Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mechanistic understanding of interphase-driven ageing in silicon anodes

Abstract

Conventional solid electrolyte interphases (SEIs) strongly adhere to micro-silicon (µ-Si) and crack under volume changes, causing poor cycling performance. Nano-silicon improves cycling performance but remains costly with limited calendar life. Here potentiostatic ageing tests demonstrate that both calendar and cycle ageing are governed by SEI cracking and dissolution with different relative contributions. When the system is not dominated by SEI dissolution, the relative calendar life of Si anodes could correlates positively with their cycle life. LiF-rich SEI that enables long cycle life in µ-Si is therefore expected to enhance calendar life as well. Using this framework, we screened electrolytes, SEIs and electrodes and validated them with full-cell storage. LiF-rich SEI minimizes cracking and dissolution, enabling μ-Si to achieve excellent calendar life, whereas nano-silicon suffers from SEI dissolution and needs reduced electrolyte–electrode contact for better calendar life. This work clarifies calendar-ageing behaviour and accelerates electrolytes and SEI development for long-life Si anodes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic of calendar life in Silicon anode.
Fig. 2: Calendar life of Si anodes with different electrolytes.
Fig. 3: The SEI compositions in a variety of electrolytes and the passivation ability of these compositions.
Fig. 4: The calendar life of µ-Si vs n-Si.
Fig. 5: SEI growth in different SEI with different repair abilities.
Fig. 6: Full-cell calendar ageing.
Fig. 7: Summary of the relationship between the calendar life and surface area and SEI instability.

Data availability

The authors declare that all data supporting the findings of this study are available within the paper and Supplementary Information files. Source data are provided with this paper.

References

  1. Lin, D., Liu, Y. & Cui, Y. Reviving the lithium metal anode for high-energy batteries. Nat. Nanotechnol. 12, 194–206 (2017).

    Article  Google Scholar 

  2. Cheng, X.-B., Zhang, R., Zhao, C.-Z. & Zhang, Q. Toward safe lithium metal anode in rechargeable batteries: a review. Chem. Rev. 117, 10403–10473 (2017).

    Article  Google Scholar 

  3. Duffner, F. et al. Post-lithium-ion battery cell production and its compatibility with lithium-ion cell production infrastructure. Nat. Energy 6, 123–134 (2021).

    Article  Google Scholar 

  4. Heubner, C. et al. From lithium-metal toward anode-free solid-state batteries: current developments, issues, and challenges. Adv. Funct. Mater. 31, 2106608 (2021).

    Article  Google Scholar 

  5. Ge, M. et al. Recent advances in silicon-based electrodes: from fundamental research toward practical applications. Adv. Mater. 33, 2004577 (2021).

    Article  Google Scholar 

  6. Li, H. et al. Revisiting the preparation progress of nano-structured si anodes toward industrial application from the perspective of cost and scalability. Adv. Energy Mater. 12, 2102181 (2022).

    Article  Google Scholar 

  7. Peled, E. & Menkin, S. SEI: past, present and future. J. Electrochem. Soc. 164, A1703 (2017).

    Article  Google Scholar 

  8. Sina, M. et al. Direct visualization of the solid electrolyte interphase and its effects on silicon electrochemical performance. Adv. Mater. Interfaces 3, 1600438 (2016).

    Article  Google Scholar 

  9. Michan, A. L. et al. Solid electrolyte interphase growth and capacity loss in silicon electrodes. J. Am. Chem. Soc. 138, 7918–7931 (2016).

    Article  Google Scholar 

  10. Cui, L.-F., Yang, Y., Hsu, C.-M. & Cui, Y. Carbon−silicon core− shell nanowires as high capacity electrode for lithium ion batteries. Nano Lett. 9, 3370–3374 (2009).

    Article  Google Scholar 

  11. Cui, L.-F., Ruffo, R., Chan, C. K., Peng, H. & Cui, Y. Crystalline-amorphous core−shell silicon nanowires for high capacity and high current battery electrodes. Nano Lett. 9, 491–495 (2009).

    Article  Google Scholar 

  12. Chen, H. et al. Milled flake graphite/plasma nano-silicon@ carbon composite with void sandwich structure for high performance as lithium ion battery anode at high temperature. Carbon 130, 433–440 (2018).

    Article  Google Scholar 

  13. Yao, Y. et al. Interconnected silicon hollow nanospheres for lithium-ion battery anodes with long cycle life. Nano Lett. 11, 2949–2954 (2011).

    Article  Google Scholar 

  14. Ge, M. et al. Large-scale fabrication, 3D tomography, and lithium-ion battery application of porous silicon. Nano Lett. 14, 261–268 (2014).

    Article  Google Scholar 

  15. Kim, H., Seo, M., Park, M. & Cho, J. A critical size of silicon nano-anodes for lithium rechargeable batteries. Angew. Chem. Int. Ed. 49, 2146–2149 (2010).

    Article  Google Scholar 

  16. McBrayer, J. D. et al. Calendar aging of silicon-containing batteries. Nat. Energy 6, 866–872 (2021).

    Article  Google Scholar 

  17. Kim, N., Kim, Y., Sung, J. & Cho, J. Issues impeding the commercialization of laboratory innovations for energy-dense Si-containing lithium-ion batteries. Nat. Energy 8, 921–933 (2023).

    Article  Google Scholar 

  18. Jia, H. et al. High-performance silicon anodes enabled by nonflammable localized high-concentration electrolytes. Adv. Energy Mater. 9, 1900784 (2019).

    Article  Google Scholar 

  19. Cao, Z., Zheng, X., Qu, Q., Huang, Y. & Zheng, H. Electrolyte design enabling a high-safety and high-performance Si anode with a tailored electrode–electrolyte interphase. Adv. Mater. 33, 2103178 (2021).

    Article  Google Scholar 

  20. Jeong, M.-G. et al. Self-rearrangement of silicon nanoparticles embedded in micro-carbon sphere framework for high-energy and long-life lithium-ion batteries. Nano Lett. 17, 5600–5606 (2017).

    Article  Google Scholar 

  21. Veith, G. M. et al. Determination of the solid electrolyte interphase structure grown on a silicon electrode using a fluoroethylene carbonate additive. Sci. Rep. 7, 6326 (2017).

    Article  Google Scholar 

  22. Lam, S. et al. Surprising relationship between silicon anode calendar aging and electrolyte components in a localized high concentration electrolyte system. ACS Appl. Mater. Interfaces 17, 43020–43033 (2025).

    Article  Google Scholar 

  23. Ha, Y. et al. Effect of water concentration in LiPF6-based electrolytes on the formation, evolution, and properties of the solid electrolyte interphase on Si anodes. ACS Appl. Mater. Interfaces 12, 49563–49573 (2020).

    Article  Google Scholar 

  24. Veith, G. M. et al. Direct determination of solid-electrolyte interphase thickness and composition as a function of state of charge on a silicon anode. J. Phys. Chem. C 119, 20339–20349 (2015).

    Article  Google Scholar 

  25. McBrayer, J. D. et al. Scanning electrochemical microscopy reveals that model silicon anodes demonstrate global solid electrolyte interphase passivation degradation during calendar aging. ACS Appl. Mater. Interfaces 16, 19663–19671 (2024).

    Article  Google Scholar 

  26. Kalaga, K., Rodrigues, M.-T. F., Trask, S. E., Shkrob, I. A. & Abraham, D. P. Calendar-life versus cycle-life aging of lithium-ion cells with silicon-graphite composite electrodes. Electrochim. Acta 280, 221–228 (2018).

    Article  Google Scholar 

  27. Zhang, Y. et al. Silicon anodes with improved calendar life enabled by multivalent additives. Adv. Energy Mater. 11, 2101820 (2021).

    Article  Google Scholar 

  28. Verma, A. et al. Significant improvements to Si calendar lifetime using rapid electrolyte screening via potentiostatic holds. J. Electrochem. Soc. 171, 070539 (2024).

    Article  Google Scholar 

  29. Schulze, M. C. et al. Critical evaluation of potentiostatic holds as accelerated predictors of capacity fade during calendar aging. J. Electrochem. Soc. 169, 050531 (2022).

    Article  Google Scholar 

  30. McBrayer, J. D., Harrison, K. L., Allcorn, E. & Minteer, S. D. Chemical contributions to silicon anode calendar aging are dominant over mechanical contributions. Front. Batteries Electrochem. 2, 1308127 (2023).

    Article  Google Scholar 

  31. Chen, J. et al. Electrolyte design for LiF-rich solid–electrolyte interfaces to enable high-performance microsized alloy anodes for batteries. Nat. Energy 5, 386–397 (2020).

    Article  Google Scholar 

  32. Hasa, I. et al. Electrochemical reactivity and passivation of silicon thin-film electrodes in organic carbonate electrolytes. ACS Appl. Mater. Interfaces 12, 40879–40890 (2020).

    Article  Google Scholar 

  33. Sayavong, P. et al. Dissolution of the solid electrolyte interphase and its effects on lithium metal anode cyclability. J. Am. Chem. Soc. 145, 12342–12350 (2023).

    Article  Google Scholar 

  34. Zhang, W. et al. Recovery of isolated lithium through discharged state calendar ageing. Nature 626, 306–312 (2024).

    Article  Google Scholar 

  35. Stetson, C. et al. Temperature-dependent solubility of solid electrolyte interphase on silicon electrodes. ACS Energy Lett. 4, 2770–2775 (2019).

    Article  Google Scholar 

  36. Boyle, D. T. et al. Corrosion of lithium metal anodes during calendar ageing and its microscopic origins. Nat. Energy 6, 487–494 (2021).

    Article  Google Scholar 

  37. Harlow, J. E. et al. A wide range of testing results on an excellent lithium-ion cell chemistry to be used as benchmarks for new battery technologies. J. Electrochem. Soc. 166, A3031 (2019).

    Article  Google Scholar 

  38. Li, A.-M. et al. Asymmetric electrolyte design for high-energy lithium-ion batteries with micro-sized alloying anodes. Nat. Energy 9, 1551–1560 (2024).

    Article  Google Scholar 

  39. Wang, A., Kadam, S., Li, H., Shi, S. & Qi, Y. Review on modeling of the anode solid electrolyte interphase (SEI) for lithium-ion batteries. npj Comput. Mater. 4, 15 (2018).

    Article  Google Scholar 

  40. Tan, J., Matz, J., Dong, P., Shen, J. & Ye, M. A growing appreciation for the role of LiF in the solid electrolyte interphase. Adv. Energy Mater. 11, 2100046 (2021).

    Article  Google Scholar 

  41. Käbitz, S. et al. Cycle and calendar life study of a graphite| LiNi1/3Mn1/3Co1/3O2 Li-ion high energy system. Part A: full cell characterization. J. Power Sources 239, 572–583 (2013).

    Article  Google Scholar 

  42. Gauthier, R. et al. How do depth of discharge, C-rate and calendar age affect capacity retention, impedance growth, the electrodes, and the electrolyte in Li-ion cells?. J. Electrochem. Soc. 169, 020518 (2022).

    Google Scholar 

  43. Naumann, M., Schimpe, M., Keil, P., Hesse, H. C. & Jossen, A. Analysis and modeling of calendar aging of a commercial LiFePO4/graphite cell. J. Energy Storage 17, 153–169 (2018).

    Article  Google Scholar 

  44. Keil, P. et al. Calendar aging of lithium-ion batteries. J. Electrochem Soc. 163, A1872 (2016).

    Article  Google Scholar 

  45. Qian, J. et al. High rate and stable cycling of lithium metal anode. Nat. Commun. 6, 6362 (2015).

    Article  Google Scholar 

  46. Chen, J. et al. Electrolyte design for Li metal-free Li batteries. Mater. Today 39, 118–126 (2020).

    Article  Google Scholar 

  47. Cao, X. et al. Monolithic solid–electrolyte interphases formed in fluorinated orthoformate-based electrolytes minimize Li depletion and pulverization. Nat. Energy 4, 796–805 (2019).

    Article  Google Scholar 

  48. Johnson, N. M. et al. Enabling silicon anodes with novel isosorbide-based electrolytes. ACS Energy Lett. 7, 897–905 (2022).

    Article  Google Scholar 

  49. Verma, A. et al. Assessing electrolyte fluorination impact on calendar aging of blended silicon-graphite lithium-ion cells using potentiostatic holds. J. Electrochem. Soc. (2023).

  50. Kim, M. et al. A new mechanism of stabilizing SEI of Si anode driven by crosstalk behavior and its potential for developing high performance Si-based batteries. Energy Storage Mater. 55, 436–444 (2023).

    Article  Google Scholar 

  51. Tan, S. et al. Synchronized breathing in anion-derived interphases. ACS Energy Lett. 10, 3746–3754 (2025).

    Article  Google Scholar 

  52. Langdon, J. & Manthiram, A. Crossover effects in batteries with high-nickel cathodes and lithium-metal anodes. Adv. Funct. Mater. 31, 2010267 (2021).

    Article  Google Scholar 

  53. Jeong, H. & Johnson, C. S. Reactivity of carbonate solvent electrolytes on lithium silicon anodes. ACS Appl. Mater. Interfaces 17, 54633–54645 (2025).

    Article  Google Scholar 

  54. Huo, H. et al. Chemo-mechanical failure mechanisms of the silicon anode in solid-state batteries. Nat. Mater. 23, 543–551 (2024).

    Article  Google Scholar 

  55. Lu, W., Zhang, L., Qin, Y. & Jansen, A. Calendar and cycle life of lithium-ion batteries containing silicon monoxide anode. J. Electrochem. Soc. 165, A2179 (2018).

    Article  Google Scholar 

  56. Sung, J. et al. Subnano-sized silicon anode via crystal growth inhibition mechanism and its application in a prototype battery pack. Nat. Energy 6, 1164–1175 (2021).

    Article  Google Scholar 

  57. Adhikari, P. R. et al. The origin of improved performance in boron-alloyed silicon nanoparticle-based anodes for lithium-ion batteries. Adv. Energy Mater. 2501074 (2025).

  58. Lee, T. et al. Fast-chargeable lithium-ion batteries by μ-Si anode-tailored full-cell design. Proc. Natl Acad. Sci. USA 122, e2417053121 (2025).

    Article  Google Scholar 

  59. Park, S.-H. et al. High areal capacity battery electrodes enabled by segregated nanotube networks. Nat. Energy 4, 560–567 (2019).

    Article  Google Scholar 

  60. Horstmann, B., Single, F. & Latz, A. Review on multi-scale models of solid-electrolyte interphase formation. Curr. Opin. Electrochem. 13, 61–69 (2019).

    Article  Google Scholar 

  61. Wang, E. et al. Mitigating electron leakage of solid electrolyte interface for stable sodium-ion batteries. Angew. Chem. Int. Ed. 62, e202216354 (2023).

    Article  Google Scholar 

  62. Yang, Z., Dixon, M. C., Erck, R. A. & Trahey, L. Quantification of the mass and viscoelasticity of interfacial films on tin anodes using EQCM-D. ACS Appl. Mater. Interfaces 7, 26585–26594 (2015).

    Article  Google Scholar 

  63. Yu, Z. et al. Molecular design for electrolyte solvents enabling energy-dense and long-cycling lithium metal batteries. Nat. Energy 5, 526–533 (2020).

    Article  Google Scholar 

  64. Bai, R., Tolman, N. L., Peng, Z. & Liu, H. Influence of atmospheric contaminants on the work function of graphite. Langmuir 39, 12159–12165 (2023).

    Article  Google Scholar 

  65. Sachtler, W. M. H., Dorgelo, G. J. H. & Holscher, A. A. The work function of gold. Surf. Sci. 5, 221–229 (1966).

    Article  Google Scholar 

  66. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996).

    Article  Google Scholar 

  67. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).

    Article  Google Scholar 

  68. Kohn, W. & Sham, L. J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133 (1965).

    Article  MathSciNet  Google Scholar 

  69. Hendrik, J. M. & James, D. P. Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976).

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This research was supported by US Department of Energy, Vehicle Technologies Office (DOE-VTO) under the Silicon Consortium Project, directed by N. Eidson, C. Steinway, T. Do and B. Cunningham, and managed by A. Burrell. The was supported by DOE Office of Energy Efficiency and Renewable Energy (EERE) grant DE-EE0009183 (W.Z. and C.W.) We acknowledge the technical support from the Maryland NanoCenter.

Author information

Authors and Affiliations

Authors

Contributions

W.Z. conceived the idea, performed experiments and wrote the manuscript. N.Z. performed EQCM measurements and assisted with electrochemical tests. Z.W. performed calculations. A.-M.L. provided ionic liquids and assisted with related full-cell ageing. S.L., Y.L. and Z.L. helped with the testing. T.L., Y.C. and L.Z. helped on electrode engineering. H.W., S.-C.L. and J. Rao helped on transmission electron microscopy. J. Roschella edited and improved the manuscript. Z.Z. and H.H. conduced the AFM at Rutgers University. B.L.L. helped with the XPS test. C.S.J. guided the analysis and manuscript writing. C.W. supervised the study and the manuscript writing. All authors discussed the results.

Corresponding author

Correspondence to Chunsheng Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Energy thanks Josefine McBrayer and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary information

Supplementary Figs. 1–35, Supplementary Tables 1 and 2, Supplementary Notes 1–8 and Supplementary References.

Source data

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data.

Source Data Fig. 6

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Zhang, N., Wang, Z. et al. Mechanistic understanding of interphase-driven ageing in silicon anodes. Nat Energy (2026). https://doi.org/10.1038/s41560-026-01967-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41560-026-01967-1

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing