Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Synchronous bipolar retreat of mid-latitude ice masses during Heinrich Stadials

Abstract

Millennial-scale climate variability in polar ice cores exhibits interhemispheric temperature asynchronicity during the last glacial period, approximately 70,000 to 15,000 years ago. This bipolar seesaw pattern is most pronounced during Heinrich Stadials, which correspond to recurring severe cooling episodes in the North Atlantic region following a weakening of the Atlantic overturning circulation. However, mid-latitude ice sheets and glaciers displayed similar fluctuations in both hemispheres during the most recent Heinrich Stadials, complicating our understanding of interhemispheric teleconnections. Here we provide a continuous millennial-scale record of New Zealand glacier fluctuations over the last glacial period, through the analysis of glaciogenic sediments deposited offshore South Island. We find that millennial-scale glacial retreats in New Zealand occurred during Heinrich Stadials, coinciding with a southerly shift of the South Pacific Subtropical Front inferred from planktic foraminiferal assemblages, and were probably—if not very probably—synchronous (within 1–2 kyr) with enhanced meltwater and iceberg production from the North American and European ice sheets. These findings demonstrate that global retreat of mid-latitude ice masses is a persistent feature of Heinrich Stadials, possibly driven by global energy gain and sustained in the Southern Hemisphere by heat accumulation resulting from the weak Atlantic overturning circulation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Location of the study area.
Fig. 2: Fluctuations of Fiordland glaciers and the STF from TAN1106-28 proxy records.
Fig. 3: Pacific glacier fluctuations and interhemispheric seesaw.
Fig. 4: Timing comparison of ice retreat between Fiordland and Alaska for HSs 1–6.
Fig. 5: Interhemispheric glacier fluctuations relative to HSs.

Similar content being viewed by others

Data availability

The datasets generated as part of this study (including chronological, foraminiferal, mineralogical and geochemical analyses performed on TAN1106-28) are available via the SEANOE repository at https://doi.org/10.17882/104634.

References

  1. Martin, K. C. et al. Bipolar impact and phasing of Heinrich-type climate variability. Nature 617, 100–104 (2023).

    Article  CAS  Google Scholar 

  2. Davtian, N. & Bard, E. A new view on abrupt climate changes and the bipolar seesaw based on paleotemperatures from Iberian Margin sediments. Proc. Natl Acad. Sci. USA 120, e2209558120 (2023).

    Article  CAS  Google Scholar 

  3. Menviel, L. C., Skinner, L. C., Tarasov, L. & Tzedakis, P. C. An ice–climate oscillatory framework for Dansgaard–Oeschger cycles. Nat. Rev. Earth Environ. 1, 677–693 (2020).

  4. Hemming, S. R. Heinrich events: massive late Pleistocene detritus layers of the North Atlantic and their global climate imprint. Rev. Geophys. 42, RG1005 (2004).

    Article  Google Scholar 

  5. Pedro, J. B. et al. Beyond the bipolar seesaw: toward a process understanding of interhemispheric coupling. Quat. Sci. Rev. 192, 27–46 (2018).

    Article  Google Scholar 

  6. Buizert, C. et al. Abrupt ice-age shifts in southern westerly winds and Antarctic climate forced from the north. Nature 563, 681–685 (2018).

    Article  CAS  Google Scholar 

  7. Wendt, K. A. et al. Southern Ocean drives multidecadal atmospheric CO2 rise during Heinrich Stadials. Proc. Natl Acad. Sci. USA 121, e2319652121 (2024).

    Article  CAS  Google Scholar 

  8. Markle, B. R. et al. Global atmospheric teleconnections during Dansgaard–Oeschger events. Nat. Geosci. 10, 36–40 (2017).

    Article  CAS  Google Scholar 

  9. Blunier, T. et al. Asynchrony of Antarctic and Greenland climate change during the last glacial period. Nature 394, 739–743 (1998).

    Article  CAS  Google Scholar 

  10. Denton, G. H. et al. The last glacial termination. Science 328, 1652–1656 (2010).

    Article  CAS  Google Scholar 

  11. Walczak, M. H. et al. Phasing of millennial-scale climate variability in the Pacific and Atlantic Oceans. Science 370, 716–720 (2020).

    Article  CAS  Google Scholar 

  12. Toucanne, S. et al. Millennial-scale fluctuations of the European Ice Sheet at the end of the last glacial, and their potential impact on global climate. Quat. Sci. Rev. 123, 113–133 (2015).

    Article  Google Scholar 

  13. Hill, H. W., Flower, B. P., Quinn, T. M., Hollander, D. J. & Guilderson, T. P. Laurentide Ice Sheet meltwater and abrupt climate change during the last glaciation. Paleoceanography 21, PA1006 (2006).

    Article  Google Scholar 

  14. Praetorius, S. K. et al. The role of Northeast Pacific meltwater events in deglacial climate change. Sci. Adv. 6, eaay2915 (2020).

    Article  CAS  Google Scholar 

  15. Williams, C., Flower, B. P. & Hastings, D. W. Seasonal Laurentide Ice Sheet melting during the “Mystery Interval” (17.5–14.5 ka). Geology 40, 955–958 (2012).

    Article  CAS  Google Scholar 

  16. Max, L., Nürnberg, D., Chiessi, C. M., Lenz, M. M. & Mulitza, S. Subsurface ocean warming preceded Heinrich Events. Nat. Commun. 13, 4217 (2022).

    Article  CAS  Google Scholar 

  17. Marcott, S. A. et al. Ice-shelf collapse from subsurface warming as a trigger for Heinrich events. Proc. Natl Acad. Sci. USA 108, 13415–13419 (2011).

    Article  CAS  Google Scholar 

  18. Halsted, C. T. et al. A critical re-analysis of constraints on the timing and rate of Laurentide Ice Sheet recession in the northeastern United States. J. Quat. Sci. 39, 54–69 (2024).

    Article  Google Scholar 

  19. Putnam, A. E. et al. Warming and glacier recession in the Rakaia valley, Southern Alps of New Zealand, during Heinrich Stadial 1. Earth Planet. Sci. Lett. 382, 98–110 (2013).

    Article  CAS  Google Scholar 

  20. Soteres, R. L. et al. Glacier fluctuations in the northern Patagonian Andes (44° S) imply wind-modulated interhemispheric in-phase climate shifts during Termination 1. Sci. Rep. 12, 10842 (2022).

    Article  CAS  Google Scholar 

  21. Denton, G. H. et al. The Zealandia Switch: ice age climate shifts viewed from Southern Hemisphere moraines. Quat. Sci. Rev. 257, 106771 (2021).

    Article  Google Scholar 

  22. Denton, G. H., Toucanne, S., Putnam, A. E., Barrell, D. J. & Russell, J. L. Heinrich summers. Quat. Sci. Rev. 295, 107750 (2022).

    Article  Google Scholar 

  23. He, C. et al. Abrupt Heinrich Stadial 1 cooling missing in Greenland oxygen isotopes. Sci. Adv. 7, eabh1007 (2021).

    Article  CAS  Google Scholar 

  24. Wittmeier, H. E. et al. Late Glacial mountain glacier culmination in Arctic Norway prior to the Younger Dryas. Quat. Sci. Rev. 245, 106461 (2020).

    Article  Google Scholar 

  25. Bromley, G. R. et al. Younger Dryas deglaciation of Scotland driven by warming summers. Proc. Natl Acad. Sci. USA 111, 6215–6219 (2014).

    Article  CAS  Google Scholar 

  26. Barrell, D. J. A. in Developments in Quaternary Sciences (eds Ehlers, J. et al.) 1047–1064 (Elsevier, 2011).

  27. Williams, P. W. A 230 ka record of glacial and interglacial events from Aurora Cave, Fiordland, New Zealand. N. Z. J. Geol. Geophys. 39, 225–241 (1996).

    Article  CAS  Google Scholar 

  28. Moore, E. M. et al. Climate reconstructions for the Last Glacial Maximum from a simple cirque glacier in Fiordland, New Zealand. Quat. Sci. Rev. 275, 107281 (2022).

    Article  Google Scholar 

  29. Bostock, H. C., Hayward, B. W., Neil, H. L., Sabaa, A. T. & Scott, G. H. Changes in the position of the Subtropical Front south of New Zealand since the last glacial period. Paleoceanography 30, 824–844 (2015).

    Article  Google Scholar 

  30. Behrens, E. & Bostock, H. The response of the subtropical front to changes in the Southern Hemisphere westerly winds—evidence from models and observations. J. Geophys. Res. Oceans 128, e2022JC019139 (2023).

    Article  Google Scholar 

  31. Eaves, S. R., Mackintosh, A. N. & Anderson, B. M. Climate amelioration during the Last Glacial Maximum recorded by a sensitive mountain glacier in New Zealand. Geology 47, 299–302 (2019).

    Article  CAS  Google Scholar 

  32. Carter, L. & Carter, R. Lacustrine sediment traps and their effect on continental shelf sedimentation-South Island, New Zealand. Geo-Mar. Lett. 10, 93–100 (1990).

    Article  Google Scholar 

  33. Rother, H. et al. The early rise and late demise of New Zealand’s Last Glacial Maximum. Proc. Natl Acad. Sci. USA 111, 11630–11635 (2014).

    Article  CAS  Google Scholar 

  34. Thackray, G. D., Rittenour, T. M. & Shulmeister, J. Ice-thickness variation during marine oxygen isotope stage 4–2 glaciation determined from kame terraces in the Rangitata Valley, New Zealand. GSA Special Paper https://doi.org/10.1130/2020.2548(11) (2021).

  35. Rudolph, E. M. et al. A glacial chronology for sub-Antarctic Marion Island from MIS 2 and MIS 3. Quat. Sci. Rev. 325, 108485 (2024).

    Article  Google Scholar 

  36. Barrows, T. T., Stone, J. O., Fifield, L. K. & Cresswell, R. G. Late Pleistocene glaciation of the Kosciuszko Massif, Snowy Mountains, Australia. Quat. Res. 55, 179–189 (2001).

    Article  CAS  Google Scholar 

  37. Davies, B. J. et al. The evolution of the Patagonian Ice Sheet from 35 ka to the present day (PATICE). Earth Sci. Rev. 204, 103152 (2020).

    Article  Google Scholar 

  38. Vandergoes, M. J., Newnham, R. M., Denton, G. H., Blaauw, M. & Barrell, D. J. The anatomy of Last Glacial Maximum climate variations in south Westland, New Zealand, derived from pollen records. Quat. Sci. Rev. 74, 215–229 (2013).

    Article  Google Scholar 

  39. Gray, W. R. et al. Poleward shift in the Southern Hemisphere westerly winds synchronous with the deglacial rise in CO2. Paleoceanogr. Paleoclimatol. 38, e2023PA004666 (2023).

    Article  Google Scholar 

  40. Menviel, L., Timmermann, A., Friedrich, T. & England, M. Hindcasting the continuum of Dansgaard–Oeschger variability: mechanisms, patterns and timing. Clim. Past 10, 63–77 (2014).

    Article  Google Scholar 

  41. McKinnon, K. A., Mackintosh, A. N., Anderson, B. M. & Barrell, D. J. The influence of sub-glacial bed evolution on ice extent: a model-based evaluation of the Last Glacial Maximum Pukaki glacier, New Zealand. Quat. Sci. Rev. 57, 46–57 (2012).

    Article  Google Scholar 

  42. Shackleton, S., Seltzer, A., Baggenstos, D. & Lisiecki, L. E. Benthic δ18O records Earth’s energy imbalance. Nat. Geosci. 16, 797–802 (2023).

    Article  CAS  Google Scholar 

  43. Shakun, J. D. et al. Regional and global forcing of glacier retreat during the last deglaciation. Nat. Commun. 6, 1–7 (2015).

    Article  Google Scholar 

  44. Alexander, M. A. et al. The atmospheric bridge: the influence of ENSO teleconnections on air–sea interaction over the global oceans. J. Clim. 15, 2205–2231 (2002).

    Article  Google Scholar 

  45. van der Bilt, W. G. M., D'Andrea, W. J. & Bakke, J. High Arctic Lake sediments show that Heinrich Event 2 was preceded by summer warming. Commun. Earth Environ. 6, 463 (2025).

    Article  Google Scholar 

  46. Schenk, F. et al. Warm summers during the Younger Dryas cold reversal. Nat. Commun. 9, 1634 (2018).

    Article  Google Scholar 

  47. Pontes, G. M. & Menviel, L. Weakening of the Atlantic Meridional Overturning Circulation driven by subarctic freshening since the mid-twentieth century. Nat. Geosci. 17, 1291–1298 (2024).

  48. Galbraith, E. D., Merlis, T. M. & Palter, J. B. Destabilization of glacial climate by the radiative impact of Atlantic Meridional Overturning Circulation disruptions. Geophys. Res. Lett. 43, 8214–8221 (2016).

    Article  Google Scholar 

  49. Mitchell, J. et al. Undersea New Zealand, 1: 5,000,000. NIWA https://niwa.co.nz/oceans/new-zealand-bathymetry-further-information (2012).

  50. Hagemann, J. R. et al. A marine record of Patagonian ice sheet changes over the past 140,000 years. Proc. Natl Acad. Sci. USA 121, e2302983121 (2024).

    Article  CAS  Google Scholar 

  51. Grant, K. et al. Rapid coupling between ice volume and polar temperature over the past 150,000 years. Nature 491, 744–747 (2012).

    Article  CAS  Google Scholar 

  52. Zhou, Y. & McManus, J. F. Heinrich event ice discharge and the fate of the Atlantic Meridional Overturning Circulation. Science 384, 983–986 (2024).

    Article  CAS  Google Scholar 

  53. Coastlines. OpenStreetMap (2025); https://osmdata.openstreetmap.de/data/coastlines.html

  54. Ehlers, J., Gibbard, P. L., & Hughes, P. D. Quaternary Glaciations—Extent and Chronology: A Closer Look Vol. 15 (Elsevier, 2011).

  55. Anderson, H. et al. Millennial-scale carbon flux variability in the subantarctic Pacific during Marine Isotope Stage 3 (57–29 ka). Paleoceanogr. Paleoclimatol. 39, e2023PA004776 (2024).

    Article  Google Scholar 

  56. Shuttleworth, R. et al. Early deglacial CO2 release from the Sub-Antarctic Atlantic and Pacific oceans. Earth Planet. Sci. Lett. 554, 116649 (2021).

    Article  CAS  Google Scholar 

  57. Mollenhauer, G., Grotheer, H., Gentz, T., Bonk, E. & Hefter, J. Standard operation procedures and performance of the MICADAS radiocarbon laboratory at Alfred Wegener Institute (AWI), Germany. Nucl. Instrum. Methods Phys. Res. Sect. B 496, 45–51 (2021).

    Article  CAS  Google Scholar 

  58. Moreau, C. et al. Research and development of the Artemis 14C AMS Facility: status report. Radiocarbon 55, 331–337 (2013).

    Article  CAS  Google Scholar 

  59. Cottereau, E. et al. Artemis, the new 14C AMS at LMC14 in Saclay, France. Radiocarbon 49, 291–299 (2007).

    Article  CAS  Google Scholar 

  60. Tisnérat-Laborde, N., Poupeau, J., Tannau, J. & Paterne, M. Development of a semi-automated system for routine preparation of carbonate samples. Radiocarbon 43, 299–304 (2001).

    Article  Google Scholar 

  61. Dumoulin, J. et al. Status report on sample preparation protocols developed at the LMC14 Laboratory, Saclay, France: from sample collection to 14C AMS measurement. Radiocarbon 59, 713–726 (2017).

    Article  CAS  Google Scholar 

  62. Santos, G., Southon, J., Griffin, S., Beaupre, S. & Druffel, E. Ultra small-mass AMS 14C sample preparation and analyses at KCCAMS/UCI Facility. Nucl. Instrum. Methods Phys. Res. Sect. B 259, 293–302 (2007).

    Article  CAS  Google Scholar 

  63. Reimer, P. J., Brown, T. A. & Reimer, R. W. Discussion: reporting and calibration of post-bomb 14C data. Radiocarbon 46, 1299–1304 (2004).

    Article  CAS  Google Scholar 

  64. Stuiver, M. & Polach, H. A. Discussion reporting of 14C data. Radiocarbon 19, 355–363 (1977).

    Article  Google Scholar 

  65. Mook, W. G. & Van Der Plicht, J. Reporting 14C activities and concentrations. Radiocarbon 41, 227–239 (1999).

    Article  CAS  Google Scholar 

  66. Stuiver, M., Pearson, G. W. & Braziunas, T. Radiocarbon age calibration of marine samples back to 9000 cal yr BP. Radiocarbon 28, 980–1021 (1986).

    Article  CAS  Google Scholar 

  67. Heaton, T. J. et al. A response to community questions on the Marine20 radiocarbon age calibration curve: Marine reservoir ages and the calibration of 14C samples from the oceans. Radiocarbon 65, 247–273 (2023).

    Article  CAS  Google Scholar 

  68. Heaton, T. J. et al. Marine20—the marine radiocarbon age calibration curve (0–55,000 cal BP). Radiocarbon 62, 779–820 (2020).

    Article  CAS  Google Scholar 

  69. Rafter, T., Jansen, H., Lockerbie, L. & Trotter, M. New Zealand radiocarbon reference standards. In Proc. 8th International Conference on Radiocarbon Dating 625–675 (The Royal Society of New Zealand, 1972).

  70. Higham, T. F. & Hogg, A. Radiocarbon dating of prehistoric shell from New Zealand and calculation of the ΔR value using fish otoliths. Radiocarbon 37, 409–416 (1995).

    Article  CAS  Google Scholar 

  71. Sikes, E. L., Samson, C. R., Guilderson, T. P. & Howard, W. R. Old radiocarbon ages in the southwest Pacific Ocean during the last glacial period and deglaciation. Nature 405, 555–559 (2000).

    Article  CAS  Google Scholar 

  72. McSaveney, M. J. et al. Late Holocene uplift of beach ridges at Turakirae Head, south Wellington coast, New Zealand. N. Z. J. Geol. Geophys. 49, 337–358 (2006).

    Article  CAS  Google Scholar 

  73. Petchey, F., Anderson, A., Zondervan, A., Ulm, S. & Hogg, A. New marine ΔR values for the South Pacific subtropical gyre region. Radiocarbon 50, 373–397 (2008).

    Article  CAS  Google Scholar 

  74. Clark, K. et al. Geological evidence for past large earthquakes and tsunamis along the Hikurangi subduction margin, New Zealand. Mar. Geol. 412, 139–172 (2019).

    Article  Google Scholar 

  75. Butzin, M., Prange, M. & Lohmann, G. Radiocarbon simulations for the glacial ocean: the effects of wind stress, Southern Ocean sea ice and Heinrich events. Earth Planet. Sci. Lett. 235, 45–61 (2005).

    Article  CAS  Google Scholar 

  76. Heaton, T. J. et al. Marine radiocarbon calibration in polar regions: a simple approximate approach using Marine20. Radiocarbon 65, 848–875 (2023).

    Article  CAS  Google Scholar 

  77. Hodell, D. et al. Response of Iberian Margin sediments to orbital and suborbital forcing over the past 420 ka. Paleoceanography 28, 185–199 (2013).

    Article  Google Scholar 

  78. Pahnke, K., Zahn, R., Elderfield, H. & Schulz, M. 340,000-Year centennial-scale marine record of Southern Hemisphere climatic oscillation. Science 301, 948–952 (2003).

    Article  CAS  Google Scholar 

  79. Bronk Ramsey, C. Deposition models for chronological records. Quat. Sci. Rev. 27, 42–60 (2008).

    Article  Google Scholar 

  80. Bronk Ramsey, C. Dealing with outliers and offsets in radiocarbon dating. Radiocarbon 51, 1023–1045 (2009).

    Article  Google Scholar 

  81. Bronk Ramsey, C. & Lee, S. Recent and planned developments of the program OxCal. Radiocarbon 55, 720–730 (2013).

    Article  Google Scholar 

  82. Bronk Ramsey, C. Radiocarbon calibration and analysis of stratigraphy: the OxCal program. Radiocarbon 37, 425–430 (1995).

    Article  CAS  Google Scholar 

  83. Govin, A. et al. Evidence for northward expansion of Antarctic Bottom Water mass in the Southern Ocean during the last glacial inception. Paleoceanography 24, PA1202 (2009).

    Article  Google Scholar 

  84. Bayon, G. et al. An improved method for extracting marine sediment fractions and its application to Sr and Nd isotopic analysis. Chem. Geol. 187, 179–199 (2002).

    Article  CAS  Google Scholar 

  85. Bayon, G. et al. Rare earth elements and neodymium isotopes in world river sediments revisited. Geochim. Cosmochim. Acta 170, 17–38 (2015).

    Article  CAS  Google Scholar 

  86. Bayon, G. et al. Accelerated mafic weathering in Southeast Asia linked to late Neogene cooling. Sci. Adv. 9, eadf3141 (2023).

    Article  CAS  Google Scholar 

  87. Holtzappel, T. Les minéraux argileux, préparation, analyse diffractométrique et détermination. Société Géologique Nord 12, 1–36 (1985).

    Google Scholar 

  88. Tanaka, T. et al. JNdi-1: a neodymium isotopic reference in consistency with LaJolla neodymium. Chem. Geol. 168, 279–281 (2000).

    Article  Google Scholar 

  89. Bouvier, A., Vervoort, J. D. & Patchett, P. J. The Lu–Hf and Sm–Nd isotopic composition of CHUR: constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets. Earth Planet. Sci. Lett. 273, 48–57 (2008).

    Article  CAS  Google Scholar 

  90. Jiao, R. et al. Erosion of the Southern Alps of New Zealand during the last deglaciation. Geology 46, 975–978 (2018).

    Article  CAS  Google Scholar 

  91. Goldstein, S. J. & Jacobsen, S. B. Nd and Sr isotopic systematics of river water suspended material: implications for crustal evolution. Earth Planet. Sci. Lett. 87, 249–265 (1988).

    Article  CAS  Google Scholar 

  92. Barnes, P. M., Bostock, H. C., Neil, H. L., Strachan, L. J. & Gosling, M. A 2300-year Paleoearthquake record of the southern Alpine Fault and Fiordland Subduction zone, New Zealand, based on stacked turbidites. Bull. Seismol. Soc. Am. 103, 2424–2446 (2013).

    Article  Google Scholar 

  93. Rodbell, D. et al. 700,000 years of tropical Andean glaciation. Nature 607, 301–306 (2022).

    Article  CAS  Google Scholar 

  94. Jaeger, J. M. et al. in Proc. Integrated Ocean Drilling Program Vol. 341: Expedition Reports Southern Alaska Margin https://doi.org/10.2204/iodp.proc.341.2014 (2014).

  95. Edwards, G. H. et al. Terrestrial evidence for ocean forcing of Heinrich events and subglacial hydrologic connectivity of the Laurentide Ice Sheet. Sci. Adv. 8, eabp9329 (2022).

    Article  CAS  Google Scholar 

  96. Alvarez-Solas, J. et al. Links between ocean temperature and iceberg discharge during Heinrich events. Nat. Geosci. 3, 122–126 (2010).

    Article  CAS  Google Scholar 

  97. Hall, B., Lowell, T., Bromley, G. R., Putnam, A. E. & Allen, K. Rapid deglaciation of eastern Maine, northeastern North America, during Heinrich Stadial 1. Quat. Sci. Rev. 363, 109444 (2025).

    Article  Google Scholar 

  98. Martinez-Lamas, R. et al. Linking Danube River activity to alpine ice-sheet fluctuations during the last glacial (ca. 33–17 ka BP): insights into the continental signature of Heinrich Stadials. Quat. Sci. Rev. 229, 106136 (2020).

    Article  Google Scholar 

  99. Jaeger, J. M. & Koppes, M. N. The role of the cryosphere in source-to-sink systems. Earth Sci. Rev. 153, 43–76 (2016).

    Article  Google Scholar 

  100. Rhodes, R. H. et al. Enhanced tropical methane production in response to iceberg discharge in the North Atlantic. Science 348, 1016–1019 (2015).

    Article  CAS  Google Scholar 

  101. Rattenbury, M. & Isaac, M. The QMAP 1: 250 000 geological map of New Zealand project. N. Z. J. Geol. Geophys. 55, 393–405 (2012).

    Article  CAS  Google Scholar 

  102. Gollan, M. Plutonic Petrogenesis and Mineralisation in Southwest Fiordland. Unpublished MSc thesis, Univ. Otago, Dunedin (2006).

  103. McCulloch, M., Bradshaw, J. & Taylor, S. Sm–Nd and Rb–Sr isotopic and geochemical systematics in Phanerozoic granulites from Fiordland, southwest New Zealand. Contrib. Mineral. Petrol. 97, 183–195 (1987).

    Article  CAS  Google Scholar 

  104. Muir, R. et al. Geochemistry of the Karamea Batholith, New Zealand and comparisons with the Lachlan fold belt granites of SE Australia. Lithos 39, 1–20 (1996).

    Article  CAS  Google Scholar 

  105. Muir, R. et al. Geocheonology and geochemistry of a Mesozoic magmatic arc system, Fiordland, New Zealand. J. Geol. Soc. Lond. 155, 1037–1053 (1998).

    Article  CAS  Google Scholar 

  106. Tulloch, A., Ramezani, J., Kimbrough, D., Faure, K. & Allibone, A. U–Pb geochronology of mid-Paleozoic plutonism in western New Zealand: implications for S-type granite generation and growth of the east Gondwana margin. Geol. Soc. Am. Bull. 121, 1236–1261 (2009).

    Article  CAS  Google Scholar 

  107. Pickett, D. A. & Wasserburg, G. Neodymium and strontium isotopic characteristics of New Zealand granitoids and related rocks. Contrib. Mineral. Petrol. 103, 131–142 (1989).

    Article  CAS  Google Scholar 

  108. Adams, C., Pankhurst, R., Maas, R. & Millar, I. Nd and Sr isotopic signatures of metasedimentary rocks around the South Pacific margin and implications for their provenance. Geol. Soc. Lond. Spec. Publ. 246, 113–141 (2005).

    Article  Google Scholar 

  109. Willsman, A., Chinn, T. & Lorrey, A. New Zealand Glacier Monitoring: End of Summer Snowline Survey 2015 (NIWA, 2015).

  110. James, W. H., Carrivick, J. L., Quincey, D. J. & Glasser, N. F. A geomorphology based reconstruction of ice volume distribution at the Last Glacial Maximum across the Southern Alps of New Zealand. Quat. Sci. Rev. 219, 20–35 (2019).

    Article  Google Scholar 

  111. Golledge, N. R. et al. Last Glacial Maximum climate in New Zealand inferred from a modelled Southern Alps icefield. Quat. Sci. Rev. 46, 30–45 (2012).

    Article  Google Scholar 

  112. Shulmeister, J., Thackray, G. D., Rittenour, T. M. & Hyatt, O. M. Multiple glacial advances in the Rangitata Valley, South Island, New Zealand, during the last glaciation imply substantial extent and duration of MIS 3 glaciation. Quat. Res. 89, 375–389 (2018).

    Article  CAS  Google Scholar 

  113. Lanos, P. & Dufresne, P. ChronoModel version 3.0: Software for Chronological Modelling of Archaeological Data Using Bayesian Statistics (ChronoModel, 2024).

  114. Lanos, P. & Philippe, A. Hierarchical Bayesian modeling for combining dates in archeological context. J. Soc. Fr. Stat. 158, 72–88 (2017).

    Google Scholar 

  115. Lanos, P. & Philippe, A. Event date model: a robust Bayesian tool for chronology building. Commun. Stat. Appl. Methods 25, 131–157 (2017).

    Google Scholar 

  116. Putnam, A. E. et al. The Last Glacial Maximum at 44 S documented by a 10Be moraine chronology at Lake Ohau, Southern Alps of New Zealand. Quat. Sci. Rev. 62, 114–141 (2013).

    Article  Google Scholar 

  117. Schaefer, J. M. et al. The southern glacial maximum 65,000 years ago and its unfinished termination. Quat. Sci. Rev. 114, 52–60 (2015).

    Article  Google Scholar 

  118. Strand, P. D. et al. Millennial-scale pulsebeat of glaciation in the Southern Alps of New Zealand. Quat. Sci. Rev. 220, 165–177 (2019).

    Article  Google Scholar 

  119. Hall, B., Lowell, T. & Brickle, P. Multiple glacial maxima of similar extent at 20–45 ka on Mt. Usborne, East Falkland, South Atlantic region. Quat. Sci. Rev. 250, 106677 (2020).

    Article  Google Scholar 

  120. Martin, L. et al. The CREp program and the ICE-D production rate calibration database: a fully parameterizable and updated online tool to compute cosmic-ray exposure ages. Quat. Geochronol. 38, 25–49 (2017).

    Article  Google Scholar 

  121. Putnam, A. et al. In situ cosmogenic 10Be production-rate calibration from the Southern Alps, New Zealand. Quat. Geochronol. 5, 392–409 (2010).

    Article  Google Scholar 

  122. Kaplan, M. R. et al. In-situ cosmogenic 10Be production rate at Lago Argentino, Patagonia: implications for late-glacial climate chronology. Earth Planet. Sci. Lett. 309, 21–32 (2011).

    Article  CAS  Google Scholar 

  123. Gibbons, A. B., Megeath, J. D. & Pierce, K. L. Probability of moraine survival in a succession of glacial advances. Geology 12, 327–330 (1984).

    Article  Google Scholar 

  124. García, J.-L. et al. The MIS 3 maximum of the Torres del Paine and Última Esperanza ice lobes in Patagonia and the pacing of southern mountain glaciation. Quat. Sci. Rev. 185, 9–26 (2018).

    Article  Google Scholar 

  125. Lira, M.-P. et al. The Last Glacial Maximum and deglacial history of the Seno Skyring Ice Lobe (52 S), Southern Patagonia. Front. Earth Sci. 10, 892316 (2022).

    Article  Google Scholar 

  126. Peltier, C. et al. The large MIS 4 and long MIS 2 glacier maxima on the southern tip of South America. Quat. Sci. Rev. 262, 106858 (2021).

    Article  Google Scholar 

  127. Buiron, D. et al. Regional imprints of millennial variability during the MIS 3 period around Antarctica. Quat. Sci. Rev. 48, 99–112 (2012).

    Article  Google Scholar 

  128. Landais, A. et al. A review of the bipolar see–saw from synchronized and high resolution ice core water stable isotope records from Greenland and East Antarctica. Quat. Sci. Rev. 114, 18–32 (2015).

    Article  Google Scholar 

  129. Toucanne, S. et al. Activity of the turbidite levees of the Celtic–Armorican margin (Bay of Biscay) during the last 30,000 years: imprints of the last European deglaciation and Heinrich events. Mar. Geol. 247, 84–103 (2008).

    Article  Google Scholar 

  130. Hughes, A. L., Gyllencreutz, R., Lohne, ØS., Mangerud, J. & Svendsen, J. I. The last Eurasian ice sheets–a chronological database and time-slice reconstruction, DATED-1. Boreas 45, 1–45 (2016).

    Article  Google Scholar 

  131. Clark, P. U. et al. The Last Glacial Maximum. Science 325, 710–714 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was funded by INSU-LEFE/CNRS (MAOREE project) and Agence Nationale de la Recherche (ANR-24-CE01-6090) grants to S.T. The TAN1106-28 core was collected during the R/V Tangaroa TAN1106 Solander Trough voyage. We acknowledge Captain D. Monks, the crew and the scientists on this voyage, led by the National Institute of Water and Atmospheric Research (NIWA) and funded by the New Zealand government. We also thank ARTEMIS (Saclay, France) and AWI-MICADAS (Bremerhaven, Germany) facilities for radiocarbon analyses; G. Denton, A. Putnam (University of Maine, USA), E. Capron (Institut des Géosciences de l’Environnement, France) and M. Palin (University of Otago, New Zealand) for stimulating discussions at various stages of this work; G. Bayon and A. Trinquier (IFREMER, France) for assistance on MC-ICP-MS measurements; F. Dewilde (IUEM, France) for isotope-ratio mass spectrometer analyses; P. Gadd (ANSTO, Australia) for XRF core scanner measurements; and Y. Bichot, M. Pitel-Roudaut and N. Tanguy (IFREMER, France) for mapping.

Author information

Authors and Affiliations

Authors

Contributions

S.T. designed and led the research aided by H.B., N.V.R., G.S., P.H.B. and L.M.; G.S., S.T. and H.B. constructed the age model; S.T. conducted the geochemical and mineralogical analyses with assistance from S.C., A.B. and V.R.; A.M., A.R., H.B., N.V.R. and S.T produced and analysed the planktic foraminiferal data; L.M. carried out the LOVECLIM experiments; S.T interpreted data and results, and drafted the paper with assistance from all authors.

Corresponding author

Correspondence to Samuel Toucanne.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Geoscience thanks Yuxin Zhou and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: James Super, in collaboration with the Nature Geoscience team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Paleoclimatic and mineralogical/geochemical data for TAN1106-28.

a, Planktonic (G. bulloides) δ18O data. b, Summer sea-surface temperature (sSST) estimates from the planktic foraminifera N. pachyderma. c, Latitudinal STF shifts derived from planktonic foraminifera assemblages. The thick lines in b and c represent the 3-point moving average. d, εNd values for the medium-coarse silt (10-63 μm; blue), fine silt (2-10 μm; red), and clay-size ( < 2 μm; black) fractions of the detrital sediment. External reproducibility of ±0.08 ε (2σ). e, (amphibole + plagioclase) / quartz (A + P/Q) ratio ( < 63 µm; orange), the illite content ( < 2 µm; green), and the Fiordland glaciation index (GI; grey). f, Ti/K ratio measured by WD-XRF ( < 63 µm; black) and XRF core scanner (bulk; grey). EWFB: Eastern-Western Fiordland belts; SWFB: Southwest Fiordland block (Fig. 1). Marine Isotope Stages (MIS) are numbered. Radiocarbon dates (triangles) and calendar tie-points (circles) are also shown.

Extended Data Fig. 2 Sources and pathways of Solander Trough sediments.

Mean εNd (that is, 143Nd/144Nd) versus (amphibole + plagioclase) / quartz (A + P/Q) composition of Fiordland-Southland (open symbols) and TAN1106-28 (coloured circles) detrital sediment (upper panel; Extended Data Tables 1 and 2). Isotopic/mineralogical data from the Fiordland’s interior are from published data, including εNd (measured on rock samples) for the ~felsic SWFB (purple; for example, Paleozoic granite and quartzofeldspathic metasediments101) and the ~intermediate to mafic EWFB (green; for example, Jurassic-Cretaceous (meta)igneous rocks101)102,103,104,105,106,107,108. Grey lines represent binary mixing curves (10% mixing steps) which provide successful fits to the TAN1106-28 data (including those interpreted as Fiordland Otiran glacier maxima, FO). The palaeogeographical maps (lower panel) depict the relationship between the compositional signatures of TAN1106-28 sediment and the Fiordland glacier extent. Ice coverage correspond to equilibrium line altitude at ~1,500 m (today109; left lower panel), ~1,000 m (central panel) and ~400 m (LLGM110,111; right panel). Open symbols (left lower panel) show the location of the Fiordland-Southland detrital sediment (Extended Data Table 2), as in the upper panel. Coloured arrows depict the sediment routings from SWFB/EWFB sources. Continous lines depict the bed and suspended load from sources directly connected to the Solander Trough (for example, Waiau River, and Chalky inlet), while dashed arrows depict suspended sediment flux transported by the Fiordland Current. Red lines east of Fiordland lakes depict the sediment trapping efficiency: null when ice reached out onto the foreland (right lower panel), total in ice-free conditions (left panel; thick red lines), intermediate when glaciers occupied valleys (central panel; thin red lines). The latter configuration, with glacial flour reaching the downstream river (thin green arrows, central lower panel), is observed today at the outlet of turbid glacier-fed lakes (for example Pukaki Lake).

Extended Data Fig. 3 Fiordland glacier fluctuations and their regional-to-hemispheric counterparts.

a, Ice-thickness chronology in the Rangitata Valley, central South Island, based on the dating of kame terraces (circles; letters refer to site locations)34. The Rangitata ice advances R1-R6 (grey bands)112 are also shown. b, Fiordland GI (grey), and the mean εNd values of the clay-silt fractions of the detrital sediment at TAN1106-28 (blue; ±2σ, blue shading). External reproducibility on discrete samples of ±0.08 ε (2σ). The arrows on the TAN1106-28 proxy records show the R1-R6 counterparts. Vertical dashed lines highlight Fiordland Otiran peak glaciation (FO), with their age uncertainties (horizontal lines, in c). c, Glacier chronologies from U-Th dating of cave speleothems above Lake Te Anau, Fiordland27 (grey squares), and from 10Be moraine dating (probability plots with their age uncertainties generated with Chronomodel 2.0 Bayesian software113,114,115; y-axis on arbitrary scales) from central Southern Alps of New Zealand (grey)21,116,117,118 and the Falklands119 (blue), where past glacier fluctuations resemble those in New Zealand21,119. All published 10Be exposure ages were homogenised using the CREp online calculator120 and the SH calibration sites121,122. Probability for moraine survival based on ref. 123. Marine Isotope Stages (MIS) are numbered.

Extended Data Fig. 4 Comparison of glacier fluctuations in Fiordland and western Patagonia.

a, Mass accumulation rates (MAR) of n-alkane (continuous line) and dry bulk density (DBD; dashed line) at site MR16-09 PC03 (Fig. 1), southeast Pacific (46°S), as marker for fluctuations of the southern Patagonian ice field (SPI)50. Based on these data and the original interpretation in ref. 50, we propose below a summary view of ice fluctuations (that is mass balance changes) in this region (ice growth for MAR n-alkanes > 3000 mg/ka.cm2 and DBD > 0.65 g/cm3). b, Glacier chronologies for eastern SPI (51-53°S) from 10Be moraine dating (probability plots with their age uncertainties generated with Chronomodel 2.0 Bayesian software113,114,115; y-axis on arbitrary scales)124,125,126. The Local LGM (LLGM) at these latitudes occurred ca. 47 ka (green triangle in a)37. The high preservation of moraines from ca. 30-25 ka onwards (n = 12) highlights the first-order net decrease in glacier extent in Patagonia37. All published 10Be exposure ages were homogenised using the CREp online calculator120 and the SH calibration sites121,122. c, Mean εNd values of the clay-silt fractions of the detrital sediment at TAN1106-28 (blue; ±2σ, blue shading), and the Fiordland GI (grey). A summary view of ice fluctuations in the Fiordland region from TAN1106-28 is shown ( = first-order changes in εNd values; see Fig. 2c). The timing of the Fiordland Otiran (FO) glacier maxima (including the Fiordland LLGM at ca. 45 ka, FO6) are also shown. Marine Isotope Stages (MIS) are numbered.

Extended Data Fig. 5 LOVECLIM simulations.

Climatic anomalies associated with the global Last Glacial Maximum (LGM, compared to 2 ka; panel a) and Heinrich Stadials (HSs, compared with interstadials; panel b) in the New Zealand region, as simulated in LOVECLIM40. Colder SST (relative to 2 ka) prevailed at the LGM ( = equatorward STF shift), together with drier conditions over New Zealand and the Tasman Sea. The westerlies were certainly not as strong as shown by the model39. If the westerlies were indeed weaker over the south of New Zealand at the LGM, then the aridity over the Fiordland region at the global LGM were certainly more important than those estimated in the simulations (Supplementary Fig. 2). During HSs (equivalent to AIM events), warmer SST (relative to the interstadials) prevailed ( = poleward STF shift), together with weaker westerlies over New Zealand and dryer conditions. These conditions, as was possibly the case during the global LGM, favoured glacier withdrawal (that is negative mass balance) over Fiordland. Left panels: annual mean sea-surface temperatures (SST, °C; shading) anomalies for LGM compared to 2 ka in the upper panel (a), and for HSs relative to interstadial conditions in the lower panel (b), with subtropical front (STF) overlaid (red lines for LGM and HS, black lines for 2 ka and interstadial). The STF is defined as the southern-most location of the 11 °C isotherm at 120 m water depth. Right panels: winter (June, July, August; JJA) precipitation (cm/yr; shading) and 800 mb winds (m/s; vectors) anomalies. The LGM is defined at 21 ka (200 yrs average, 21.2 to 21 ka). Composite data are used for HSs (HS3 at 30-29.8 ka, HS3.2 at 36-35.8 ka and HS4 at 39.6-39.4 ka) and the interstadials (31.8-31.6 ka, 36.8-36.6 ka and 41.2-41 ka). See ref. 40 for details on the simulation. The location of the Fiordland icefield and marine core site TAN1106-28 (white stars) and of Talos Dome (TD; white circles) are also shown. Geographical data from ref. 53.

Extended Data Fig. 6 dln from the Pacific sector of Antarctica, and the TAN1106-28 proxy records.

a, Summer sea-surface temperature (sSST) estimates at TAN1106-28 from the planktic foraminifera N. pachyderma (blue; 3-point moving average), and sampled SST from Talos (TAL) Dome6,127,128 (light blue). WDC dln anomaly8 (grey; thick line is 5-point moving average) are also shown. b, sSST estimates at TAN1106-28 (as in a) together with the mm-scale XRF ln(Canorm) for TAN1106-28 (dark blue; together with the Calcium content, open circles), known as a proxy for biogenic carbonate productivity77. c, XRF ln(Canorm) for TAN1106-28 (dark blue; as in b), the percentage of the (foraminifera-rich) >63 µm fraction (light purple) and WDC dln anomaly8 (as in a). The location of Talos dome and WDC is shown in Fig. 1 and Extended Data Fig. 5. Marine Isotope Stages (MIS) and Heinrich Stadials (HS) are numbered.

Extended Data Fig. 7 Interhemispheric comparison of glaciogenic sedimentary sequences.

a, Channel River meltwater flood originating from the Baltic Ice Stream, European Ice Sheet (EIS)12,129, and the associated (summary) EIS mass-balance changes (based on original interpretations from ref. 12). b, Terrigenous and ice-rafted debris (IRD) fluxes (mass accumulation rates, MAR) west of the Cordilleran Ice sheet (CIS)11, and the associated (summary) CIS mass-balance changes (based on original interpretations from ref. 11). c, Summary for glacier mass-balance changes (as in a, b; Extended Data Fig. 4 and Supplementary Fig. 3), and the global composite signal (NH-SH sum.; lower part) in which the blue/yellow intervals correspond to positive (glacier advance) / negative (retreat) mass balance, respectively. Coloured intervals (highlighted by horizontal black lines) correspond to period of similar signal (+/-) in glacier mass balance in all reconstructions (except at ca. 25-20 ka, where only three of the four regions have a similar signal; see the horizontal red lines). Triangles in a,b and c show the timing of local Last Glacial Maximum (LLGM)37,130,131. d, Antarctica WDC δ18O (grey; thick line is 5-point moving average) and CO2 (black) records6,7. e, Greenland NGRIP δ18O (grey; thick line is 5-point moving average), aligned to WDC6. Coloured intervals as in c (that is, NH-SH sum.). Marine Isotope Stages (MIS), Antarctic Isotope Maxima (AIM) and Heinrich Stadials (HS) are numbered.

Extended Data Table 1 Mineralogical-geochemical data for TAN1106-28
Extended Data Table 2 Mineralogical-geochemical source proxies for the Fiordland-Southland regions
Extended Data Table 3 Timing for NH-SH Pacific glacier retreats during Heinrich Stadials

Supplementary information

Supplementary Information

Supplementary Figs. 1–5, Supplementary Information (Oxcal code) and references.

Supplementary Tables 1–4

Supplementary Table 1. Chronological data for core TAN1106-28. Supplementary Table 2. Calendar age-depth model for core TAN1106-28. Supplementary Table 3. Proxy-based reconstructions of SST and STF at site TAN1106-28. Supplementary Table 4. The Fiordland GI.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Toucanne, S., Vázquez Riveiros, N., Soulet, G. et al. Synchronous bipolar retreat of mid-latitude ice masses during Heinrich Stadials. Nat. Geosci. (2026). https://doi.org/10.1038/s41561-025-01887-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41561-025-01887-x

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing