Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Increased terrestrial ecosystem carbon storage associated with global utility-scale photovoltaic installation

Abstract

Utility-scale photovoltaic (USPV) stands out as one of the foremost renewable energy technologies crucial for achieving global climate targets, owing to its low carbon footprint. While individual case studies exist, a comprehensive global analysis of the impacts of USPV deployment on land-cover changes and subsequent carbon pool dynamics across diverse ecosystems remains lacking. Here we show that worldwide deployment of USPV plants between 2000 and 2018 would increase the carbon pool of the hosting ecosystem by a total of 2.1 TgC over their lifespans, as revealed by the ensemble mean of multiple datasets. Although the carbon pool changes associated with global USPV deployment currently contribute approximately \({15.9}_{-5.8}^{+1.0}\%\) (\({{{\mathrm{ensemble}}\; {\mathrm{mean}}}}_{-{{\mathrm{difference}}\; {\mathrm{to}}\; {\mathrm{percentile}}}\,25}^{+{{\mathrm{difference}}\; {\mathrm{to}}\; {\mathrm{percentile}}}\,75}\)) (or an average absolute carbon footprint of approximately \({10.5}_{-3.8}^{+0.5}\,{\mathrm{g}}\) CO2-equivalent per kilowatt-hour) of the carbon footprint of USPV plants, this share is projected to increase by around 7-fold by 2050, driven primarily by decreasing photovoltaic manufacturing emissions. Notably, optimizing land management strategies can potentially enhance carbon density in the hosting ecosystem of existing USPV plants by approximately \({3.0}_{-0.4}^{+3.7}\,{\mathrm{kgC}}\,{\mathrm{m}}^{-2}\), thereby facilitating an average reduction of \({4.3}_{-0.2}^{+9.3}\%\) in the carbon footprint of these USPV plants.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Land-cover patterns before and after USPV deployment.
Fig. 2: C pool changes induced by USPV deployment.
Fig. 3: Effect of C pool changes on C footprint of USPV plants.
Fig. 4: C pool and C footprint changes under different land management scenarios.

Similar content being viewed by others

Data availability

The global inventory of solar PV energy generating units utilized as basic data in this study is available via Zenodo at https://doi.org/10.5281/ZENODO.5005868 (ref. 77). The Landsat 5 and Landsat 8 atmospherically corrected surface reflectance data are available at https://www.usgs.gov/landsat-missions or in the Google Earth Engine (GEE) repository. The 300-m-resolution land-cover data are available at http://maps.elie.ucl.ac.be/CCI/viewer/download.php. The 10-m-resolution land-cover data are available at https://esa-worldcover.org/en or in the GEE repository. The observation-based C density data of soil are available via Zenodo at https://doi.org/10.5281/ZENODO.2536040 (ref. 78). The observation-based C density data of vegetation are available at https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=1763 (ref. 79). The C density data derived from models included in the Trendy dataset are available at https://mdosullivan.github.io/GCB. The ERA5-Land hourly reanalysis data are available at https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land?tab=overview (ref. 80) or in the GEE repository. The time series dataset developed in this study and the relevant data are available via Figshare at https://doi.org/10.6084/m9.figshare.28328765 (ref. 81). Source data are provided with this paper.

Code availability

The source code used in this study is available via Figshare at https://doi.org/10.6084/m9.figshare.28328810 (ref. 82).

References

  1. Renewables 2023 – Analysis (IEA, 2024); https://www.iea.org/reports/renewables-2023

  2. Renewables 2022 (IEA, 2022); https://www.iea.org/reports/renewables-2022

  3. Chen, S. et al. Deploying solar photovoltaic energy first in carbon-intensive regions brings gigatons more carbon mitigations to 2060. Commun. Earth Environ. 4, 369 (2023).

    Article  Google Scholar 

  4. Wang, S. et al. Future demand for electricity generation materials under different climate mitigation scenarios. Joule 7, 309–332 (2023).

    Article  CAS  Google Scholar 

  5. Future of Solar Photovoltaic: Deployment, Investment, Technology, Grid Integration and Socio-Economic Aspects (International Renewable Energy Agency, 2019).

  6. Global Renewables Outlook: Energy Transformation 2050 (International Renewable Energy Agency, 2020).

  7. Net Zero by 2050 – Analysis (IEA, 2021); https://www.iea.org/reports/net-zero-by-2050

  8. World Energy Outlook 2022 – Analysis (IEA, 2022); https://www.iea.org/reports/world-energy-outlook-2022

  9. Zhang, N. et al. Booming solar energy is encroaching on cropland. Nat. Geosci. 16, 932–934 (2023).

    Article  CAS  Google Scholar 

  10. Snapshot 2023 (IEA-PVPS, 2023); https://iea-pvps.org/snapshot-reports/snapshot-2023/

  11. Grodsky, S. M. & Hernandez, R. R. Reduced ecosystem services of desert plants from ground-mounted solar energy development. Nat. Sustain. 3, 1036–1043 (2020).

    Article  Google Scholar 

  12. Hernandez, R. R., Hoffacker, M. K. & Field, C. B. Efficient use of land to meet sustainable energy needs. Nat. Clim. Change 5, 353–358 (2015).

    Article  Google Scholar 

  13. Hernandez, R. R., Hoffacker, M. K., Murphy-Mariscal, M. L., Wu, G. C. & Allen, M. F. Solar energy development impacts on land cover change and protected areas. Proc. Natl Acad. Sci. USA 112, 13579–13584 (2015).

    Article  CAS  Google Scholar 

  14. Zhang, B., Zhang, R., Li, Y., Wang, S. & Xing, F. Ignoring the effects of photovoltaic array deployment on greenhouse gas emissions may lead to overestimation of the contribution of photovoltaic power generation to greenhouse gas reduction. Environ. Sci. Technol. 57, 4241–4252 (2023).

    Article  CAS  Google Scholar 

  15. van de Ven, D. et al. The potential land requirements and related land use change emissions of solar energy. Sci. Rep. 11, 2907 (2021).

    Article  Google Scholar 

  16. Kruitwagen, L. et al. A global inventory of photovoltaic solar energy generating units. Nature 598, 604–610 (2021).

    Article  CAS  Google Scholar 

  17. Yu, J., Wang, Z., Majumdar, A. & Rajagopal, R. DeepSolar: a machine learning framework to efficiently construct a solar deployment database in the United States. Joule 2, 2605–2617 (2018).

    Article  Google Scholar 

  18. Zhang, X., Xu, M., Wang, S., Huang, Y. & Xie, Z. Mapping photovoltaic power plants in China using Landsat, random forest, and Google Earth Engine. Earth Syst. Sci. Data 14, 3743–3755 (2022).

    Article  Google Scholar 

  19. Stowell, D. et al. A harmonised, high-coverage, open dataset of solar photovoltaic installations in the UK. Sci. Data 7, 394 (2020).

    Article  Google Scholar 

  20. Ortiz, A. et al. An artificial intelligence dataset for solar energy locations in India. Sci. Data 9, 497 (2022).

    Article  Google Scholar 

  21. Dunnett, S., Sorichetta, A., Taylor, G. & Eigenbrod, F. Harmonised global datasets of wind and solar farm locations and power. Sci. Data 7, 130 (2020).

    Article  Google Scholar 

  22. Snapshot 2022 (IEA-PVPS, 2022); https://iea-pvps.org/snapshot-reports/snapshot-2022/

  23. Beatty, B., Macknick, J., McCall, J., Braus, G. & Buckner, D. Native Vegetation Performance under a Solar PV Array at the National Wind Technology Center (NREL, 2017).

  24. Armstrong, A., Ostle, N. J. & Whitaker, J. Solar park microclimate and vegetation management effects on grassland carbon cycling. Environ. Res. Lett. 11, 074016 (2016).

    Article  Google Scholar 

  25. Dunnett, S., Holland, R. A., Taylor, G. & Eigenbrod, F. Predicted wind and solar energy expansion has minimal overlap with multiple conservation priorities across global regions. Proc. Natl Acad. Sci. USA 119, e2104764119 (2022).

    Article  CAS  Google Scholar 

  26. Bosmans, J. et al. Determinants of the distribution of utility-scale photovoltaic power facilities across the globe. Environ. Res. Lett. 17, 114006 (2022).

    Article  Google Scholar 

  27. Balta-Ozkan, N., Yildirim, J., Connor, P. M., Truckell, I. & Hart, P. Energy transition at local level: analyzing the role of peer effects and socio-economic factors on UK solar photovoltaic deployment. Energy Policy 148, 112004 (2021).

    Article  Google Scholar 

  28. Thormeyer, C., Sasse, J.-P. & Trutnevyte, E. Spatially-explicit models should consider real-world diffusion of renewable electricity: solar PV example in Switzerland. Renew. Energy 145, 363–374 (2020).

    Article  Google Scholar 

  29. Hernandez, R. R. et al. Techno–ecological synergies of solar energy for global sustainability. Nat. Sustain. 2, 560–568 (2019).

    Article  Google Scholar 

  30. Wang, Y. et al. Accelerating the energy transition towards photovoltaic and wind in China. Nature 619, 761–767 (2023).

    Article  CAS  Google Scholar 

  31. Sitch, S. et al. Evaluation of the terrestrial carbon cycle, future plant geography and climate‐carbon cycle feedbacks using five dynamic global vegetation models (DGVMs). Glob. Change Biol. 14, 2015–2039 (2008).

    Article  Google Scholar 

  32. International Energy Agency. Special Report on Solar PV Global Supply Chains (OECD, 2022).

  33. Stern, R. et al. Photovoltaic fields largely outperform afforestation efficiency in global climate change mitigation strategies. PNAS Nexus 2, pgad352 (2023).

    Article  Google Scholar 

  34. Global Energy and Climate Model – Analysis (IEA, 2024); https://www.iea.org/reports/global-energy-and-climate-model

  35. Ren, S. et al. Projected soil carbon loss with warming in constrained Earth system models. Nat. Commun. 15, 102 (2024).

    Article  CAS  Google Scholar 

  36. Piao, S. et al. Characteristics, drivers and feedbacks of global greening. Nat. Rev. Earth Environ. 1, 14–27 (2019).

    Article  Google Scholar 

  37. Ruehr, S. et al. Evidence and attribution of the enhanced land carbon sink. Nat. Rev. Earth Environ. 4, 518–534 (2023).

    Article  CAS  Google Scholar 

  38. Wu, D. et al. Accelerated terrestrial ecosystem carbon turnover and its drivers. Glob. Change Biol. 26, 5052–5062 (2020).

    Article  Google Scholar 

  39. Feron, S., Cordero, R. R., Damiani, A. & Jackson, R. B. Climate change extremes and photovoltaic power output. Nat. Sustain. 4, 270–276 (2020).

    Article  Google Scholar 

  40. Long, J. et al. Large-scale photovoltaic solar farms in the Sahara affect solar power generation potential globally. Commun. Earth Environ. 5, 11 (2024).

    Article  Google Scholar 

  41. Kannenberg, S. A., Sturchio, M. A., Venturas, M. D. & Knapp, A. K. Grassland carbon–water cycling is minimally impacted by a photovoltaic array. Commun. Earth Environ. 4, 238 (2023).

    Article  Google Scholar 

  42. Lambert, Q., Bischoff, A., Cueff, S., Cluchier, A. & Gros, R. Effects of solar park construction and solar panels on soil quality, microclimate, CO2 effluxes, and vegetation under a Mediterranean climate. Land Degrad. Dev. 32, 5190–5202 (2021).

    Article  Google Scholar 

  43. Armstrong, A., Waldron, S., Whitaker, J. & Ostle, N. J. Wind farm and solar park effects on plant–soil carbon cycling: uncertain impacts of changes in ground-level microclimate. Glob. Change Biol. 20, 1699–1706 (2014).

    Article  Google Scholar 

  44. Hu, A. et al. Impact of solar panels on global climate. Nat. Clim. Change 6, 290–294 (2016).

    Article  Google Scholar 

  45. Li, Y. et al. Climate model shows large-scale wind and solar farms in the Sahara increase rain and vegetation. Science 361, 1019–1022 (2018).

    Article  CAS  Google Scholar 

  46. Lu, Z. et al. Impacts of large‐scale Sahara solar farms on global climate and vegetation cover. Geophys. Res. Lett. 48, e2020GL090789 (2021).

    Article  Google Scholar 

  47. Krasner, N. Z. et al. Impacts of photovoltaic solar energy on soil carbon: a global systematic review and framework. Renew. Sustain. Energy Rev. 208, 115032 (2025).

    Article  CAS  Google Scholar 

  48. Renewables 2019 (IEA, 2019); https://www.iea.org/reports/renewables-2019

  49. USGS Landsat 5 Level 2, Collection 2, Tier 1. Earth Engine Data Catalog https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LT05_C02_T1_L2 (accessed 2024).

  50. USGS Landsat 8 Level 2, Collection 2, Tier 1. Earth Engine Data Catalog https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LC08_C02_T1_L2 (accessed 2024).

  51. Robinson, C., Ortiz, A., Ferres, J. M. L., Anderson, B. & Ho, D. E. Temporal cluster matching for change detection of structures from satellite imagery. In ACM SIGCAS Conference on Computing and Sustainable Societies (COMPASS) 138–146 (ACM, 2021).

  52. Pettitt, A. N. A non-parametric approach to the change-point problem. Appl. Stat. 28, 126–135 (1979).

    Article  Google Scholar 

  53. Chen, J., Zhu, X., Vogelmann, J. E., Gao, F. & Jin, S. A simple and effective method for filling gaps in Landsat ETM + SLC-off images. Remote Sens. Environ. 115, 1053–1064 (2011).

    Article  Google Scholar 

  54. Global Solar Atlas https://globalsolaratlas.info/map (accessed 2024).

  55. Tonita, E. M., Russell, A. C. J., Valdivia, C. E. & Hinzer, K. Optimal ground coverage ratios for tracked, fixed-tilt, and vertical photovoltaic systems for latitudes up to 75°N. Sol. Energy 258, 8–15 (2023).

    Article  Google Scholar 

  56. International Technology Roadmap for Photovoltaic (ITRPV) 9th edn (VDMA, 2018); https://www.vdma.org/international-technology-roadmap-photovoltaic

  57. Bosmans, J. H. C., Dammeier, L. C. & Huijbregts, M. A. J. Greenhouse gas footprints of utility-scale photovoltaic facilities at the global scale. Environ. Res. Lett. 16, 094056 (2021).

    Article  CAS  Google Scholar 

  58. Chen, Y. et al. From laboratory to production: learning models of efficiency and manufacturing cost of industrial crystalline silicon and thin-film photovoltaic technologies. IEEE J. Photovolt. 8, 1531–1538 (2018).

    Article  Google Scholar 

  59. Bhandari, K. P., Collier, J. M., Ellingson, R. J. & Apul, D. S. Energy payback time (EPBT) and energy return on energy invested (EROI) of solar photovoltaic systems: a systematic review and meta-analysis. Renew. Sustain. Energy Rev. 47, 133–141 (2015).

    Article  Google Scholar 

  60. Philipps, S. & Warmuth, W. Photovoltaics Report Fraunhofer Institute for Solar Energy Systems (Fraunhofer ISE, 2019).

  61. Solar plants typically install more panel capacity relative to their inverter capacity. EIA https://www.eia.gov/todayinenergy/detail.php?id=35372 (2018).

  62. Land Cover CCI Product User Guide Version 2. ESA maps.elie.ucl.ac.be/CCI/viewer/download/ESACCI-LC-Ph2-PUGv2_2.0.pdf (2017).

  63. Zanaga, D. et al. ESA WorldCover 10 m 2021 v200. Zenodo https://doi.org/10.5281/zenodo.7254221 (2022).

  64. Wu, Q. geemap: a Python package for interactive mapping with Google Earth Engine. JOSS 5, 2305 (2020).

    Article  Google Scholar 

  65. Wu, Q. et al. Integrating LiDAR data and multi-temporal aerial imagery to map wetland inundation dynamics using Google Earth Engine. Remote Sens. Environ. 228, 1–13 (2019).

    Article  Google Scholar 

  66. ERA5-Land Hourly Data from 2001 to Present (ECMWF, 2019).

  67. Yang, Y. et al. Terrestrial carbon sinks in China and around the world and their contribution to carbon neutrality. Sci. China Life Sci. 65, 861–895 (2022).

    Article  CAS  Google Scholar 

  68. Mehedi, T. H., Gemechu, E. & Kumar, A. Life cycle greenhouse gas emissions and energy footprints of utility-scale solar energy systems. Appl. Energy 314, 118918 (2022).

    Article  CAS  Google Scholar 

  69. Nian, V. Impacts of changing design considerations on the life cycle carbon emissions of solar photovoltaic systems. Appl. Energy 183, 1471–1487 (2016).

    Article  CAS  Google Scholar 

  70. Trade statistics for international business development. Trade Map https://www.trademap.org (accessed 2024).

  71. Life cycle inventories and life cycle assessments of photovoltaic systems. IEA-PVPS https://iea-pvps.org/key-topics/life-cycle-inventories-and-life-cycle-assessments-of-photovoltaic-systems/ (2020).

  72. Jerez, S. et al. The impact of climate change on photovoltaic power generation in Europe. Nat. Commun. 6, 10014 (2015).

    Article  CAS  Google Scholar 

  73. ERA5-Land Monthly Averaged Data from 2001 to Present (ECMWF, 2019).

  74. Frischknecht, R. et al. Methodology guidelines on life cycle assessment of photovoltaic 2020. IEA-PVPS https://iea-pvps.org/key-topics/methodology-guidelines-on-life-cycle-assessment-of-photovoltaic-2020/ (2020).

  75. Taha, H. The potential for air-temperature impact from large-scale deployment of solar photovoltaic arrays in urban areas. Sol. Energy 91, 358–367 (2013).

    Article  CAS  Google Scholar 

  76. Xu, Z., Li, Y., Qin, Y. & Bach, E. A global assessment of the effects of solar farms on albedo, vegetation, and land surface temperature using remote sensing. Sol. Energy 268, 112198 (2024).

    Article  Google Scholar 

  77. Kruitwagen, L. et al. A global inventory of solar photovoltaic generating units – dataset. Zenodo https://doi.org/10.5281/ZENODO.5005868 (2021).

  78. Hengl, T. & Wheeler, I. Soil organic carbon stock in kg/m2 for 5 standard depth intervals (0–10, 10–30, 30–60, 60–100 and 100–200 cm) at 250 m resolution. Zenodo https://doi.org/10.5281/ZENODO.2536040 (2018).

  79. Spawn, S. A. & Gibbs, H. K. Vegetation collection global aboveground and belowground biomass carbon density maps for the year 2010. ORNL DAAC https://doi.org/10.3334/ORNLDAAC/1763 (2020).

  80. ERA5-Land hourly data from 1950 to present. Copernicus Climate Change Service https://doi.org/10.24381/CDS.E2161BAC (2019).

  81. Wang, Q. Increased terrestrial ecosystem carbon storage associated with global utility-scale photovoltaic installation: datasets. Figshare https://doi.org/10.6084/M9.FIGSHARE.28328765 (2025).

  82. Wang, Q. Increased terrestrial ecosystem carbon storage associated with global utility-scale photovoltaic installation: code. Figshare https://doi.org/10.6084/M9.FIGSHARE.28328810 (2025).

Download references

Acknowledgements

We thank N. Carvalhais, P. McGuire, X. Yue, S. Falk and Q. Sun for their assistance. This work was financially supported by the National Natural Science Foundation of China (grant nos. 72293601 (Q.Y.) and 72242104 (Q.W.)), the Joint Research Fund in Smart Grid under cooperative agreement between the National Natural Science Foundation of China and State Grid Corporation of China (grant no. U1966601) (W.W.), and the Postdoctoral Innovation Talents Support Program of China (grant no. BX20240019) (K.W.). We also thank the members of the Harvard-China Project on Energy, Economy and Environment for their valuable comments and suggestions. We are grateful to the Harvard Global Institute for providing funding support to the Harvard-China Project on Energy, Economy and Environment. The computation is completed in the HPC Platform of Huazhong University of Science and Technology.

Author information

Authors and Affiliations

Authors

Contributions

Q.Y. and Q.W. designed the study. Q.W., K.W., L.S. and G.M. collected the data. M.W. contributed to economic analysis. X.T. performed accuracy validation of the datasets. S.S. and S.T. contributed to microclimate analysis. Q.W., K.W., L.S., S.S., J.K., O.M., L.Z. and W.W. performed data analysis and wrote the manuscript with substantial contributions from all co-authors.

Corresponding author

Correspondence to Qing Yang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Geoscience thanks Zhengyao Lu and Dirk-Jan van de Ven and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Xujia Jiang, in collaboration with the Nature Geoscience team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods A and B, Supplementary Figs. 1–22, Tables 1 and 2 and Supplementary Discussions A–F.

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Wang, K., Shao, L. et al. Increased terrestrial ecosystem carbon storage associated with global utility-scale photovoltaic installation. Nat. Geosci. 18, 607–614 (2025). https://doi.org/10.1038/s41561-025-01715-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41561-025-01715-2

This article is cited by

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene