Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Overestimation of past and future increases in global river flow by Earth system models

Subjects

Abstract

Reliable quantification of global water-cycle components, such as river flow and land evapotranspiration, remains a major challenge. Here we refine estimates of global water partitioning by combining outputs from multiple Earth system models with river flow observations from 50 large basins, applying the emergent constraint approach. Between 1980 and 2014, global river flow was (39.1 ± 5.4) × 103 km3 yr1, with a river flow-to-precipitation ratio of 0.35 ± 0.03, both lower than previous estimates. Land evapotranspiration reached (73.4 ± 6.2) × 103 km3 yr1. Under climate change, we project global river flow to rise by 7.8 ± 5.5 mm per year per degree of warming. This estimate, refined through the emergent constraint method, is 9.3% lower than the ensemble mean of Earth system models and reduces inter-model uncertainty by 66%. By integrating river flow observations, we provide more accurate historical estimates and strengthen future projections of global water-cycle components.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Global runoff and its EC.
Fig. 2: Partitioning of the global water cycle using the EC approach.
Fig. 3: Changes in global water-cycle components under climate change.

Similar content being viewed by others

Data availability

Data used in the EC method for partitioning of global water-cycle components are stored at https://doi.org/10.5281/zenodo.11096334 (ref. 78). Source data are provided with this paper.

Code availability

The code generating figures is available from figshare (https://doi.org/10.6084/m9.figshare.30164416) (ref. 79).

References

  1. Oki, T. & Kanae, S. Global hydrological cycles and world water resources. Science 313, 1068–1072 (2006).

    Article  CAS  Google Scholar 

  2. Rodell, M. & Reager, J. T. Water cycle science enabled by the GRACE and GRACE-FO satellite missions. Nat. Water 1, 47–59 (2023).

    Article  Google Scholar 

  3. Battin, T. J. et al. River ecosystem metabolism and carbon biogeochemistry in a changing world. Nature 613, 449–459 (2023).

    Article  CAS  Google Scholar 

  4. Humphrey, V. et al. Soil moisture–atmosphere feedback dominates land carbon uptake variability. Nature 592, 65–69 (2021).

    Article  CAS  Google Scholar 

  5. Li, F. et al. Global water use efficiency saturation due to increased vapor pressure deficit. Science 381, 672–677 (2023).

    Article  CAS  Google Scholar 

  6. Lapola, D. M. et al. The drivers and impacts of Amazon forest degradation. Science 379, 349–359 (2023).

    Article  Google Scholar 

  7. Jung, M. et al. Compensatory water effects link yearly global land CO2 sink changes to temperature. Nature 541, 516–520 (2017).

    Article  CAS  Google Scholar 

  8. Bloom, A. A., Exbrayat, J.-F., van der Velde, I. R., Feng, L. & Williams, M. The decadal state of the terrestrial carbon cycle: global retrievals of terrestrial carbon allocation, pools, and residence times. Proc. Natl Acad. Sci. USA 113, 1285–1290 (2016).

    Article  CAS  Google Scholar 

  9. Stephens, G. L. et al. An update on Earth’s energy balance in light of the latest global observations. Nat. Geosci. 5, 691–696 (2012).

    Article  CAS  Google Scholar 

  10. Zhang, Y. et al. Southern Hemisphere dominates recent decline in global water availability. Science 382, 579–584 (2023).

    Article  CAS  Google Scholar 

  11. Zaitchik, B. F., Rodell, M., Biasutti, M. & Seneviratne, S. I. Wetting and drying trends under climate change. Nat. Water 1, 502–513 (2023).

    Article  Google Scholar 

  12. Abbott, B. W. et al. Human domination of the global water cycle absent from depictions and perceptions. Nat. Geosci. 12, 533–540 (2019).

    Article  CAS  Google Scholar 

  13. Sterling, S., Ducharne, A. & Polcher, J. The impact of global land-cover change on the terrestrial water cycle. Nat. Clim. Change 3, 385–390 (2013).

    Article  CAS  Google Scholar 

  14. Chagas, V. B. P., Chaffe, P. L. B. & Bloeschl, G. Climate and land management accelerate the Brazilian water cycle. Nat. Commun. 13, 5136 (2022).

  15. Shiogama, H., Watanabe, M., Kim, H. & Hirota, N. Emergent constraints on future precipitation changes. Nature 602, 612–616 (2022).

    Article  CAS  Google Scholar 

  16. Lian, X. et al. Partitioning global land evapotranspiration using CMIP5 models constrained by observations. Nat. Clim. Change 8, 640–646 (2018).

    Article  Google Scholar 

  17. Zhang, Y. et al. Future global streamflow declines are probably more severe than previously estimated. Nat. Water 1, 261–271 (2023).

  18. Yang, Y. et al. Evapotranspiration on a greening Earth. Nat. Rev. Earth Environ. 4, 626–641 (2023).

    Article  Google Scholar 

  19. Chen, J. M. & Liu, J. Evolution of evapotranspiration models using thermal and shortwave remote sensing data. Remote Sens. Environ. 237, 111594 (2020).

  20. Jung, M. et al. Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature 467, 951–954 (2010).

    Article  CAS  Google Scholar 

  21. Zhang, Y. et al. Decadal trends in evaporation from global energy and water balances. J. Hydrometeorol. 13, 379–391 (2012).

    Article  Google Scholar 

  22. Li, H.-Y. et al. Evaluating global streamflow simulations by a physically based routing model coupled with the Community Land Model. J. Hydrometeorol. 16, 948–971 (2015).

    Article  Google Scholar 

  23. Beven, K. A manifesto for the equifinality thesis. J. Hydrol. 320, 18–36 (2006).

    Article  Google Scholar 

  24. Gedney, N. et al. Detection of a direct carbon dioxide effect in continental river runoff records. Nature 439, 835–838 (2006).

    Article  CAS  Google Scholar 

  25. Piao, S. et al. Changes in climate and land use have a larger direct impact than rising CO2 on global river runoff trends. Proc. Natl Acad. Sci. 104, 15242–15247 (2007).

    Article  CAS  Google Scholar 

  26. Wei, H. et al. Direct vegetation response to recent CO2 rise shows limited effect on global streamflow. Nat. Commun. 15, 9423 (2024).

  27. Fowler, M. D., Kooperman, G. J., Randerson, J. T. & Pritchard, M. S. The effect of plant physiological responses to rising CO2 on global streamflow. Nat. Clim. Change 9, 873–879 (2019).

    Article  CAS  Google Scholar 

  28. Ombadi, M., Risser, M. D., Rhoades, A. M. & Varadharajan, C. A warming-induced reduction in snow fraction amplifies rainfall extremes. Nature 619, 305–310 (2023).

    Article  CAS  Google Scholar 

  29. Allen, M. R. & Ingram, W. J. Constraints on future changes in climate and the hydrologic cycle. Nature 419, 224–232 (2002).

    Article  CAS  Google Scholar 

  30. Gnann, S. et al. Functional relationships reveal differences in the water cycle representation of global water models. Nat. Water 1, 1079–1090 (2023).

    Article  Google Scholar 

  31. Rodell, M. et al. The observed state of the water cycle in the early twenty-first century. J. Clim. 28, 8289–8318 (2015).

    Article  Google Scholar 

  32. Trenberth, K. E., Fasullo, J. T. & Mackaro, J. Atmospheric moisture transports from ocean to land and global energy flows in reanalyses. J. Clim. 24, 4907–4924 (2011).

    Article  Google Scholar 

  33. Douville, H. et al. in Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) 1055–1210 (IPCC, Cambridge Univ. Press, 2021).

  34. Cox, P. M., Huntingford, C. & Williamson, M. S. Emergent constraint on equilibrium climate sensitivity from global temperature variability. Nature 553, 319–322 (2018).

    Article  CAS  Google Scholar 

  35. Cox, P. M. et al. Sensitivity of tropical carbon to climate change constrained by carbon dioxide variability. Nature 494, 341–344 (2013).

    Article  CAS  Google Scholar 

  36. Kwiatkowski, L. et al. Emergent constraints on projections of declining primary production in the tropical oceans. Nat. Clim. Change 7, 355–358 (2017).

    Article  CAS  Google Scholar 

  37. Wang, X. et al. Emergent constraint on crop yield response to warmer temperature from field experiments. Nat. Sustain. 3, 908–916 (2020).

    Article  Google Scholar 

  38. Feng, D. M. et al. Recent changes to Arctic river discharge. Nat. Commun. 12, 6917 (2021).

  39. Spinti, R. A., Condon, L. E. & Zhang, J. The evolution of dam induced river fragmentation in the United States. Nat. Commun. 14, 3820 (2023).

  40. Anderson, E. P. et al. Fragmentation of Andes-to-Amazon connectivity by hydropower dams. Sci. Adv. 4, eaao1642 (2018).

  41. Feng, X. M. et al. Revegetation in China’s Loess Plateau is approaching sustainable water resource limits. Nat. Clim. Change 6, 1019–1022 (2016).

    Article  Google Scholar 

  42. Zhang, Y. et al. Multi-decadal trends in global terrestrial evapotranspiration and its components. Sci. Rep. 6, 19124 (2016).

    Article  CAS  Google Scholar 

  43. Haddeland, I. et al. Global water resources affected by human interventions and climate change. Proc. Natl Acad. Sci. USA 111, 3251–3256 (2014).

    Article  CAS  Google Scholar 

  44. Elliott, J. et al. Constraints and potentials of future irrigation water availability on agricultural production under climate change. Proc. Natl Acad. Sci. USA 111, 3239–3244 (2014).

    Article  CAS  Google Scholar 

  45. Messager, M. L. et al. Global prevalence of non-perennial rivers and streams. Nature 594, 391–397 (2021).

    Article  CAS  Google Scholar 

  46. Huang, Q., Zhang, Y. & Wei, H. Can direct CMIP6 model simulations reproduce mean annual historical streamflow change?. CATENA 235, 107650 (2024).

    Article  Google Scholar 

  47. Allan, R. P. et al. Advances in understanding large-scale responses of the water cycle to climate change. Ann. N.Y. Acad. Sci. 1472, 49–75 (2020).

    Article  Google Scholar 

  48. Wagener, T., Reinecke, R. & Pianosi, F. On the evaluation of climate change impact models. WIREs Clim. Change 13, e772 (2022).

    Article  Google Scholar 

  49. Immerzeel, W. W. et al. Importance and vulnerability of the world’s water towers. Nature 577, 364–369 (2020).

    Article  CAS  Google Scholar 

  50. Blöschl, G. & Chaffe, P. L. B. Water scarcity is exacerbated in the south. Science 382, 512–513 (2023).

    Article  Google Scholar 

  51. Bonan, G. B. & Doney, S. C. Climate, ecosystems, and planetary futures: the challenge to predict life in Earth system models. Science 359, 533–541 (2018).

    Article  CAS  Google Scholar 

  52. Legge, S., Rumpff, L., Garnett, S. T. & Woinarski, J. C. Z. Loss of terrestrial biodiversity in Australia: magnitude, causation, and response. Science 381, 622–631 (2023).

    Article  CAS  Google Scholar 

  53. Beck, H. E. et al. MSWEP V2 global 3-hourly 0.1° precipitation: methodology and quantitative assessment. Bull. Am. Meteorol. Soc. 100, 473–500 (2019).

    Article  Google Scholar 

  54. Adler, R. F. et al. The Global Precipitation Climatology Project (GPCP) monthly analysis (new Version 2.3) and a review of 2017 global precipitation. Atmosphere 9, 138 (2018).

    Article  Google Scholar 

  55. Lange, S. Trend-preserving bias adjustment and statistical downscaling with ISIMIP3BASD (v1.0). Geosci. Model Dev. 12, 3055–3070 (2019).

    Article  Google Scholar 

  56. Schneider, U., Hänsel, S., Finger, P., Rustemeier, E. & Ziese, M. Global Precipitation Analysis Products of the GPCC (Global Precipitation Climatology Centre, 2022).

  57. Dai, A. Hydroclimatic trends during 1950–2018 over global land. Clim. Dyn. 56, 4027–4049 (2021).

  58. Peterson, T. J., Saft, M., Peel, M. C. & John, A. Watersheds may not recover from drought. Science 372, 745–749 (2021).

    Article  CAS  Google Scholar 

  59. exactextractr: fast extraction from raster datasets using Polygons. R package v.0.10.0. GitHub https://github.com/isciences/exactextractr, https://isciences.gitlab.io/exactextractr/ (2023).

  60. Lyne, V. & Hollick, M. Stochastic time-variable rainfall-runoff modeling. In Institute of Engineers Australia National Conference 89–93 (National Committee on Hydrology and Water Resources of the Institution of Engineers, 1979).

  61. Boughton, W. C. A hydrograph-based model for estimating the water yield of ungauged catchments. In Hydrology and Water Resources Symposium 317–324 (Institution of Engineers, 1993).

  62. Chapman, T. A comparison of algorithms for stream flow recession and baseflow separation. Hydrol. Processes 13, 701–714 (1999).

    Article  Google Scholar 

  63. Low Flow Studies Report No. 1: Research Report (Institute of Hydrology, 1980).

  64. Piggott, A. R., Moin, S. & Southam, C. A revised approach to the UKIH method for the calculation of baseflow/Une approche améliorée de la méthode de l’UKIH pour le calcul de l'écoulement de base. Hydrol. Sci. J. 50, 911–920 (2005).

    Article  Google Scholar 

  65. Gottlieb, A. R. & Mankin, J. S. Evidence of human influence on Northern Hemisphere snow loss. Nature 625, 293–300 (2024).

    Article  CAS  Google Scholar 

  66. Eyring, V. et al. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 9, 1937–1958 (2016).

    Article  Google Scholar 

  67. Zhang, X. et al. Greening-induced increase in evapotranspiration over Eurasia offset by CO2-induced vegetational stomatal closure. Environ. Res. Lett. 16, 124008 (2021).

    Article  CAS  Google Scholar 

  68. Zhang, Y. et al. Coupled estimation of 500 m and 8-day resolution global evapotranspiration and gross primary production in 2002–2017. Remote Sens. Environ. 222, 165–182 (2019).

    Article  Google Scholar 

  69. Miralles, D. G. et al. Global land-surface evaporation estimated from satellite-based observations. Hydrol. Earth Syst. Sci. 15, 453–469 (2011).

    Article  Google Scholar 

  70. Muñoz-Sabater, J. et al. ERA5-Land: a state-of-the-art global reanalysis dataset for land applications. Earth Syst. Sci. Data 13, 4349–4383 (2021).

    Article  Google Scholar 

  71. Müller Schmied, H. et al. The global water resources and use model WaterGAP v2.2e: description and evaluation of modifications and new features. Geosci. Model Dev. Discuss. 2023, 8817–8852 (2023).

    Google Scholar 

  72. Li, C. et al. Dominant drivers for terrestrial water storage changes are different in northern and southern China. JGR Atmos. 128, e2022JD038074 (2023).

  73. Nijsse, F. J. M. M. & Dijkstra, H. A. A mathematical approach to understanding emergent constraints. Earth Syst. Dynam. 9, 999–1012 (2018).

    Article  Google Scholar 

  74. Gatti, L. V. et al. Amazonia as a carbon source linked to deforestation and climate change. Nature 595, 388–393 (2021).

    Article  CAS  Google Scholar 

  75. Rodell, M. et al. Emerging trends in global freshwater availability. Nature 557, 650–659 (2018).

    Article  Google Scholar 

  76. Weis, J. et al. One-third of Southern Ocean productivity is supported by dust deposition. Nature 629, 603–608 (2024).

    Article  CAS  Google Scholar 

  77. Zemp, M. et al. Global glacier mass changes and their contributions to sea-level rise from 1961 to 2016. Nature 568, 382–386 (2019).

    Article  CAS  Google Scholar 

  78. Zhang, Y. Key dataset used in the paper of “Emergent constraints reveal lower estimates of global river flow” (version v1). Zenodo https://doi.org/10.5281/zenodo.11096334 (2024).

  79. Zhang, Y., Wei, H., Kong, D. & Wang, L. NG_figure. figshare https://doi.org/10.6084/m9.figshare.30164416.v2 (2025).

Download references

Acknowledgements

Y.Z. acknowledges financial support from the National Natural Science Foundation of China (grants 42330506 and 42361144709) and the Talent Program of the Ministry of Science and Technology of China. D.K. acknowledges financial support from the National Natural Science Foundation of China (grant 42430610). T.W. acknowledges support from the Alexander von Humboldt Foundation in the framework of the Alexander von Humboldt Professorship endowed by the German Federal Ministry of Education and Research (BMBF). G.B., T.W. and F.H.S.C. acknowledge support from the PIFI outstanding international team project by the Chinese Academy of Sciences. We thank the following agencies and persons for sharing or providing streamflow data used for this study: the Global Runoff Data Centre, A. Dai, Service d’observation des ressources en eaux du bassin de l’Amazone, Agência Nacional de Águas, Ministry of Water Resources of the People’s Republic of China, the Arctic Great Rivers Observatory (https://arcticgreatrivers.org/), Peterson’s dataset, Mekong River Commission (https://portal.mrcmekong.org/home) and India Water Resources Information System. We thank H. Müller Schmied for providing WaterGAP model simulation outputs. We also thank P. Döll and H. Shiogama for their comments and suggestions.

Author information

Authors and Affiliations

Authors

Contributions

Y.Z. designed this study, conducted most of the data analysis, prepared most of the figures and wrote the first draft. T.W., G.B. and F.H.S.C. provided critical insights into the data analysis. H.W., N.M. and C. Li collated streamflow datasets. D.K. collated CMIP6 and evapotranspiration datasets. X.L. proceeded with the WaterGAP model dataset. L.W. contributed to the global water-cycle diagram and figure optimization. All authors contributed to discussion, text revisions and result interpretations.

Corresponding author

Correspondence to Yongqiang Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Geoscience thanks the anonymous reviewer(s) for their contribution to the peer review of this work. Primary Handling Editors: Tamara Goldin and Aliénor Lavergne, in collaboration with the Nature Geoscience team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–10 and Tables 1–4.

Source data

Source Data Fig. 1

Source data.

Source Data Fig. 2

Source data.

Source Data Fig. 3

Source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Blöschl, G., Wei, H. et al. Overestimation of past and future increases in global river flow by Earth system models. Nat. Geosci. (2026). https://doi.org/10.1038/s41561-025-01897-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41561-025-01897-9

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing