Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Early Archaean onset of volatile cycling at subduction zones

Abstract

The subduction of pelagic sediments and altered oceanic crust modulates the global cycle of volatile elements. Sulfate and carbonate fluids released when one plate descends beneath another modify the redox state of the mantle, and generate the return of water and reactive gases to the atmosphere and hydrosphere via arc volcanism, affecting planetary habitability over geologic timescales. However, the timing of the onset of subduction remains uncertain, hindering our understanding of how deep geochemical cycles operated on the early Earth. Here we measure sulfur and neodymium isotope data on Eoarchaean mantle-derived rocks of the Innuksuac Complex in northern Québec, Canada, with petrological characteristics of arc magmas. These rocks exhibit anomalous sulfur isotopic compositions originally produced by photochemical reactions in the atmosphere more than 3.8 Gyr ago. Combined sulfur and neodymium isotope data suggest that these signatures were transferred to the Innuksuac mantle through devolatilization and partial melting of terrigenous sediments derived from a Hadean (4.3–4.4 Gyr ago) continental source, providing a record of an early continental margin subduction environment. This result pushes back direct evidence of a subduction-driven volatile cycle to the onset of the terrestrial rock record, approximately 1 Gyr earlier than previously inferred from diamond inclusions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Sulfur isotope compositions in metalavas and granitoid gneisses of the Innuksuaq Complex.
Fig. 2: Relationships between Δ33S values and ratios of moderately incompatible elements in USB metalavas.
Fig. 3: Nd isotopic compositions and Th/Nd ratios in NSB/USB amphibolites and modern arc lavas.

Similar content being viewed by others

Data availability

Geochemical data that support the findings of this study are available within the paper and its Supplementary Information files, and via figshare at https://doi.org/10.6084/m9.figshare.27073267 (ref. 70).

References

  1. Farquhar, J., Bao, H. & Thiemens, M. Atmospheric influence of Earth’s earliest sulfur cycle. Science 289, 756–758 (2000).

    Article  CAS  Google Scholar 

  2. Farquhar, J. & Wing, B. A. Multiple sulfur isotopes and the evolution of the atmosphere. Earth Planet. Sci. Lett. 213, 1–13 (2003).

    Article  CAS  Google Scholar 

  3. Ono, S. Photochemistry of sulfur dioxide and the origin of mass-independent isotope fractionation in Earth’s atmosphere. Annu. Rev. Earth Planet. Sci. 45, 301–329 (2017).

    Article  CAS  Google Scholar 

  4. Farquhar, J., Savarino, J., Airieau, S. & Thiemens, M. H. Observation of wavelength-sensitive mass-independent sulfur isotope effects during SO2 photolysis: implications for the early atmosphere. J. Geophys. Res. Planets 106, 32829–32839 (2001).

    Article  CAS  Google Scholar 

  5. Pavlov, A. A. & Kasting, J. F. Mass-independent fractionation of sulfur isotopes in Archean sediments: strong evidence for an anoxic Archean atmosphere. Astrobiology 2, 27–41 (2002).

    Article  CAS  Google Scholar 

  6. Papineau, D., Mojzsis, S. J. & Schmitt, A. K. Multiple sulfur isotopes from Paleoproterozoic Huronian interglacial sediments and the rise of atmospheric oxygen. Earth Planet. Sci. Lett. 255, 188–212 (2007).

    Article  CAS  Google Scholar 

  7. Reinhard, C. T., Planavsky, N. J. & Lyons, T. W. Long-term sedimentary recycling of rare sulphur isotope anomalies. Nature 497, 100–103 (2013).

    Article  CAS  Google Scholar 

  8. Ueno, Y., Ono, S., Rumble, D. & Maruyama, S. Quadruple sulfur isotope analysis of ca. 3.5 Ga Dresser Formation: new evidence for microbial sulfate reduction in the early Archean. Geochim. Cosmochim. Acta 72, 5675–5691 (2008).

    Article  CAS  Google Scholar 

  9. Smit, K. V., Shirey, S. B., Hauri, E. H. & Stern, R. A. Sulfur isotopes in diamonds reveal differences in continent construction. Science 364, 383–385 (2019).

    Article  CAS  Google Scholar 

  10. Farquhar, J. et al. Mass-independent sulfur of inclusions in diamond and sulfur recycling on early Earth. Science 298, 2369–2372 (2002).

    Article  CAS  Google Scholar 

  11. Thomassot, E. et al. Metasomatic diamond growth: a multi-isotope study (13C, 15N, 33S, 34S) of sulphide inclusions and their host diamonds from Jwaneng (Botswana). Earth Planet. Sci. Lett. 282, 79–90 (2009).

    Article  CAS  Google Scholar 

  12. Cartigny, P. et al. A mantle origin for Paleoarchean peridotitic diamonds from the Panda kimberlite, Slave Craton: evidence from 13C-, 15N- and 33,34S-stable isotope systematics. Lithos 112, 852–864 (2009).

    Article  Google Scholar 

  13. Shirey, S. B. & Richardson, S. H. Start of the Wilson cycle at 3 Ga shown by diamonds from subcontinental mantle. Science 333, 434–436 (2011).

    Article  CAS  Google Scholar 

  14. Brown, M., Johnson, T. & Gardiner, N. J. Plate tectonics and the Archean Earth. Annu. Rev. Earth Planet. Sci. 48, 291–320 (2020).

    Article  CAS  Google Scholar 

  15. Bédard, J. H. Stagnant lids and mantle overturns: implications for Archaean tectonics, magmagenesis, crustal growth, mantle evolution, and the start of plate tectonics. Geosci. Front. 9, 19–49 (2018).

    Article  Google Scholar 

  16. Grocolas, T., Bouilhol, P., Caro, G. & Mojzsis, S. J. Eoarchean subduction-like magmatism recorded in 3750 Ma mafic–ultramafic rocks of the Ukaliq supracrustal belt (Québec). Contrib. Mineral. Petrol. 177, 39 (2022).

    Article  CAS  Google Scholar 

  17. Turner, S., Rushmer, T., Reagan, M. & Moyen, J.-F. Heading down early on? Start of subduction on Earth. Geology 42, 139–142 (2014).

    Article  CAS  Google Scholar 

  18. Polat, A., Hofmann, A. W. & Rosing, M. T. Boninite-like volcanic rocks in the 3.7-3.8 Ga Isua greenstone belt, West Greenland: geochemical evidence for intra-oceanic subduction zone processes in the early Earth. Chem. Geol. 184, 231–254 (2002).

    Article  CAS  Google Scholar 

  19. Turner, S., Wilde, S., Wörner, G., Schaefer, B. & Lai, Y.-J. An andesitic source for Jack Hills zircon supports onset of plate tectonics in the Hadean. Nat. Commun. 11, 1241 (2020).

    Article  CAS  Google Scholar 

  20. Chowdhury, W., Trail, D., Miller, M. & Savage, P. Eoarchean and Hadean melts reveal arc-like trace element and isotopic signatures. Nat. Commun. 14, 1140 (2023).

    Article  CAS  Google Scholar 

  21. Ge, R.-F., Wilde, S. A., Zhu, W.-B. & Wang, X.-L. Earth’s early continental crust formed from wet and oxidizing arc magmas. Nature 623, 334–339 (2023).

    Article  CAS  Google Scholar 

  22. Siedenberg, K., Strauss, H. & Hoffmann, E. J. Multiple sulfur isotope signature of early Archean oceanic crust, Isua (SW-Greenland). Precambrian Res. 283, 1–12 (2016).

    Article  CAS  Google Scholar 

  23. Lewis, J. A. et al. Sulfur isotope evidence from peridotite enclaves in southern west Greenland for recycling of surface material into Eoarchean depleted mantle domains. Chem. Geol. 633, 121568 (2023).

    Article  CAS  Google Scholar 

  24. O’Neil, J., Carlson, R. W., Francis, D. & Stevenson, R. K. Neodymium-142 evidence for Hadean mafic crust. Science 321, 1828–1831 (2008).

    Article  Google Scholar 

  25. Cates, N. L., Ziegler, K., Schmitt, A. K. & Mojzsis, S. J. Reduced, reused and recycled: detrital zircons define a maximum age for the Eoarchean (ca. 3750-3780 Ma) Nuvvuagittuq Supracrustal Belt, Québec (Canada). Earth Planet. Sci. Lett. 362, 283–293 (2013).

    Article  CAS  Google Scholar 

  26. Caro, G., Morino, P., Mojzsis, S. J., Cates, N. L. & Bleeker, W. Sluggish Hadean geodynamics: evidence from coupled 146,147Sm–142,143Nd systematics in Eoarchean supracrustal rocks of the Inukjuak domain (Québec). Earth Planet. Sci. Lett. 457, 23–37 (2017).

    Article  CAS  Google Scholar 

  27. Schmidt, M. W. & Jagoutz, O. The global systematics of primitive arc melts. Geochem. Geophys. Geosyst. 18, 2817–2854 (2017).

    Article  CAS  Google Scholar 

  28. Stern, C. R. Subduction erosion: rates, mechanisms, and its role in arc magmatism and the evolution of the continental crust and mantle. Gondwana Res. 20, 284–308 (2011).

    Article  CAS  Google Scholar 

  29. Paris, G., Sessions, A. L., Subhas, A. V. & Adkins, J. F. MC-ICP-MS measurement of δ34S and ∆33S in small amounts of dissolved sulfate. Chem. Geol. 345, 50–61 (2013).

    Article  CAS  Google Scholar 

  30. de Moor, J. M. et al. Sulfur degassing at Erta Ale (Ethiopia) and Masaya (Nicaragua) volcanoes: implications for degassing processes and oxygen fugacities of basaltic systems. Geochem. Geophys. Geosyst. 14, 4076–4108 (2013).

    Article  Google Scholar 

  31. Marini, L., Moretti, R. & Accornero, M. Sulfur isotopes in magmatic-hydrothermal systems, melts, and magmas. Rev. Mineral. Geochem. 73, 423–492 (2011).

    Article  CAS  Google Scholar 

  32. Lewis, J. A. et al. Sulfur isotope evidence for surface-derived sulfur in Eoarchean TTGs. Earth Planet. Sci. Lett. 576, 117218 (2021).

    Article  CAS  Google Scholar 

  33. Alt, J. C. & Shanks, W. C. Microbial sulfate reduction and the sulfur budget for a complete section of altered oceanic basalts, IODP Hole 1256D (eastern Pacific). Earth Planet. Sci. Lett. 310, 73–83 (2011).

    Article  CAS  Google Scholar 

  34. Tomkins, A. G. Windows of metamorphic sulfur liberation in the crust: implications for gold deposit genesis. Geochim. Cosmochim. Acta 74, 3246–3259 (2010).

    Article  CAS  Google Scholar 

  35. Elliott, T., Plank, T., Zindler, A., White, W. & Bourdon, B. Element transport from slab to volcanic front at the Mariana arc. J. Geophys. Res. 102, 14991–15019 (1997).

    Article  CAS  Google Scholar 

  36. Roman, A. & Arndt, N. Differentiated Archean oceanic crust: its thermal structure, mechanical stability and a test of the sagduction hypothesis. Geochim. Cosmochim. Acta 278, 65–77 (2020).

    Article  CAS  Google Scholar 

  37. Caruso, S., Selvaraja, V., Fiorentini, M., & LaFlamme, C. The Global Sedimentary Sulfur Isotope Database (Centre For Exploration And Targeting, University of Western Australia, 2017); https://doi.org/10.26182/12r5-6z79

  38. Taracsák, Z. et al. Sulfur from the subducted slab dominates the sulfur budget of the mantle wedge under volcanic arcs. Earth Planet. Sci. Lett. 602, 117948 (2023).

    Article  Google Scholar 

  39. de Moor, J. M., Fischer, T. P. & Plank, T. Constraints on the sulfur subduction cycle in Central America from sulfur isotope compositions of volcanic gases. Chem. Geol. 588, 120627 (2022).

    Article  Google Scholar 

  40. Muth, M. J. & Wallace, P. J. Sulfur recycling in subduction zones and the oxygen fugacity of mafic arc magmas. Earth Planet. Sci. Lett. 599, 117836 (2022).

    Article  CAS  Google Scholar 

  41. Tomkins, A. G. & Evans, K. A. Separate zones of sulfate and sulfide release from subducted mafic oceanic crust. Earth Planet. Sci. Lett. 428, 73–83 (2015).

    Article  CAS  Google Scholar 

  42. Crowe, S. A. et al. Sulfate was a trace constituent of Archean seawater. Science 346, 735–739 (2014).

    Article  CAS  Google Scholar 

  43. Paris, G. et al. Deposition of sulfate aerosols with positive Δ33S in the Neoarchean. Geochim. Cosmochim. Acta 285, 1–20 (2020).

    Article  CAS  Google Scholar 

  44. Connelly, J. N. & Bizzarro, M. Lead isotope evidence for a young formation age of the Earth–Moon system. Earth Planet. Sci. Lett. 452, 36–43 (2016).

    Article  CAS  Google Scholar 

  45. Johnson, M. C. & Plank, T. Dehydration and melting experiments constrain the fate of subducted sediments. Geochem. Geophys. Geosyst. 1, 1007 (2000).

    Article  Google Scholar 

  46. Plank, T. Constraints from thorium/lanthanum on sediment recycling at subduction zones and the evolution of the continents. J. Petrol. 46, 921–944 (2005).

    Article  CAS  Google Scholar 

  47. Plank, T. & Langmuir, C. H. The chemical composition of subducting sediment and its consequences for the crust and mantle. Chem. Geol. 145, 325–394 (1998).

    Article  CAS  Google Scholar 

  48. Class, C., Miller, D. M., Goldstein, S. L. & Langmuir, C. H. Distinguishing melt and fluid subduction components in Umnak volcanics, Aleutian Arc. Geochem. Geophys. Geosyst. 1, 1004 (2000).

    Article  Google Scholar 

  49. Cates, N. L. & Mojzsis, S. J. Pre-3750 Ma supracrustal rocks from the Nuvvuagittuq supracrustal belt, northern Québec. Earth Planet. Sci. Lett. 255, 9–21 (2007).

    Article  CAS  Google Scholar 

  50. Morino, P., Caro, G., Reisberg, L. & Schumacher, A. Chemical stratification in the post-magma ocean Earth inferred from coupled 146,147Sm–142,143Nd systematics in ultramafic rocks of the Saglek block (3.25–3.9 Ga; northern Labrador, Canada). Earth Planet. Sci. Lett. 463, 136–150 (2017).

    Article  CAS  Google Scholar 

  51. McGovern, P. J. & Schubert, G. Thermal evolution of the Earth: effects of volatile exchange between atmosphere and interior. Earth Planet. Sci. Lett. 96, 27–37 (1989).

    Article  CAS  Google Scholar 

  52. Mojzsis, S. J. in Earth’s Oldest Rocks Vol. 15 (eds Van Kranendonk, M. J. et al.) 923–970 (Elsevier, 2007).

  53. Kubota, Y., Matsu’ura, F., Shimizu, K., Ishikawa, A. & Ueno, Y. Sulfur in Archean komatiite implies early subduction of oceanic lithosphere. Earth Planet. Sci. Lett. 598, 117826 (2022).

    Article  CAS  Google Scholar 

  54. Thomassot, E., O'Neil, J., Francis, D., Cartigny, P. & Wing, B. A. Atmospheric record in the Hadean Eon from multiple sulfur isotope measurements in Nuvvuagittuq Greenstone Belt (Nunavik, Quebec). Proc.Natl Acad. Sci. USA 112, 707–712 (2015).

    Article  CAS  Google Scholar 

  55. Labidi, J., Cartigny, P. & Moreira, M. Non-chondritic sulphur isotope composition of the terrestrial mantle. Nature 501, 208–211 (2013).

    Article  CAS  Google Scholar 

  56. Jenner, F. E. & O'Neill, H. S. C. Analysis of 60 elements in 616 ocean floor basaltic glasses. Geochem. Geophys. Geosyst. 13, Q02005 (2012).

    Article  Google Scholar 

  57. O'Neil, J., Carlson, R. W., Paquette, J.-L. & Francis, D. Formation age and metamorphic history of the Nuvvuagittuq Greenstone Belt. Precambrian Res. 220-221, 23–44 (2012).

    Article  CAS  Google Scholar 

  58. Turner, S. J. & Langmuir, C. H. The global chemical systematics of arc front stratovolcanoes: evaluating the role of crustal processes. Earth Planet. Sci. Lett. 422, 182–193 (2015).

    Article  CAS  Google Scholar 

  59. Turner, S. J. & Langmuir, C. H. An evaluation of five models of arc volcanism. J. Petrol. 63, egac010 (2022).

    Article  Google Scholar 

  60. Paris, G. Determination of unbiased δ34S and Δ33S values by MC-ICP-MS using down to 30 nmol of sulfur. Geostand. Geoanal. Res. 48, 29–42 (2024).

    Article  CAS  Google Scholar 

  61. Theiling, B. P. & Coleman, M. Refining the extraction methodology of carbonate associated sulfate: evidence from synthetic and natural carbonate samples. Chem. Geol. 411, 36–48 (2015).

    Article  CAS  Google Scholar 

  62. Shen, B. et al. Carbon, sulfur, and oxygen isotope evidence for a strong depth gradient and oceanic oxidation after the Ediacaran Hankalchough glaciation. Geochim. Cosmochim. Acta 75, 1357–1373 (2011).

    Article  CAS  Google Scholar 

  63. Xiao, S. et al. Integrated chemostratigraphy of the Doushantuo Formation at the northern Xiaofenghe section (Yangtze Gorges, south China) and its implication for Ediacaran stratigraphic correlation and ocean redox models. Precambrian Res. 192–195, 125–141 (2012).

    Article  Google Scholar 

  64. Paris, G., Adkins, J. F., Sessions, A. L., Webb, S. M. & Fischer, W. W. Neoarchean carbonate-associated sulfate records positive Δ33S anomalies. Science 346, 739–741 (2014).

    Article  CAS  Google Scholar 

  65. Rodiouchkina, K., Rodushkin, I., Goderis, S. & Vanhaecke, F. A comprehensive evaluation of sulfur isotopic analysis (δ34S and δ33S) using multi-collector ICP-MS with characterization of reference materials of geological and biological origin. Anal. Chim. Acta 1240, 340744 (2023).

    Article  CAS  Google Scholar 

  66. Erdman, M. E., Lee, C.-T. A., Yang, W. & Ingram, L. Sulfur concentration in geochemical reference materials by solution inductively coupled plasma-mass spectrometry. Geostand. Geoanal. Res. 38, 51–60 (2014).

    Article  CAS  Google Scholar 

  67. Armstrong, J. CITZAF: a package of correction programs for the quantitative electron microbeam X-ray-analysis of thick polished materials, thin-films, and particles. Microbeam Anal. 4, 177–200 (1995).

    CAS  Google Scholar 

  68. Pearce, N. J. G. et al. A compilation of new and published major and trace element data for NIST SRM 610 and NIST SRM 612 glass reference materials. Geostand. Newslett. 21, 115–144 (1997).

    Article  CAS  Google Scholar 

  69. Jackson, S. in Laser Ablation ICP-MS in the Earth Sciences: Current Practices and Outstanding Issues (ed. Sylvester, P.) 169–188 (Mineralogical Association of Canada, 2008).

  70. Caro, G. et al. Early Archaean onset of volatile cycling at subduction zones [dataset]. figshare https://doi.org/10.6084/m9.figshare.27073267 (2025).

Download references

Acknowledgements

We gratefully acknowledge A. Schumacher, D. Cividini and C. Zimmermann for their essential support in maintaining the Neptune and clean labs in optimal condition. G.C. and S.J.M. acknowledge logistical assistance for work in the Nuvvuagittuq area from the Pituvik Corporation of Nunavik (Québec). All licenses and permits for sample collections were obtained in advance from the local authorities, and in full consultation with the mayoral office in Inukjuak (town). We honour the cultural significance of these lands to the people of Nunavik. Financial support for this project was provided by the Programme National de Planétologie (PNP) of CNRS/INSU, co-funded by CNES (G.C.). The HUN-REN Research Centre for Astronomy and Earth Sciences (CSFK), Alexander von Humboldt Foundation and the Planetary Habitability Laboratory (PHAB) of the University of Oslo provided generous support (S.J.M.) during significant phases of the project. Isotopic analyses were conducted at the IRISS platform of the RéGEF network.

Author information

Authors and Affiliations

Authors

Contributions

G.C.: project conception, funding acquisition, data collection, data interpretation and original paper drafting. T.G.: data collection, paper review and editing. P. Bourgeois: data collection. P. Bouilhol: paper review and editing. S.J.M.: paper review and editing. G.P.: project conception, data collection, paper review and editing.

Corresponding author

Correspondence to G. Caro.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Geoscience thanks J. Elis Hoffmann, Simon Turner and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Alison Hunt, in collaboration with the Nature Geoscience team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Discussion and Figs. 1–5.

Supplementary Tables 1–7

Supplementary Table 1: total sulfur concentration and sulfur isotopic composition in USB amphibolites and surrounding granitoids. Supplementary Table 2: sulfur isotopic composition of geostandards. Supplementary Table 3: major element, trace element and 142Nd compositions of USB amphibolites and surrounding granitoids. Supplementary Table 4: mineral major element concentrations. Supplementary Table 5: mineral trace element concentrations. Supplementary Table 6: mineralogical composition, melting reactions and partition coefficients used in the melting model. Supplementary Table 7: Melting model parameters.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Caro, G., Grocolas, T., Bourgeois, P. et al. Early Archaean onset of volatile cycling at subduction zones. Nat. Geosci. 18, 436–442 (2025). https://doi.org/10.1038/s41561-025-01677-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41561-025-01677-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing