Abstract
The subduction of pelagic sediments and altered oceanic crust modulates the global cycle of volatile elements. Sulfate and carbonate fluids released when one plate descends beneath another modify the redox state of the mantle, and generate the return of water and reactive gases to the atmosphere and hydrosphere via arc volcanism, affecting planetary habitability over geologic timescales. However, the timing of the onset of subduction remains uncertain, hindering our understanding of how deep geochemical cycles operated on the early Earth. Here we measure sulfur and neodymium isotope data on Eoarchaean mantle-derived rocks of the Innuksuac Complex in northern Québec, Canada, with petrological characteristics of arc magmas. These rocks exhibit anomalous sulfur isotopic compositions originally produced by photochemical reactions in the atmosphere more than 3.8 Gyr ago. Combined sulfur and neodymium isotope data suggest that these signatures were transferred to the Innuksuac mantle through devolatilization and partial melting of terrigenous sediments derived from a Hadean (4.3–4.4 Gyr ago) continental source, providing a record of an early continental margin subduction environment. This result pushes back direct evidence of a subduction-driven volatile cycle to the onset of the terrestrial rock record, approximately 1 Gyr earlier than previously inferred from diamond inclusions.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to the full article PDF.
USD 39.95
Prices may be subject to local taxes which are calculated during checkout



Similar content being viewed by others
Data availability
Geochemical data that support the findings of this study are available within the paper and its Supplementary Information files, and via figshare at https://doi.org/10.6084/m9.figshare.27073267 (ref. 70).
References
Farquhar, J., Bao, H. & Thiemens, M. Atmospheric influence of Earth’s earliest sulfur cycle. Science 289, 756–758 (2000).
Farquhar, J. & Wing, B. A. Multiple sulfur isotopes and the evolution of the atmosphere. Earth Planet. Sci. Lett. 213, 1–13 (2003).
Ono, S. Photochemistry of sulfur dioxide and the origin of mass-independent isotope fractionation in Earth’s atmosphere. Annu. Rev. Earth Planet. Sci. 45, 301–329 (2017).
Farquhar, J., Savarino, J., Airieau, S. & Thiemens, M. H. Observation of wavelength-sensitive mass-independent sulfur isotope effects during SO2 photolysis: implications for the early atmosphere. J. Geophys. Res. Planets 106, 32829–32839 (2001).
Pavlov, A. A. & Kasting, J. F. Mass-independent fractionation of sulfur isotopes in Archean sediments: strong evidence for an anoxic Archean atmosphere. Astrobiology 2, 27–41 (2002).
Papineau, D., Mojzsis, S. J. & Schmitt, A. K. Multiple sulfur isotopes from Paleoproterozoic Huronian interglacial sediments and the rise of atmospheric oxygen. Earth Planet. Sci. Lett. 255, 188–212 (2007).
Reinhard, C. T., Planavsky, N. J. & Lyons, T. W. Long-term sedimentary recycling of rare sulphur isotope anomalies. Nature 497, 100–103 (2013).
Ueno, Y., Ono, S., Rumble, D. & Maruyama, S. Quadruple sulfur isotope analysis of ca. 3.5 Ga Dresser Formation: new evidence for microbial sulfate reduction in the early Archean. Geochim. Cosmochim. Acta 72, 5675–5691 (2008).
Smit, K. V., Shirey, S. B., Hauri, E. H. & Stern, R. A. Sulfur isotopes in diamonds reveal differences in continent construction. Science 364, 383–385 (2019).
Farquhar, J. et al. Mass-independent sulfur of inclusions in diamond and sulfur recycling on early Earth. Science 298, 2369–2372 (2002).
Thomassot, E. et al. Metasomatic diamond growth: a multi-isotope study (13C, 15N, 33S, 34S) of sulphide inclusions and their host diamonds from Jwaneng (Botswana). Earth Planet. Sci. Lett. 282, 79–90 (2009).
Cartigny, P. et al. A mantle origin for Paleoarchean peridotitic diamonds from the Panda kimberlite, Slave Craton: evidence from 13C-, 15N- and 33,34S-stable isotope systematics. Lithos 112, 852–864 (2009).
Shirey, S. B. & Richardson, S. H. Start of the Wilson cycle at 3 Ga shown by diamonds from subcontinental mantle. Science 333, 434–436 (2011).
Brown, M., Johnson, T. & Gardiner, N. J. Plate tectonics and the Archean Earth. Annu. Rev. Earth Planet. Sci. 48, 291–320 (2020).
Bédard, J. H. Stagnant lids and mantle overturns: implications for Archaean tectonics, magmagenesis, crustal growth, mantle evolution, and the start of plate tectonics. Geosci. Front. 9, 19–49 (2018).
Grocolas, T., Bouilhol, P., Caro, G. & Mojzsis, S. J. Eoarchean subduction-like magmatism recorded in 3750 Ma mafic–ultramafic rocks of the Ukaliq supracrustal belt (Québec). Contrib. Mineral. Petrol. 177, 39 (2022).
Turner, S., Rushmer, T., Reagan, M. & Moyen, J.-F. Heading down early on? Start of subduction on Earth. Geology 42, 139–142 (2014).
Polat, A., Hofmann, A. W. & Rosing, M. T. Boninite-like volcanic rocks in the 3.7-3.8 Ga Isua greenstone belt, West Greenland: geochemical evidence for intra-oceanic subduction zone processes in the early Earth. Chem. Geol. 184, 231–254 (2002).
Turner, S., Wilde, S., Wörner, G., Schaefer, B. & Lai, Y.-J. An andesitic source for Jack Hills zircon supports onset of plate tectonics in the Hadean. Nat. Commun. 11, 1241 (2020).
Chowdhury, W., Trail, D., Miller, M. & Savage, P. Eoarchean and Hadean melts reveal arc-like trace element and isotopic signatures. Nat. Commun. 14, 1140 (2023).
Ge, R.-F., Wilde, S. A., Zhu, W.-B. & Wang, X.-L. Earth’s early continental crust formed from wet and oxidizing arc magmas. Nature 623, 334–339 (2023).
Siedenberg, K., Strauss, H. & Hoffmann, E. J. Multiple sulfur isotope signature of early Archean oceanic crust, Isua (SW-Greenland). Precambrian Res. 283, 1–12 (2016).
Lewis, J. A. et al. Sulfur isotope evidence from peridotite enclaves in southern west Greenland for recycling of surface material into Eoarchean depleted mantle domains. Chem. Geol. 633, 121568 (2023).
O’Neil, J., Carlson, R. W., Francis, D. & Stevenson, R. K. Neodymium-142 evidence for Hadean mafic crust. Science 321, 1828–1831 (2008).
Cates, N. L., Ziegler, K., Schmitt, A. K. & Mojzsis, S. J. Reduced, reused and recycled: detrital zircons define a maximum age for the Eoarchean (ca. 3750-3780 Ma) Nuvvuagittuq Supracrustal Belt, Québec (Canada). Earth Planet. Sci. Lett. 362, 283–293 (2013).
Caro, G., Morino, P., Mojzsis, S. J., Cates, N. L. & Bleeker, W. Sluggish Hadean geodynamics: evidence from coupled 146,147Sm–142,143Nd systematics in Eoarchean supracrustal rocks of the Inukjuak domain (Québec). Earth Planet. Sci. Lett. 457, 23–37 (2017).
Schmidt, M. W. & Jagoutz, O. The global systematics of primitive arc melts. Geochem. Geophys. Geosyst. 18, 2817–2854 (2017).
Stern, C. R. Subduction erosion: rates, mechanisms, and its role in arc magmatism and the evolution of the continental crust and mantle. Gondwana Res. 20, 284–308 (2011).
Paris, G., Sessions, A. L., Subhas, A. V. & Adkins, J. F. MC-ICP-MS measurement of δ34S and ∆33S in small amounts of dissolved sulfate. Chem. Geol. 345, 50–61 (2013).
de Moor, J. M. et al. Sulfur degassing at Erta Ale (Ethiopia) and Masaya (Nicaragua) volcanoes: implications for degassing processes and oxygen fugacities of basaltic systems. Geochem. Geophys. Geosyst. 14, 4076–4108 (2013).
Marini, L., Moretti, R. & Accornero, M. Sulfur isotopes in magmatic-hydrothermal systems, melts, and magmas. Rev. Mineral. Geochem. 73, 423–492 (2011).
Lewis, J. A. et al. Sulfur isotope evidence for surface-derived sulfur in Eoarchean TTGs. Earth Planet. Sci. Lett. 576, 117218 (2021).
Alt, J. C. & Shanks, W. C. Microbial sulfate reduction and the sulfur budget for a complete section of altered oceanic basalts, IODP Hole 1256D (eastern Pacific). Earth Planet. Sci. Lett. 310, 73–83 (2011).
Tomkins, A. G. Windows of metamorphic sulfur liberation in the crust: implications for gold deposit genesis. Geochim. Cosmochim. Acta 74, 3246–3259 (2010).
Elliott, T., Plank, T., Zindler, A., White, W. & Bourdon, B. Element transport from slab to volcanic front at the Mariana arc. J. Geophys. Res. 102, 14991–15019 (1997).
Roman, A. & Arndt, N. Differentiated Archean oceanic crust: its thermal structure, mechanical stability and a test of the sagduction hypothesis. Geochim. Cosmochim. Acta 278, 65–77 (2020).
Caruso, S., Selvaraja, V., Fiorentini, M., & LaFlamme, C. The Global Sedimentary Sulfur Isotope Database (Centre For Exploration And Targeting, University of Western Australia, 2017); https://doi.org/10.26182/12r5-6z79
Taracsák, Z. et al. Sulfur from the subducted slab dominates the sulfur budget of the mantle wedge under volcanic arcs. Earth Planet. Sci. Lett. 602, 117948 (2023).
de Moor, J. M., Fischer, T. P. & Plank, T. Constraints on the sulfur subduction cycle in Central America from sulfur isotope compositions of volcanic gases. Chem. Geol. 588, 120627 (2022).
Muth, M. J. & Wallace, P. J. Sulfur recycling in subduction zones and the oxygen fugacity of mafic arc magmas. Earth Planet. Sci. Lett. 599, 117836 (2022).
Tomkins, A. G. & Evans, K. A. Separate zones of sulfate and sulfide release from subducted mafic oceanic crust. Earth Planet. Sci. Lett. 428, 73–83 (2015).
Crowe, S. A. et al. Sulfate was a trace constituent of Archean seawater. Science 346, 735–739 (2014).
Paris, G. et al. Deposition of sulfate aerosols with positive Δ33S in the Neoarchean. Geochim. Cosmochim. Acta 285, 1–20 (2020).
Connelly, J. N. & Bizzarro, M. Lead isotope evidence for a young formation age of the Earth–Moon system. Earth Planet. Sci. Lett. 452, 36–43 (2016).
Johnson, M. C. & Plank, T. Dehydration and melting experiments constrain the fate of subducted sediments. Geochem. Geophys. Geosyst. 1, 1007 (2000).
Plank, T. Constraints from thorium/lanthanum on sediment recycling at subduction zones and the evolution of the continents. J. Petrol. 46, 921–944 (2005).
Plank, T. & Langmuir, C. H. The chemical composition of subducting sediment and its consequences for the crust and mantle. Chem. Geol. 145, 325–394 (1998).
Class, C., Miller, D. M., Goldstein, S. L. & Langmuir, C. H. Distinguishing melt and fluid subduction components in Umnak volcanics, Aleutian Arc. Geochem. Geophys. Geosyst. 1, 1004 (2000).
Cates, N. L. & Mojzsis, S. J. Pre-3750 Ma supracrustal rocks from the Nuvvuagittuq supracrustal belt, northern Québec. Earth Planet. Sci. Lett. 255, 9–21 (2007).
Morino, P., Caro, G., Reisberg, L. & Schumacher, A. Chemical stratification in the post-magma ocean Earth inferred from coupled 146,147Sm–142,143Nd systematics in ultramafic rocks of the Saglek block (3.25–3.9 Ga; northern Labrador, Canada). Earth Planet. Sci. Lett. 463, 136–150 (2017).
McGovern, P. J. & Schubert, G. Thermal evolution of the Earth: effects of volatile exchange between atmosphere and interior. Earth Planet. Sci. Lett. 96, 27–37 (1989).
Mojzsis, S. J. in Earth’s Oldest Rocks Vol. 15 (eds Van Kranendonk, M. J. et al.) 923–970 (Elsevier, 2007).
Kubota, Y., Matsu’ura, F., Shimizu, K., Ishikawa, A. & Ueno, Y. Sulfur in Archean komatiite implies early subduction of oceanic lithosphere. Earth Planet. Sci. Lett. 598, 117826 (2022).
Thomassot, E., O'Neil, J., Francis, D., Cartigny, P. & Wing, B. A. Atmospheric record in the Hadean Eon from multiple sulfur isotope measurements in Nuvvuagittuq Greenstone Belt (Nunavik, Quebec). Proc.Natl Acad. Sci. USA 112, 707–712 (2015).
Labidi, J., Cartigny, P. & Moreira, M. Non-chondritic sulphur isotope composition of the terrestrial mantle. Nature 501, 208–211 (2013).
Jenner, F. E. & O'Neill, H. S. C. Analysis of 60 elements in 616 ocean floor basaltic glasses. Geochem. Geophys. Geosyst. 13, Q02005 (2012).
O'Neil, J., Carlson, R. W., Paquette, J.-L. & Francis, D. Formation age and metamorphic history of the Nuvvuagittuq Greenstone Belt. Precambrian Res. 220-221, 23–44 (2012).
Turner, S. J. & Langmuir, C. H. The global chemical systematics of arc front stratovolcanoes: evaluating the role of crustal processes. Earth Planet. Sci. Lett. 422, 182–193 (2015).
Turner, S. J. & Langmuir, C. H. An evaluation of five models of arc volcanism. J. Petrol. 63, egac010 (2022).
Paris, G. Determination of unbiased δ34S and Δ33S values by MC-ICP-MS using down to 30 nmol of sulfur. Geostand. Geoanal. Res. 48, 29–42 (2024).
Theiling, B. P. & Coleman, M. Refining the extraction methodology of carbonate associated sulfate: evidence from synthetic and natural carbonate samples. Chem. Geol. 411, 36–48 (2015).
Shen, B. et al. Carbon, sulfur, and oxygen isotope evidence for a strong depth gradient and oceanic oxidation after the Ediacaran Hankalchough glaciation. Geochim. Cosmochim. Acta 75, 1357–1373 (2011).
Xiao, S. et al. Integrated chemostratigraphy of the Doushantuo Formation at the northern Xiaofenghe section (Yangtze Gorges, south China) and its implication for Ediacaran stratigraphic correlation and ocean redox models. Precambrian Res. 192–195, 125–141 (2012).
Paris, G., Adkins, J. F., Sessions, A. L., Webb, S. M. & Fischer, W. W. Neoarchean carbonate-associated sulfate records positive Δ33S anomalies. Science 346, 739–741 (2014).
Rodiouchkina, K., Rodushkin, I., Goderis, S. & Vanhaecke, F. A comprehensive evaluation of sulfur isotopic analysis (δ34S and δ33S) using multi-collector ICP-MS with characterization of reference materials of geological and biological origin. Anal. Chim. Acta 1240, 340744 (2023).
Erdman, M. E., Lee, C.-T. A., Yang, W. & Ingram, L. Sulfur concentration in geochemical reference materials by solution inductively coupled plasma-mass spectrometry. Geostand. Geoanal. Res. 38, 51–60 (2014).
Armstrong, J. CITZAF: a package of correction programs for the quantitative electron microbeam X-ray-analysis of thick polished materials, thin-films, and particles. Microbeam Anal. 4, 177–200 (1995).
Pearce, N. J. G. et al. A compilation of new and published major and trace element data for NIST SRM 610 and NIST SRM 612 glass reference materials. Geostand. Newslett. 21, 115–144 (1997).
Jackson, S. in Laser Ablation ICP-MS in the Earth Sciences: Current Practices and Outstanding Issues (ed. Sylvester, P.) 169–188 (Mineralogical Association of Canada, 2008).
Caro, G. et al. Early Archaean onset of volatile cycling at subduction zones [dataset]. figshare https://doi.org/10.6084/m9.figshare.27073267 (2025).
Acknowledgements
We gratefully acknowledge A. Schumacher, D. Cividini and C. Zimmermann for their essential support in maintaining the Neptune and clean labs in optimal condition. G.C. and S.J.M. acknowledge logistical assistance for work in the Nuvvuagittuq area from the Pituvik Corporation of Nunavik (Québec). All licenses and permits for sample collections were obtained in advance from the local authorities, and in full consultation with the mayoral office in Inukjuak (town). We honour the cultural significance of these lands to the people of Nunavik. Financial support for this project was provided by the Programme National de Planétologie (PNP) of CNRS/INSU, co-funded by CNES (G.C.). The HUN-REN Research Centre for Astronomy and Earth Sciences (CSFK), Alexander von Humboldt Foundation and the Planetary Habitability Laboratory (PHAB) of the University of Oslo provided generous support (S.J.M.) during significant phases of the project. Isotopic analyses were conducted at the IRISS platform of the RéGEF network.
Author information
Authors and Affiliations
Contributions
G.C.: project conception, funding acquisition, data collection, data interpretation and original paper drafting. T.G.: data collection, paper review and editing. P. Bourgeois: data collection. P. Bouilhol: paper review and editing. S.J.M.: paper review and editing. G.P.: project conception, data collection, paper review and editing.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Geoscience thanks J. Elis Hoffmann, Simon Turner and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Alison Hunt, in collaboration with the Nature Geoscience team.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Supplementary Discussion and Figs. 1–5.
Supplementary Tables 1–7
Supplementary Table 1: total sulfur concentration and sulfur isotopic composition in USB amphibolites and surrounding granitoids. Supplementary Table 2: sulfur isotopic composition of geostandards. Supplementary Table 3: major element, trace element and 142Nd compositions of USB amphibolites and surrounding granitoids. Supplementary Table 4: mineral major element concentrations. Supplementary Table 5: mineral trace element concentrations. Supplementary Table 6: mineralogical composition, melting reactions and partition coefficients used in the melting model. Supplementary Table 7: Melting model parameters.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Caro, G., Grocolas, T., Bourgeois, P. et al. Early Archaean onset of volatile cycling at subduction zones. Nat. Geosci. 18, 436–442 (2025). https://doi.org/10.1038/s41561-025-01677-5
Received:
Accepted:
Published:
Version of record:
Issue date:
DOI: https://doi.org/10.1038/s41561-025-01677-5
This article is cited by
-
Early start to volatile cycling
Nature Geoscience (2025)
-
Major-element, trace-element and sulfur-isotope evidence for arc-like magmatism in the 4.0–2.9 Ga Acasta Gneiss Complex
Contributions to Mineralogy and Petrology (2025)


