for its recovery to improve energy efficiency.
Thiel, G. P. & Stark, A. K. To decarbonize industry, we must decarbonize heat. Joule 5, 531–550 (2021).
Maruf, M. N. I., Morales-España, G., Sijm, J., Helistö, N. & Kiviluoma, J. Classification, potential role, and modeling of power-to-heat and thermal energy storage in energy systems: a review. Sustain. Energy Technol. Assess. 53, 102553 (2022).
Dumont, O. et al. Carnot battery technology: a state-of-the-art review. J. Energy Storage 32, 101756 (2020).
Jiang, J. et al. A review and perspective on industry high-temperature heat pumps. Renew. Sustain. Energy Rev. 161, 112106 (2022).
Arpagaus, C. et al. Integration of high-temperature heat pumps in Swiss industrial processes (HTHP-CH). In Proc. 14th IEA Heat Pump Conf., 0476 (International Energy Agency, 2023).
Mateu-Royo, C., Arpagaus, C., Mota-Babiloni, A., Navarro-Esbrí, J. & Bertsch, S. S. Advanced high temperature heat pump configurations using low GWP refrigerants for industrial waste heat recovery: a comprehensive study. Energy Convers. Manag. 229, 113752 (2021).
McLinden, M. O., Brown, J. S., Brignoli, R., Kazakov, A. F. & Domanski, P. A. Limited options for low-global-warming-potential refrigerants. Nat. Commun. 8, 14476 (2017).
Adamson, K.-M. et al. High-temperature and transcritical heat pump cycles and advancements: a review. Renew. Sustain. Energy Rev. 167, 112798 (2022).
Cudok, F. et al. Absorption heat transformer—state-of-the-art of industrial applications. Renew. Sustain. Energy Rev. 141, 110757 (2021).
Zevenhoven, C.A.P. et al. Performance improvement of an industrial Stirling engine heat pump. In Proc. 33rd Int. Conf. on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems (eds Yokoyama, R. et al.) 1042–1053 (ECOS Organizing Committee, 2020).
Längauer, A. & Adler, B. The Joule cycle realised in a rotation heat pump. In Proc. 14th Gustav Lorentzen Conf., 1022 (International Institute of Refrigeration (IIR), 2020).
Wang, R., Hu, J., Jia, Z., Zhang, L. & Luo, E. Study on the temperature adaptability of free-piston Stirling heat pump. Energy Convers. Manag. 249, 114864 (2021).
Shuailing, L., et al. A review of reverse Brayton air cycle refrigerators. Int. J. Refrig. 150, 200–214 (2023). This article reviews the potential of air as a natural refrigerant in reversed Brayton air cycle systems, highlighting current performance limitations and outlining strategies.
Kikuchi, R., Tsuda, K., Bassem, M. M. & Ueda, Y. Measurement of performance of thermoacoustic heat pump in a −3 to 160 °C temperature range. Jpn. J. Appl. Phys. 54, 117101 (2015).
Swift, G.W. Thermoacoustics (Springer, 2017).
Hu, Y. et al. Thermoacoustic heat pump utilizing medium/low-grade heat sources for domestic building heating. Energy Built Environ. 5, 628–639 (2024).
He, J. et al. Advances in the applications of thermoelectric generators. Appl. Therm. Eng. 236, 121813 (2024).
Tomc, U. et al. Small demonstrator of a thermoelectric heat-pump booster for an ultra-low-temperature district-heating substation. Appl. Energy 361, 122899 (2024).
Kitanovski, A. Energy applications of magnetocaloric materials. Adv. Energy Mater. 10, 1903741 (2020). This review explores the magnetocaloric energy conversion interdisciplinary field for environmentally friendly and efficient thermal systems, detailing material properties, system design, and future research directions in refrigeration and power generation.
Klinar, K., Law, J. Y., Franco, V., Moya, X. & Kitanovski, A. Perspectives and energy applications of magnetocaloric, pyromagnetic, electrocaloric, and pyroelectric materials. Adv. Energy Mater. 14, 2401739 (2024). This source summarizes the state of the art and future guidelines for magnetocaloric, pyromagnetic, electrocaloric and pyroelectric materials and devices.
Torelló, A. & Defay, E. Electrocaloric coolers: a review. Adv. Electron. Mater. 8, 2101031 (2022).
Mañosa, L. & Planes, A. Materials with giant mechanocaloric effects: cooling by strength. Adv. Mater. 29, 1603607 (2017).
Hou, H., Qian, S. & Takeuchi, I. Materials, physics and systems for multicaloric cooling. Nat. Rev. Mater. 7, 633–652 (2022). This paper is an overview of all-caloric-based material and devices.
Silva, D. J., Ventura, J. & Araújo, J. P. Caloric devices: a review on numerical modeling and optimization strategies. Int. J. Energy Res. 45, 18498–18539 (2021).
Johra, H. Performance Overview of Caloric Heat Pumps: Magnetocaloric, Elastocaloric, Electrocaloric and Barocaloric Systems: Update 2024 (Department of the Built Environment, Aalborg University, 2024). This review covers the performance and comparison of all up-to-date caloric prototypes.
Kitanovski, A. et al. Magnetocaloric Energy Conversion (Springer, 2015).
Lloveras, P. Barocaloric Effects in the Solid State: Materials and Methods (IOP Publishing, 2023).
Wang, Y. et al. Towards practical elastocaloric cooling. Commun. Eng. 2, 79 (2023).
Frenzel, J. et al. On the effect of alloy composition on martensite start temperatures and latent heats in Ni–Ti-based shape memory alloys. Acta Mater. 90, 213–231 (2015).
Canadinc, D. et al. Ultra-high temperature multi-component shape memory alloys. Scr. Mater. 158, 83–87 (2019).
Luo, K. Q. et al. Numerical investigation on ultra-high-temperature thermoacoustic Stirling heat pump. In Proc. Int. Stirling Engine Conf. (ed. Saverio Marra, F.) 420–433 (Consiglio Nazionale delle Ricerche, 2024).
Sivagnanapalani, P., Ansari, N. I. & Panda, P. K.Nd2Ti2O7 (NTO) with high Curie temperature (Tc) for high temperature sensor applications. Sens. Int. 2, 100093 (2021).
Shi, X.-L., Zou, J. & Chen, Z.-G. Advanced thermoelectric design: from materials and structures to devices. Chem. Rev. 120, 7399–7515 (2020). This reference provides a comprehensive review of thermoelectric materials and applications.
Yang, Z., Zhuo, Y., Ercang, L. & Yuan, Z. Travelling-wave thermoacoustic high-temperature heat pump for industrial waste heat recovery. Energy 77, 397–402 (2014).
Høeg, A., Løver, K. A. & Vartdal, G. Performance of a high-temperature industrial heat pump using helium as refrigerant. In Proc. High-Temperature Heat Pump Symp. (eds Zühlsdorf, B. et al.) 693–698 (Danish Technological Institute SINTEF, 2024).
Our Heat Pump https://airthium.com/our_heat_pump (Airthium, 2025).
Wang, R. et al. Numerical study on a multi-unit heat-driven double-acting free-piston Stirling heat pump system. Energy Convers. Manag. 297, 117747 (2023).
Xiao, L. et al. Sustainable heat-driven sound cooler with super-high efficiency. Innov. Energy 1, 100027 (2024). This study presents a high-efficiency heat-driven thermoacoustic refrigerator with a bypass configuration that achieves an extremely high COP and cooling power, demonstrating strong potential for eco-friendly air-conditioning and advanced cooling applications.
Zühlsdorf, B., Bühler, F., Bantle, M. & Elmegaard, B. Analysis of technologies and potentials for heat pump-based process heat supply above 150 °C. Energy Convers. Manag. X 2, 100011 (2019).
Pettinari, M. et al. Impact of the regulation strategy on the transient behavior of a Brayton heat pump. Energies 17, 1020 (2024).
Ameen, M. T., Ma, Z., Smallbone, A., Norman, R. & Roskilly, A. P. Demonstration system of pumped heat energy storage (PHES) and its round-trip efficiency. Appl. Energy 333, 120580 (2023).
Fu, C. & Gundersen, T. A novel sensible heat pump scheme for industrial heat recovery. Ind. Eng. Chem. Res. 55, 967–977 (2016).
Mahmoudinezhad, S., Sadi, M., Ghiasirad, H. & Arabkoohsar, A. A comprehensive review on the current technologies and recent developments in high-temperature heat exchangers. Renew. Sustain. Energy Rev. 183, 113467 (2023).
Zhang, Y., Chen, J., He, J. & Wu, C. Comparison on the optimum performances of the irreversible Brayton refrigeration cycles with regeneration and non-regeneration. Appl. Therm. Eng. 27, 401–407 (2007).
Tournier, J.-M. P. & El-Genk, M. S. Properties of noble gases and binary mixtures for closed Brayton cycle applications. Energy Convers. Manag. 49, 469–492 (2008).
Dall’Olio, S. et al. Novel design of a high efficiency multi-bed active magnetic regenerator heat pump. Int. J. Refrig. 132, 243–254 (2021).
Torelló, A. et al. Giant temperature span in electrocaloric regenerator. Science 370, 125–129 (2020).
Zhang, J., Cheng, S. & Sun, Q. Roller-cam-driven compressive elastocaloric device with high cooling power density. Device 3, 100677 (2025).
Qian, K. et al. Highly efficient mechanocaloric cooling using colossal barocaloric plastic crystals. Cell Rep. Phys. Sci. 5, 101981 (2024).
Moya, X., Guo, M. & Mathur, N. D. Developments in caloric measurements, materials, and devices at Calorics 2024. MRS Energy Sustain. 12, 131–135 (2024).
Tomc, U., Nosan, S., Klinar, K. & Kitanovski, A. Towards powerful magnetocaloric devices with static electro-permanent magnets. J. Adv. Res. 45, 157–181 (2023).
Mönch, S. et al. A 99.74% efficient capacitor-charging converter using partial power processing for electrocalorics. IEEE J. Emerg. Sel. Top. Power Electron. 11, 4491–4507 (2023).
Fernández-Yáñez, P., Romero, V., Armas, O. & Cerretti, G. Thermal management of thermoelectric generators for waste energy recovery. Appl. Therm. Eng. 196, 117291 (2021).
Zhang, Q., Deng, K., Wilkens, L., Reith, H. & Nielsch, K. Micro-thermoelectric devices. Nat. Electron. 5, 333–347 (2022).
Chen, W., Shi, X., Zou, J. & Chen, Z. Thermoelectric coolers: progress, challenges, and opportunities. Small Methods 6, e2101235 (2022).
Ramousse, J., Sgorlon, D., Fraisse, G. & Perier-Muzet, M. Analytical optimal design of thermoelectric heat pumps. Appl. Therm. Eng. 82, 48–56 (2015).
Ryu, B. et al. Best thermoelectric efficiency of ever-explored materials. iScience 26, 106494 (2023). This review comprehensively summarizes cutting-edge strategies for enhancing thermoelectric materials and devices.
Merienne, R., Lynn, J., McSweeney, E. & O’Shaughnessy, S. M. Thermal cycling of thermoelectric generators: the effect of heating rate. Appl. Energy 237, 671–681 (2019).
Li, Y., Shi, Y., Wang, X., Luo, D. & Yan, Y. Thermal and electrical contact resistances of thermoelectric generator: experimental study and artificial neural network modelling. Appl. Therm. Eng. 225, 120154 (2023).
Hodes, M. Optimal pellet geometries for thermoelectric power generation. IEEE Trans. Compon. Packag. Technol. 33, 307–318 (2010).
Chi, J. et al. A high-efficiency gas–liquid coupled heat-driven thermoacoustic heat pump. Int. J. Refrig. 155, 296–304 (2023).
Annex 58: High-Temperature Heat Pumps, Task 1—Technologies (IEA, 2023). This is a source for the state-of-the art for high-temperature heat pumps authored by an international research initiative focused on developing and promoting high-temperature heat pump technologies for efficient industrial and commercial heating applications.
Swift, G. W. & Backhaus, S. A resonant, self-pumped, circulating thermoacoustic heat exchanger. J. Acoust. Soc. Am. 116, 2923–2938 (2004).
Rotation Heat Pump https://www.ecop.at/en/applications/#High-temperature_application (ECOP, 2025).
White, M. T., Bianchi, G., Chai, L., Tassou, S. A. & Sayma, A. I. Review of supercritical CO2 technologies and systems for power generation. Appl. Therm. Eng. 185, 116447 (2021).
Tian, Z., Jiang, B., Malik, A. & Zheng, Q. Axial helium compressor for high-temperature gas-cooled reactor: a review. Ann. Nucl. Energy 130, 54–68 (2019).
Klinar, K., Swoboda, T., Muñoz Rojo, M. & Kitanovski, A. Fluidic and mechanical thermal control devices. Adv. Electron. Mater. 7, 2000623 (2021).
Swoboda, T., Klinar, K., Yalamarthy, A. S., Kitanovski, A. & Muñoz Rojo, M. Solid-state thermal control devices. Adv. Electron. Mater. 7, 2000625 (2021).
Kitanovski, A. et al. Method for heat transfer in the embedded structure of a heat regenerator and the design thereof. US patent US2021341232A1 (2024).
Xiao, L. et al. A highly efficient heat-driven thermoacoustic cooling system. Cell Rep. Phys. Sci. 5, 101815 (2024).
Angelino, G. & Invernizzi, C. Prospects for real-gas reversed Brayton cycle heat pumps. Int. J. Refrig. 18, 272–280 (1995).
Singh, B. B. in New Materials and Devices for Thermoelectric Power Generation (ed. Ismail, B. I. A.) Ch. 2 (IntechOpen, 2023).
Elghool, A. et al. A review on heat sink for thermo-electric power generation: classifications and parameters affecting performance. Energy Convers. Manag. 134, 260–277 (2017).
Buchalik, R., Nowak, G. & Nowak, I. Modelling transient states of thermoelectric systems. Appl. Therm. Eng. 219, 119647 (2023).
Backhaus, S. & Swift, G. W. Fabrication and use of parallel plate regenerators in thermoacoustic engines. In Proc. IECEC’01 36th Intersociety Energy Conversion Engineering Conf. (eds Erickson, P. A. & Goswami, D. Y.) 453–458 (IEEE, 2001).
Yang, R., Blanc, N. & Ramon, G. Z. Theoretical performance characteristics of a travelling-wave phase-change thermoacoustic heat pump. Energy Convers. Manag. 254, 115202 (2022).
Yokoyama, H., Omori, Y., Kume, M., Nishikawara, M. & Yanada, H. Simulation of thermoacoustic heat pump effects driven by acoustic radiation in a cavity flow. Int. J. Heat Mass Transf. 185, 122424 (2022).
Yu, J., Zhu, Y., Gu, D. & Lee, C. A thermoacoustic heat pump driven by acoustic waves in a hypersonic boundary layer. Phys. Fluids 34, 011703 (2022).
Backhaus, S. & Swift, G. W. A thermoacoustic Stirling heat engine. Nature 399, 335–338 (1999).
Backhaus, S., Tward, E. & Petach, M. Traveling-wave thermoacoustic electric generator. Appl. Phys. Lett. 85, 1085–1087 (2004).
Gupta, P., Lodato, G. & Scalo, C. Spectral energy cascade in thermoacoustic shock waves. J. Fluid Mech. 831, 358–393 (2017).
Unnikrishnan, U. & Yang, V. A review of cooling technologies for high temperature rotating components in gas turbine. Propuls. Power Res. 11, 293–310 (2022).
Liu, S. Sm–Co high-temperature permanent magnet materials. Chin. Phys. B 28, 017501 (2019).
El Samad, T., Żabnieńska-Góra, A., Jouhara, H. & Sayma, A. I. A review of compressors for high temperature heat pumps. Therm. Sci. Eng. Prog. 51, 102603 (2024).
Pimm, A. J., Cockerill, T. T. & Gale, W. F. Reducing industrial hydrogen demand through preheating with very high temperature heat pumps. Appl. Energy 347, 121464 (2023).
Krasovskii, V. G., Kapustin, G. I., Glukhov, L. M., Chernikova, E. A. & Kustov, L. M. Dicationic ionic liquids as heat transfer fluids in vacuum. Russ. J. Phys. Chem. A 96, 1465–1473 (2022).
Heinzel, A. et al. Liquid metals as efficient high-temperature heat-transport fluids. Energy Technol. 5, 1026–1036 (2017).
Niedermeier, K. A perspective on high-temperature heat storage using liquid metal as heat transfer fluid. Energy Storage 5, e530 (2023).
Wang, X. et al. Performance improvement overview of the supercritical carbon dioxide Brayton cycle. Processes 11, 2795 (2023).
Slaughter, J., Griffith, L., Czernuszewicz, A. & Pecharsky, V. Scalable and compact magnetocaloric heat pump technology. Appl. Energy 377, 124696 (2025).
Chen, Y., Wang, Y., Sun, W., Qian, S. & Liu, J. A compact elastocaloric refrigerator. Innovation 3, 100205 (2022).
Green, M. A. Refrigeration of superconducting magnets. Part. Accel. 1, 213–221 (1970).
Zimm, C. et al. in Advances in Cryogenic Engineering (ed. Kittel, P.) 1759–1766 (Springer, 1998).
Stern-Taulats, E. et al. Multicaloric materials and effects. MRS Bull. 43, 295–299 (2018).
Wu, D., Hu, B. & Wang, R. Z. Vapor compression heat pumps with pure low-GWP refrigerants. Renew. Sustain. Energy Rev. 138, 110571 (2021).
Arpagaus, C., Bless, F., Uhlmann, M., Schiffmann, J. & Bertsch, S. S. High temperature heat pumps: market overview, state of the art, research status, refrigerants, and application potentials. Energy 152, 985–1010 (2018).
TRL Assessment https://horizoneuropencpportal.eu/store/trl-assessment (European Commission, 2025).
Song, C. et al. Biodiesel production process from microalgae oil by waste heat recovery and process integration. Bioresour. Technol. 193, 192–199 (2015).
Acknowledgements
A.K. and K.K. acknowledge the support of the Slovenian Research and Innovation Agency for the Limited angle PET system project J7-50229 (D) and research core funding P2-0223. M.M.R. acknowledges national project MXENE2DEVICES (PID2023-149764OA-I00) and the Severo Ochoa Centres of Excellence program through Grant CEX2024-001445-S. E.L., R.Y. and K.L. acknowledge financial support from the NSFC, CAS and MOST of China, which are related to heat-pump technology projects. X.M. acknowledges support from the UK EPSRC grant EP/V042262/1, the ERC starting grant 680032 and the Royal Society. We thank S. Djordjević for his artwork.
Author information
Authors and Affiliations
Contributions
A.K.: conceptualization, methodology, original draft preparation, writing—reviewing and editing, investigation, resources, visualization, funding acquisition. K.K.: original draft preparation, writing—reviewing and editing, investigation, methodology, visualization, funding acquisition. E.L.: original draft preparation, writing—reviewing and editing, methodology, funding acquisition. M.M.R.: original draft preparation, methodology, writing—reviewing and editing, funding acquisition. V.S.: original draft preparation, writing—reviewing and editing, methodology, funding acquisition. L.B.: original draft preparation, methodology, writing—reviewing and editing, funding acquisition. K.L.: original draft preparation, methodology, writing—reviewing and editing, funding acquisition. R.Y.: original draft preparation, writing—reviewing and editing, methodology, funding acquisition. X.M.: original draft preparation, methodology, writing—reviewing and editing, funding acquisition.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Energy thanks Kyle Gluesenkamp and the other, anonymous, reviewers for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Source data
Source Data Fig. 3
The source data that are presented in Fig. 3.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Kitanovski, A., Klinar, K., Luo, E. et al. Emerging opportunities for high-temperature solid-state and gas-cycle heat pumps. Nat Energy 10, 1412–1426 (2025). https://doi.org/10.1038/s41560-025-01908-4
Received:
Accepted:
Published:
Version of record:
Issue date:
DOI: https://doi.org/10.1038/s41560-025-01908-4


