Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Atmospheric-pressure ammonia synthesis on AuRu catalysts enabled by plasmon-controlled hydrogenation and nitrogen-species desorption

Abstract

The Haber–Bosch process for ammonia synthesis contributes up to ~3% of global greenhouse gas emissions. Plasmonic catalysts strongly concentrate light and can alter the reaction intermediates via out-of-equilibrium processes, providing the potential for an alternative, less-energy-intensive pathway to synthesize ammonia. Here we show that gold-ruthenium (AuRu) bimetallic nanoparticles can synthesize ammonia at room temperature and pressure using visible light. We create AuRu alloys with varying compositions and achieve ammonia production rates of ~60 μmol per gram of catalyst bed per hour. In situ infrared spectroscopy reveals that light accelerates the hydrogenation of nitrogen intermediates compared to conventional thermal catalysis. Through computational modelling, we demonstrate that photo-excited electrons enable associative hydrogenation pathways for nitrogen activation rather than direct nitrogen–nitrogen bond breaking. This light-assisted mechanism requires both hydrogen and light working together to overcome the nitrogen activation barrier, mimicking how biological enzymes produce ammonia naturally and providing fundamental insights for developing sustainable, energy-efficient chemical synthesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic of light-driven ammonia synthesis, atomic-resolution high-angle annular dark-field scanning transmission electron microscopy images and energy-dispersive X-ray mapping of AuRu photocatalysts.
Fig. 2: Optical properties of AuRu photocatalysts and elementary surface steps for ammonia synthesis.
Fig. 3: Photocatalytic reactivities and hot-carrier cross sections.
Fig. 4: In situ DRIFTS.
Fig. 5: Quantum mechanical simulations for reaction mechanisms.

Similar content being viewed by others

Data availability

The authors declare that the data supporting the findings of this study are available within the paper and its Supplementary Information files. Source data are available via Zenodo at https://doi.org/10.5281/zenodo.14291695 (ref. 54). Source data are provided with this paper.

Code availability

Matlab codes, Lumerical FDTD files and the scripts for hot-carrier generation are available via Zenodo at https://doi.org/10.5281/zenodo.14291695 (ref. 54).

References

  1. Erisman, J. W., Sutton, M. A., Galloway, J., Klimont, Z. & Winiwarter, W. How a century of ammonia synthesis changed the world. Nat. Geosci. 1, 636 (2008).

    Article  Google Scholar 

  2. Miao, B., Zhang, L., Wu, S. & Chan, S. H. The economics of power generation and energy storage via solid oxide cell and ammonia. Int. J. Hydrogen Energy 47, 26827–26841 (2022).

    Article  Google Scholar 

  3. Zhou, L. et al. Quantifying hot carrier and thermal contributions in plasmonic photocatalysis. Science 362, 69–72 (2018).

    Article  Google Scholar 

  4. Smith, C., Hill, A. K. & Torrente-Murciano, L. Current and future role of Haber–Bosch ammonia in a carbon-free energy landscape. Energy Environ. Sci. 13, 331–344 (2020).

    Article  Google Scholar 

  5. Yuan, L., Bourgeois, B. B., Carlin, C. C., da Jornada, F. H. & Dionne, J. A. Sustainable chemistry with plasmonic photocatalysts. Nanophotonics 12, 2745–2762 (2023).

    Article  Google Scholar 

  6. Neugebauer, J. & Scheffler, M. Adsorbate-substrate and adsorbate-adsorbate interactions of Na and K adlayers on Al(111). Phys. Rev. B 46, 16067–16080 (1992).

    Article  Google Scholar 

  7. Hu, C. et al. Surface plasmon enabling nitrogen fixation in pure water through a dissociative mechanism under mild conditions. J. Am. Chem. Soc. 141, 7807–7814 (2019).

    Article  Google Scholar 

  8. Mao, C., Yu, L., Li, J., Zhao, J. & Zhang, L. Energy-confined solar thermal ammonia synthesis with K/Ru/TiO2-xHx. Appl. Catal. B 224, 612–620 (2018).

    Article  Google Scholar 

  9. Mao, C. et al. Beyond the thermal equilibrium limit of ammonia synthesis with dual temperature zone catalyst powered by solar light. Chem 5, 2702–2717 (2019).

    Article  Google Scholar 

  10. Li, X., Zhang, X., Everitt, H. O. & Liu, J. Light-induced thermal gradients in ruthenium catalysts significantly enhance ammonia production. Nano Lett. 19, 1706–1711 (2019).

    Article  Google Scholar 

  11. Yang, J. et al. High-efficiency “working-in-tandem” nitrogen photofixation achieved by assembling plasmonic gold nanocrystals on ultrathin titania nanosheets. J. Am. Chem. Soc. 140, 8497–8508 (2018).

    Article  Google Scholar 

  12. Aslam, U., Rao, V. G., Chavez, S. & Linic, S. Catalytic conversion of solar to chemical energy on plasmonic metal nanostructures. Nat. Catal. 1, 656–665 (2018).

    Article  Google Scholar 

  13. Zhou, L. A. et al. Light-driven methane dry reforming with single atomic site antenna-reactor plasmonic photocatalysts. Nat. Energy 5, 61–70 (2020).

    Article  Google Scholar 

  14. Zhang, Z.-Y. et al. Photo-enhanced dry reforming of methane over Pt-Au/P25 composite catalyst by coupling plasmonic effect. J. Catal. 413, 829–842 (2022).

    Article  Google Scholar 

  15. Wang, J., Heo, J., Chen, C., Wilson, A. J. & Jain, P. K. Ammonia oxidation enhanced by photopotential generated by plasmonic excitation of a bimetallic electrocatalyst. Angew. Chem. Int. Ed. 59, 18430–18434 (2020).

    Article  Google Scholar 

  16. Jiang, W. et al. Active site engineering on plasmonic nanostructures for efficient photocatalysis. ACS Nano 17, 4193–4229 (2023).

    Article  Google Scholar 

  17. Wang, Y. et al. In situ investigation of ultrafast dynamics of hot electron-driven photocatalysis in plasmon-resonant grating structures. J. Am. Chem. Soc. 144, 3517–3526 (2022).

    Article  Google Scholar 

  18. Hou, T. et al. Porous CuFe for plasmon-assisted N2 photofixation. ACS Energy Lett. 5, 2444–2451 (2020).

    Article  Google Scholar 

  19. Puértolas, B., Comesaña-Hermo, M., Besteiro, L. V., Vázquez-González, M. & Correa-Duarte, M. A. Challenges and opportunities for renewable ammonia production via plasmon-assisted photocatalysis. Adv. Energy Mater. 12, 2103909 (2022).

    Article  Google Scholar 

  20. Zhang, Q. et al. Selective control of fcc and hcp crystal structures in Au–Ru solid-solution alloy nanoparticles. Nat. Comm. 9, 510 (2018).

    Article  Google Scholar 

  21. Zhang, Q. et al. Solid-solution alloy nanoparticles of a combination of immiscible Au and Ru with a large gap of reduction potential and their enhanced oxygen evolution reaction performance. Chem. Sci. 10, 5133–5137 (2019).

    Article  Google Scholar 

  22. García-García, F. R., Guerrero-Ruiz, A. & Rodríguez-Ramos, I. Role of B5-type sites in Ru catalysts used for the NH3 decomposition reaction. Top. Catal. 52, 758–764 (2009).

    Article  Google Scholar 

  23. Peng, S., Meng, A. C., Braun, M. R., Marshall, A. F. & McIntyre, P. C. Plasmons and inter-band transitions of hexagonal close packed gold nanoparticles. Appl. Phys. Lett. 115, 051107 (2019).

    Article  Google Scholar 

  24. Ageev, V. N. Desorption induced by electronic-transitions. Prog. Surf. Sci. 47, 55–204 (1994).

    Article  Google Scholar 

  25. Linic, S., Aslam, U., Boerigter, C. & Morabito, M. Photochemical transformations on plasmonic metal nanoparticles. Nat. Mater. 14, 567–576 (2015).

    Article  Google Scholar 

  26. Bourgeois, B. et al. Linking atomic and reactor scale plasmon photocatalysis in acetylene hydrogenation with optically coupled ETEM. Microsc. Microanal. 29, 1298–1299 (2023).

    Article  Google Scholar 

  27. Dionne, J. A. et al. Multicomponent alloyed plasmonic photocatalysis. US Patent Application US 2023/0364597 A1, United States, 2023.

  28. Yuan, L. et al. Morphology-dependent reactivity of a plasmonic photocatalyst. ACS Nano 14, 12054–12063 (2020).

    Article  Google Scholar 

  29. Yuan, Y. et al. Earth-abundant photocatalyst for H2 generation from NH3 with light-emitting diode illumination. Science 378, 889–893 (2022).

    Article  Google Scholar 

  30. Besteiro, L. V., Kong, X. T., Wang, Z. M., Hartland, G. & Govorov, A. O. Understanding hot-electron generation and plasmon relaxation in metal nanocrystals: quantum and classical mechanisms. ACS Photonics 4, 2759–2781 (2017).

    Article  Google Scholar 

  31. Brown, A. M., Sundararaman, R., Narang, P., Goddard, W. A. 3rd & Atwater, H. A. Nonradiative plasmon decay and hot carrier dynamics: effects of phonons, surfaces, and geometry. ACS Nano 10, 957–966 (2016).

    Article  Google Scholar 

  32. Solovyev, I. V. & Imada, M. Screening of Coulomb interactions in transition metals. Phys. Rev. B 71, 045103 (2005).

    Article  Google Scholar 

  33. Sayan, Ş, Kantcheva, M., Suzer, S. & Uner, D. O. FTIR characterization of Ru/SiO2 catalyst for ammonia synthesis. J. Mol. Struct. 480-481, 241–245 (1999).

    Article  Google Scholar 

  34. Mehta, P. et al. Overcoming ammonia synthesis scaling relations with plasma-enabled catalysis. Nat. Catal. 1, 269–275 (2018).

    Article  Google Scholar 

  35. Vojvodic, A. et al. Exploring the limits: a low-pressure, low-temperature Haber–Bosch process. Chem. Phys. Lett. 598, 108–112 (2014).

    Article  Google Scholar 

  36. Fang, H. et al. Challenges and opportunities of Ru-based catalysts toward the synthesis and utilization of ammonia. ACS Catal. 12, 3938–3954 (2022).

    Article  Google Scholar 

  37. Ohki, Y. et al. Nitrogen reduction by the Fe sites of synthetic [Mo3S4Fe] cubes. Nature 607, 86–90 (2022).

    Article  Google Scholar 

  38. Vegge, T. & Cheng, P. Ammonia synthesis by ternary ruthenium complex hydrides. Nat. Catal. 4, 989–990 (2021).

    Article  Google Scholar 

  39. Zheng, J. et al. Efficient non-dissociative activation of dinitrogen to ammonia over lithium-promoted ruthenium nanoparticles at low pressure. Angew. Chem. Int. Ed. 58, 17335–17341 (2019).

    Article  Google Scholar 

  40. Shetty, S., Jansen, A. P. J. & van Santen, R. A. Active sites for N2 dissociation on ruthenium. J. Phys. Chem. C. 112, 17768–17771 (2008).

    Article  Google Scholar 

  41. Threatt, S. D. & Rees, D. C. Biological nitrogen fixation in theory, practice, and reality: a perspective on the molybdenum nitrogenase system. FEBS Lett. 597, 45–58 (2023).

    Article  Google Scholar 

  42. Vader, D. T., Viskanta, R. & Incropera, F. P. Design and testing of a high-temperature emissometer for porous and particulate dielectrics. Rev. Sci. Instrum. 57, 87–93 (1986).

    Article  Google Scholar 

  43. Lou, M. et al. Direct H2S decomposition by plasmonic photocatalysis: efficient remediation plus sustainable hydrogen production. ACS Energy Lett. 7, 3666–3674 (2022).

    Article  Google Scholar 

  44. Robatjazi, H. et al. Plasmon-driven carbon–fluorine (C(sp3)–F) bond activation with mechanistic insights into hot-carrier-mediated pathways. Nat. Catal. 3, 564–573 (2020).

    Article  Google Scholar 

  45. Zhou, L. et al. Hot carrier multiplication in plasmonic photocatalysis. Proc. Natl Acad. Sci. USA 118, e2022109118 (2021).

    Article  Google Scholar 

  46. Zhao, Y. et al. Ammonia detection methods in photocatalytic and electrocatalytic experiments: how to improve the reliability of NH3 production rates?. Adv. Sci. 6, 1802109 (2019).

    Article  Google Scholar 

  47. Zhang, C. et al. Atomic molybdenum for synthesis of ammonia with 50% Faradic efficiency. Small 18, e2106327 (2022).

    Article  Google Scholar 

  48. Qiu, W. et al. High-performance artificial nitrogen fixation at ambient conditions using a metal-free electrocatalyst. Nat. Comm. 9, 3485 (2018).

    Article  Google Scholar 

  49. Daneshfar, N. Effect of interparticle plasmon coupling and temperature on the optical properties of bimetallic composite nanoparticles with a core-shell structure. J. Appl. Phys. 117, 123105 (2015).

    Article  Google Scholar 

  50. Malasi, A. et al. Enhanced and tunable optical quantum efficiencies from plasmon bandwidth engineering in bimetallic CoAg nanoparticles. APL Photon. 1, 076101 (2016).

    Article  Google Scholar 

  51. Cortés-López, S. et al. Berreman effect in bimetallic nanolayered metamaterials. Opt. Mater. 99, 109578 (2020).

    Article  Google Scholar 

  52. Johnson, P. B. & Christy, R. W. Optical constants of the noble metals. Phys. Rev. B 6, 4370–4379 (1972).

    Article  Google Scholar 

  53. Wojcik, H. et al. Physical characterization of PECVD and PEALD Ru (-C) films and comparison with PVD ruthenium film properties. J. Electrochem. Soc. 159, H166 (2011).

    Article  Google Scholar 

  54. Yuan, L. et al. Atmospheric pressure ammonia synthesis on AuRu catalysts enabled by plasmon-controlled hydrogenation and nitrogen-species desorption. Zenodo https://doi.org/10.5281/zenodo.14291695 (2024).

  55. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  Google Scholar 

  56. Becke, A. D. & Johnson, E. R. A density-functional model of the dispersion interaction. J. Chem. Phys. 123, 154101 (2005).

    Article  Google Scholar 

  57. Grimme, S., Ehrlich, S. & Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 32, 1456–1465 (2011).

    Article  Google Scholar 

  58. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article  Google Scholar 

  59. Kresse, G. & Furthmuller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  Google Scholar 

  60. Makov, G. & Payne, M. C. Periodic boundary conditions in ab initio calculations. Phys. Rev. B 51, 4014–4022 (1995).

    Article  Google Scholar 

  61. Henkelman, G., Uberuaga, B. P. & Jonsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113, 9901–9904 (2000).

    Article  Google Scholar 

  62. Govind, N., Wang, Y. A., da Silva, A. J. R. & Carter, E. A. Accurate ab initio energetics of extended systems via explicit correlation embedded in a density functional environment. Chem. Phys. Lett. 295, 129–134 (1998).

    Article  Google Scholar 

  63. Huang, C., Pavone, M. & Carter, E. A. Quantum mechanical embedding theory based on a unique embedding potential. J. Chem. Phys. 134, 154110 (2011).

    Article  Google Scholar 

  64. Libisch, F., Huang, C. & Carter, E. A. Embedded correlated wavefunction schemes: theory and applications. Acc. Chem. Res. 47, 2768–2775 (2014).

    Article  Google Scholar 

  65. Yu, K., Krauter, C. M., Dieterich, J. M. & Carter, E. A. Density and Potential Functional Embedding: Theory and Practice Fragmentation: Toward Accurate Calculations on Complex Molecular Systems (John Wiley & Sons, 2017).

  66. Widmark, P. O., Malmqvist, P. Å & Roos, B. O. Density matrix averaged atomic natural orbital (ANO) basis sets for correlated molecular wave functions. I. First row atoms. Theor. Chim. Acta 77, 291–306 (1990).

    Article  Google Scholar 

  67. Roos, B. O., Lindh, R., Malmqvist, P. Å, Veryazov, V. & Widmark, P. O. Main group atoms and dimers studied with a new relativistic ANO basis set. J. Phys. Chem. A 108, 2851–2858 (2004).

    Article  Google Scholar 

  68. Roos, B. O., Lindh, R., Malmqvist, P. A., Veryazov, V. & Widmark, P. O. New relativistic ANO basis sets for transition metal atoms. J. Phys. Chem. A 109, 6575–6579 (2005).

    Article  Google Scholar 

  69. Andersson, K., Malmqvist, P. Å & Roos, B. O. Second-order perturbation theory with a complete active space self-consistent field reference function. J. Chem. Phys. 96, 1218–1226 (1992).

    Article  Google Scholar 

  70. Andersson, K., Malmqvist, P. A., Roos, B. O., Sadlej, A. J. & Wolinski, K. Second-order perturbation theory with a CASSCF reference function. J. Phys. Chem. 94, 5483–5488 (2002).

    Article  Google Scholar 

  71. Ghigo, G., Roos, B. O. & Malmqvist, P. -Å A modified definition of the zeroth-order Hamiltonian in multiconfigurational perturbation theory (CASPT2). Chem. Phys. Lett. 396, 142–149 (2004).

    Article  Google Scholar 

  72. Roos, B. O., Taylor, P. R. & Sigbahn, P. E. M. A complete active space SCF method (CASSCF) using a density matrix formulated super-CI approach. Chem. Phys. 48, 157–173 (1980).

    Article  MathSciNet  Google Scholar 

  73. Malmqvist, P. Å, Rendell, A. & Roos, B. O. The restricted active space self-consistent-field method, implemented with a split graph unitary group approach. J. Phys. Chem. 94, 5477–5482 (1990).

    Article  Google Scholar 

  74. Werner, H. J. & Meyer, W. A quadratically convergent MCSCF method for the simultaneous optimization of several states. J. Chem. Phys. 74, 5794–5801 (1981).

    Article  Google Scholar 

  75. Forsberg, N. & Malmqvist, P. Å. Multiconfiguration perturbation theory with imaginary level shift. Chem. Phys. Lett. 274, 196–204 (1997).

    Article  Google Scholar 

  76. Aquilante, F. et al. Modern quantum chemistry with Molcas. J. Chem. Phys. 152, 214117 (2020).

    Article  Google Scholar 

  77. Momma, K. & Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44, 1272–1276 (2011).

    Article  Google Scholar 

Download references

Acknowledgements

L.Y., B.B.B., Y.Z., A.X.D., A.S.M.-G. and J.A.D. acknowledge the support from the Keck Foundation under grant number 994816, the support from the ATW–Alan T Waterman Award from the National Science Foundation (NSF) under grant number 1933624 and the support from the NSF Center for Adopting Flaws as Features (NSF CHE-2124983). L.Y., B.B.B., Y.Z., A.X.D., A.S.M.-G. Yi Cui (0000-0001-8219-1856), K.X., Y.W., Yi Cui (0000-0002-6103-6352), A.M. and J.A.D. acknowledge the Office of Basic Energy Sciences, US Department of Energy, Division of Materials Science and Engineering, DE-AC02-76SF00515. L.Y. and J.A.D. acknowledge the support from the National Research Foundation of Korea (NRF) grants funded by the Korean government (Ministry of Science and Information and Communication Technology (ICT)) (number RS-2024-00421181). K.X., Y.W. and A.M. acknowledge the support from the Office of Naval Research MURI Award N00014-21-1-2377. J.L.B. acknowledges the financial support provided by the American Chemical Society Petroleum Research Fund (PRF number 65744-DNI6). In addition, J.L.B. thanks the Boston College Linux Cluster Center for cluster computing resources. B.B.B. was supported by the National Science Foundation Graduate Research Fellowship under grant number DGE-1656518. L.Y. and J.A.D. acknowledge the use and support of the Stanford Nano Shared Facilities (SNSF), supported by the National Science Foundation under award ECCS-2026822. This work utilized beamline 4-1 at the Stanford Synchrotron Radiation Lightsource (SSRL) and beamline 7-BM (QAS) at the National Synchrotron Light Source II (NSLS-II), both of which are US Department of Energy Office of Science User Facilities. L.Y. acknowledges the helpful support and discussion regarding X-ray absorption (XAS) measurements from D. Yang and L. Ma from Brookhaven National Laboratory. L.Y. acknowledges the helpful discussion regarding synthesis and collection of AuRu bimetallic alloy with Q. Zhang from Kyoto University, Japan.

Author information

Authors and Affiliations

Authors

Contributions

L.Y. and J.A.D. conceptualized the research, including the design of electromagnetic simulations and experiments. L.Y., B.B.B., A.X.D. and Z.C. finalized the synthetic protocol and experimental details under the supervision of M.R.J. and J.A.D. L.Y., B.B.B., A.X.D., A.S.M.-G., Yi Cui (0000-0001-8219-1856), K.X. and Y.W. conducted all TEM imaging and analysis, supervised by Yi Cui (0000-0002-6103-6352), A.M. and J.A.D. L.Y. performed the electromagnetic simulations and calculations. E.B. and J.L.B. carried out the first-principle quantum mechanical (QM) calculations, ECW excited-state calculations and provided insights into reaction pathways. L.Y. and Y.Z. conducted the in situ DRIFTS measurements and analysis, whereas L.Y. and Z.X. performed the synchrotron X-ray absorption measurements. All authors contributed to discussions, provided insights and participated in manuscript preparation.

Corresponding authors

Correspondence to Lin Yuan, Junwei Lucas Bao or Jennifer A. Dionne.

Ethics declarations

Competing interests

L.Y., B.B.B., A.X.D. and J.A.D. declare that a US patent application for the multicomponent alloyed plasmonic photocatalytic properties is pending (US 18/196, 359). The other authors declare no competing interests.

Peer review

Peer review information

Nature Energy thanks Alberto Naldoni and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1–3, Figs. 1–36 and Notes 1 and 2.

Supplementary Data 1

Supplementary data for Supplementary Figs. 11, 31a,c and 35.

Source data

Source Data Fig. 2

Source data for Fig. 2.

Source Data Fig. 3

Source data for Fig. 3.

Source Data Fig. 4

Source data for Fig. 4.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, L., Bourgeois, B.B., Begin, E. et al. Atmospheric-pressure ammonia synthesis on AuRu catalysts enabled by plasmon-controlled hydrogenation and nitrogen-species desorption. Nat Energy 11, 98–108 (2026). https://doi.org/10.1038/s41560-025-01911-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41560-025-01911-9

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing