Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Amorphous grain boundary engineering for scalable flexible perovskite photovoltaics with improved stability

Abstract

Flexible perovskite solar cells hold promises for lightweight photovoltaics, yet their performance, durability and scalability lag behind rigid counterparts. Conventional efficiency-enhancing strategies, such as grain enlargement or lead iodide passivation, often degrade mechanical robustness. Here we combine data-driven machine learning with a passivation approach to overcome this trade-off. We design β-cyclodextrin derivatives that form in situ self-assembled amorphous grain boundaries, enhancing optoelectronic properties and mechanical resilience through coordination bonds, hydrogen bonds and host–guest interactions. We achieve flexible solar cells with an efficiency of 24.52% and enhanced durability: 92.5% efficiency retention after 10,000 bending cycles, 95% after 300 days in ambient air and 80% under 650 h of maximum power point tracking. We demonstrate modules with certified efficiencies of 21.09% (aperture area: 21.07 cm2) and 17.38% (aperture area: 0.5 m2, 86.9 W). Larger-area module (aperture area: 1.4725 m2) delivers 226 W power output and power per weight of 558 W kg−1. Our work addresses critical barriers in flexible perovskite photovoltaics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Impact of β-Cyclodextrin derivatives on flexible perovskite thin film.
Fig. 2: Amorphous grain boundary-based perovskite crystallization dynamics.
Fig. 3: Evaluation of the durability and photovoltaic performances of flexible perovskite solar cells.
Fig. 4: Fabrication of large-area flexible perovskite module and its photovoltaic performances.
Fig. 5: Photovoltaic performances of the large-area flexible perovskite module.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available within the article and its Supplementary Information. Source data are provided with this paper.

References

  1. Miyasaka, T. Toward printable sensitized mesoscopic solar cells: light-harvesting management with thin TiO2 films. J. Phys. Chem. Lett. 2, 262–269 (2011).

    Article  Google Scholar 

  2. Li, Y. et al. High-efficiency robust perovskite solar cells on ultrathin flexible substrates. Nat. Commun. 7, 10214 (2016).

    Article  Google Scholar 

  3. Meng, X. et al. Bio-inspired vertebral design for scalable and flexible perovskite solar cells. Nat. Commun. 11, 3016 (2020).

    Article  Google Scholar 

  4. Kaltenbrunner, M. et al. Flexible high power-per-weight perovskite solar cells with chromium oxide-metal contacts for improved stability in air. Nat. Mater. 14, 1032–1039 (2015).

    Article  Google Scholar 

  5. Li, L. et al. Flexible all-perovskite tandem solar cells approaching 25% efficiency with molecule-bridged hole-selective contact. Nat. Energy 7, 708–717 (2022).

    Article  Google Scholar 

  6. Wang, Y. et al. Utilizing electrostatic dynamic bonds in zwitterion elastomer for self-curing of flexible perovskite solar cells. Joule 8, 1120–1141 (2024).

    Article  Google Scholar 

  7. Zhang, C. et al. Occlusal architecture of the buried interface enables record-efficiency flexible perovskite photovoltaic modules with enhanced in-plane bending mechanical endurance. Adv. Funct. Mater. 34, 2313910 (2024).

    Article  Google Scholar 

  8. Lee, D. S. et al. Overcoming stability limitations of efficient, flexible perovskite solar modules. Joule 8, 1380–1393 (2024).

    Article  Google Scholar 

  9. Xu, X. et al. Multifunctional entinostat enhances the mechanical robustness and efficiency of flexible perovskite solar cells and minimodules. Nat. Photonics 18, 379–387 (2024).

    Article  Google Scholar 

  10. Best research-cell efficiencies. NREL https://www.nrel.gov/pv/cell-efficiency (2024).

  11. Luo, D. et al. Minimizing non-radiative recombination losses in perovskite solar cells. Nat. Rev. Mater. 5, 44–60 (2019).

    Article  Google Scholar 

  12. Ni, N. et al. Resolving spatial and energetic distributions of trap states in metal halide perovskite solar cells. Science 367, 1352–1358 (2020).

    Article  Google Scholar 

  13. Ball, J. M. & Petrozza, A. Defects in perovskite-halides and their effects in solar cells. Nat. Energy 1, 16149 (2016).

    Article  Google Scholar 

  14. Chen, Q. et al. Controllable self-induced passivation of hybrid lead iodide perovskites toward high performance solar cells. Nano Lett. 14, 4158–4163 (2014).

    Article  Google Scholar 

  15. Yang, W. S. et al. Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells. Science 356, 1376–1379 (2017).

    Article  Google Scholar 

  16. Bi, D. et al. Efficient luminescent solar cells based on tailored mixed-cation perovskites. Sci. Adv. 2, e1501170 (2016).

    Article  Google Scholar 

  17. Burschka, J. et al. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499, 316–319 (2013).

    Article  Google Scholar 

  18. Yoo, J. J. et al. Efficient perovskite solar cells via improved carrier management. Nature 590, 587–593 (2021).

    Article  Google Scholar 

  19. Rolston, N. et al. Effect of cation composition on the mechanical stability of perovskite solar cells. Adv. Energy Mater. 8, 1702116 (2017).

    Article  Google Scholar 

  20. Azmi, R. et al. Damp heat-stable perovskite solar cells with tailored-dimensionality 2D/3D heterojunctions. Science 376, 73–77 (2022).

    Article  Google Scholar 

  21. Chen, H. et al. Quantum-size-tuned heterostructures enable efficient and stable inverted perovskite solar cells. Nat. Photonics 16, 352–358 (2022).

    Article  Google Scholar 

  22. Park, S. M. et al. Engineering ligand reactivity enables high-temperature operation of stable perovskite solar cells. Science 381, 209–215 (2023).

    Article  Google Scholar 

  23. Azmi, R. et al. Double-side 2D/3D heterojunctions for inverted perovskite solar cells. Nature 628, 93–98 (2024).

    Article  Google Scholar 

  24. Ma, K. et al. Holistic energy landscape management in 2D/3D heterojunction via molecular engineering for efficient perovskite solar cells. Sci. Adv. 9, eadg0032 (2023).

    Article  Google Scholar 

  25. deQuilettes, D. W. et al. Reduced recombination via tunable surface fields in perovskite thin films. Nat. Energy 9, 457–466 (2024).

    Article  Google Scholar 

  26. Wen, J. et al. Heterojunction formed via 3D-to-2D perovskite conversion for photostable wide-bandgap perovskite solar cells. Nat. Commun. 14, 7118 (2023).

    Article  Google Scholar 

  27. Degani, M. et al. 23.7% Efficient inverted perovskite solar cells by dual interfacial modification. Sci. Adv. 7, eabj7930 (2021).

    Article  Google Scholar 

  28. Ferdowsi, P. et al. Supramolecular interactions using β-cyclodextrin in controlling perovskite solar cell performance. J. Mater. Chem. A 12, 15837–15846 (2024).

    Article  Google Scholar 

  29. Masi, S. et al. Connecting the solution chemistry of PbI2 and MAI: a cyclodextrin-based supramolecular approach to the formation of hybrid halide perovskites. Chem. Sci. 9, 3200–3208 (2018).

    Article  Google Scholar 

  30. Nomura, K. et al. Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nature 432, 488–492 (2004).

    Article  Google Scholar 

  31. Ge, C. et al. Thermal dynamic self-healing supramolecular dopant towards efficient and stable flexible perovskite solar cells. Angew. Chem. Int. Ed. 61, e202116602 (2022).

    Article  Google Scholar 

  32. Shi, P. et al. Oriented nucleation in formamidinium perovskite for photovoltaics. Nature 620, 323–327 (2023).

    Article  Google Scholar 

  33. Liu, C. et al. Flexible indoor perovskite solar cells by in situ bottom-up crystallization modulation and interfacial passivation. Adv. Mater. 36, 2311562 (2024).

    Article  Google Scholar 

  34. Chen, H. et al. Cyclodextrin-assisted supramolecular host-guest inclusion for durable and sustainable optoelectronics. Microstructures 4, 2024031 (2024).

    Article  Google Scholar 

  35. Kondo, S. Spectral analysis of optical absorption near the fundamental edge in amorphous lead halides. Phys. Stat. Sol. A 153, 529–537 (1996).

    Article  Google Scholar 

  36. Tian, T. et al. Large-area waterproof and durable perovskite luminescent textiles. Nat. Commun. 14, 234 (2023).

    Article  Google Scholar 

  37. Kumar, M. H. et al. Flexible, low-temperature, solution processed zno-based perovskite solid state solar cells. Chem. Commun. 49, 11089–11091 (2013).

    Article  Google Scholar 

  38. Liu, D. et al. Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques. Nat. Photonics 8, 133–138 (2014).

    Article  Google Scholar 

  39. Yang, D. et al. High efficiency flexible perovskite solar cells using superior low temperature TiO2. Energy Environ. Sci. 8, 3208–3214 (2015).

    Article  Google Scholar 

  40. Kim, B. J. et al. Highly efficient and bending durable perovskite solar cells: toward a wearable power source. Energy Environ. Sci. 8, 916–921 (2015).

    Article  Google Scholar 

  41. Yoon, J. et al. Superflexible, high-efficiency perovskite solar cells utilizing graphene electrodes: towards future foldable power sources. Energy Environ. Sci. 10, 337–345 (2017).

    Article  Google Scholar 

  42. Bi, C. et al. Efficient flexible solar cell based on composition-tailored hybrid perovskite. Adv. Mater. 29, 1605900 (2017).

    Article  Google Scholar 

  43. Feng, J. et al. Record efficiency stable flexible perovskite solar cell using effective additive assistant strategy. Adv. Mater. 30, 1801418 (2018).

    Article  Google Scholar 

  44. Wang, Z. et al. Rational interface design and morphology control for blade-coating efficient flexible perovskite solar cells with a record fill factor of 81%. Adv. Funct. Mater. 30, 2001240 (2020).

    Article  Google Scholar 

  45. Yang, L. et al. Artemisinin-passivated mixed-cation perovskite films for durable flexible perovskite solar cells with over 21% efficiency. J. Mater. Chem. A 9, 1574–1582 (2021).

    Article  Google Scholar 

  46. Wu, S. et al. Low-bandgap organic bulk-heterojunction enabled efficient and flexible perovskite solar cells. Adv. Mater. 33, 2105539 (2021).

    Article  Google Scholar 

  47. Wu, Y. et al. In situ crosslinking-assisted perovskite grain growth for mechanically robust flexible perovskite solar cells with 23.4% efficiency. Joule 7, 398–415 (2023).

    Article  Google Scholar 

  48. Xie, L. et al. Molecular dipole engineering-assisted strain release for mechanically robust flexible perovskite solar cells. Energy Environ. Sci. 16, 5423–5433 (2023).

    Article  Google Scholar 

  49. Wu, Y. et al. Stereoscopic polymer network for developing mechanically robust flexible perovskite solar cells with an efficiency approaching 25%. Adv. Mater. 36, 2403531 (2024).

    Article  Google Scholar 

  50. Fukuda, K. et al. A bending test protocol for characterizing the mechanical performance of flexible photovoltaics. Nat. Energy 9, 1335–1343 (2024).

    Article  Google Scholar 

  51. Sun, L. et al. A flexible photovoltaic fatigue factor for quantification of mechanical device performance. Adv. Funct. Mater. 35, 2422706 (2025).

    Article  Google Scholar 

  52. Wang, H. et al. An in situ bifacial passivation strategy for flexible perovskite solar module with mechanical robustness by roll-to-roll fabrication. J. Mater. Chem. A 9, 5759–5768 (2021).

    Article  Google Scholar 

  53. Xue, T. et al. Mechanically robust and flexible perovskite solar cells via a printable and gelatinous interface. ACS Appl. Mater. Interfaces 13, 19959–19969 (2021).

    Article  Google Scholar 

  54. Wang, Z. et al. An embedding 2D/3D heterostructure enables high-performance FA-alloyed flexible perovskite solar cells with efficiency over 20%. Adv. Sci. 8, 2101856 (2021).

    Article  Google Scholar 

  55. Fan, B. et al. A bionic interface to suppress the coffee-ring effect for reliable and flexible perovskite modules with a near-90% yield rate. Adv. Mater. 34, 2201840 (2022).

    Article  Google Scholar 

  56. Yang, X. et al. Scalable flexible perovskite solar cells based on a crystalline and printable template with intelligent temperature sensitivity. Sol. RRL 6, 2100991 (2022).

    Article  Google Scholar 

  57. Park, M. et al. Scalable production of high performance flexible perovskite solar cells via film-growth-megasonic-spray-coating system. Int. J. Precis. Eng. Manuf. Green. Technol. 10, 1223–1234 (2023).

    Article  Google Scholar 

  58. Zhang, R. et al. A self-assembled vertical-gradient and well-dispersed mxene structure for flexible large-area perovskite modules. Adv. Funct. Mater. 33, 2210063 (2023).

    Article  Google Scholar 

  59. Xu, Y. et al. Uniform coverage functional layers enable high-efficient flexible perovskite solar modules with an outstanding fill factor. Sol. RRL 7, 2300283 (2023).

    Article  Google Scholar 

  60. Kim, U. et al. Foldable perovskite solar cells and modules enabled by mechanically engineered ultrathin indium-tin-oxide electrodes. Adv. Energy Mater. 13, 2203198 (2023).

    Article  Google Scholar 

  61. Tong, X. et al. Large orientation angle buried substrate enables efficient flexible perovskite solar cells and modules. Adv. Mater. 36, 2407032 (2024).

    Article  Google Scholar 

  62. Gong, C. et al. An equalized flow velocity strategy for perovskite colloidal particles in flexible perovskite solar cells. Adv. Mater. 36, 2405572 (2024).

    Article  Google Scholar 

  63. Tu, S. et al. Engineering a thermally robust hole-selective layer for stable flexible perovskite solar cells. Chem. Eng. J. 503, 158389 (2025).

    Article  Google Scholar 

  64. Zhang, W. et al. Chemical passivation and grain-boundary manipulation via in situ cross-linking strategy for scalable flexible perovskite solar cells. Sci. Adv. 11, eadr2290 (2025).

    Article  Google Scholar 

  65. Liu, C. et al. Dimensional regulation of organic n-type dopants for highly efficient perovskite solar cells and modules. Adv. Mater. 37, e2417251 (2025).

    Article  Google Scholar 

  66. Du, J. et al. Face-on oriented self-assembled molecules with enhanced π-π stacking for highly efficient inverted perovskite solar cells on rough FTO substrate. Energy Environ. Sci. 18, 3196–3210 (2025).

    Article  Google Scholar 

  67. Zhong, H. et al. Hydrophobic surface release and energy-level alignment of PTAA enabling stable flexible perovskite solar modules. J. Energy Chem. 109, 448–454 (2025).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (62475103,62005099), Guangdong Basic and Applied Basic Research Foundation (2021B1515120003). We sincerely thank our colleagues, Y. Deng from Chongqing University and R. Chen from Hubei University of Technology, for their valuable suggestions.

Author information

Authors and Affiliations

Authors

Contributions

S.W., J.F., L.H. and Y. Mai conceived the idea for the manuscript and designed the experiments. M.H., Y. Ma, L.L., H.Z., Y.J. Z.Z., W.M. and H.T. conducted sample preparation, device fabrication, optimization and characterization. Y. Ma conducted the in situ XRD and photoluminescence measurements. W.D. and J.F. performed the machine learning and calculations. M.H., H.L., H.T., Yanyan Gao, Yin Gao, C.Z. and C.L. assisted with solar cell and module fabrication and characterizations. M.H. and Y. Ma wrote the manuscript. S.W. and J.F. revised the manuscript. S.W., J.F., L.H. and Y. Mai led the project. All authors were involved in discussions of data analysis and commented on the manuscript.

Corresponding authors

Correspondence to Shaohang Wu, Liyuan Han, Jiandong Fan or Yaohua Mai.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Energy thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary text, Figs. 1–35 and Tables 1–7.

Reporting Summary

Supplementary Data

Molecular structure of A\B\C.

Supplementary Data

Source data

Source Data Fig. 3

Source data of figure.

Source Data Fig. 4

Source data of figure.

Source Data Fig. 5

Source data of figure.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, M., Ma, Y., Wu, S. et al. Amorphous grain boundary engineering for scalable flexible perovskite photovoltaics with improved stability. Nat Energy (2026). https://doi.org/10.1038/s41560-025-01932-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41560-025-01932-4

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing