Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Surface rejuvenation of stony near-Earth asteroids triggered by planetary shadows

Abstract

Near-Earth asteroids (NEAs) are small, airless bodies that orbit in near-Earth space. Recent studies suggest that their surface rocks can undergo crack growth and fragmentation through thermal fatigue induced by diurnal temperature cycling. This process may expose materials yet to be altered by solar wind irradiation and micrometeorite impacts, known as surface rejuvenation. However, the mechanism that generates the initial cracks required to trigger thermal fatigue fragmentation remains poorly understood despite its importance for understanding the geophysical evolution of asteroids. Here we use numerical approaches to show that stony, or S-complex NEAs, the most compositionally common group, can experience rapid temperature changes, or thermal shocks, sufficient to generate microcracks in surface rocks as they pass through the shadow of a terrestrial planet. Our statistical analysis of backward orbital integrations demonstrates that these asteroids pass through planetary shadows more often than they encounter planets closely enough for planetary tides to rejuvenate their surfaces. We also found that shadow passages are shorter than typical asteroid spin periods, indicating that expansion stress from rapid heating occurs immediately after contraction stress from rapid cooling. These results suggest that thermal shock caused by planetary shadows may help trigger the surface rejuvenation of stony NEAs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Orbital simulation statistics for 97 asteroid samples.
Fig. 2: An example of thermophysical modelling results for an asteroid passing through the Earth’s shadow.
Fig. 3: Maps of the peak rates of surface temperature change.
Fig. 4: Relationships between the number of shadow passages and the degree of space weathering.

Similar content being viewed by others

Data availability

The shadow passage and orbital parameter data can be found in Supplementary Table 1 and are also available from Zenodo via https://doi.org/10.5281/zenodo.17760427 (ref. 59). Source data are provided with this paper.

Code availability

The orbital simulation code and the thermophysical model are available from Code Ocean via https://codeocean.com/capsule/1902179/tree (ref. 60) and https://codeocean.com/capsule/2257197/tree (ref. 61), respectively.

References

  1. Binzel, R. P. et al. Observed spectral properties of near-Earth objects: results for population distribution, source regions, and space weathering processes. Icarus 170, 259–294 (2004).

    Article  Google Scholar 

  2. Nakamura, T. et al. Itokawa dust particles: a direct link between S-type asteroids and ordinary chondrites. Science 333, 1113–1116 (2011).

    Article  Google Scholar 

  3. Binzel, R. P. et al. Compositional distributions and evolutionary processes for the near-Earth object population: Results from the MIT-Hawaii Near-Earth Object Spectroscopic Survey (MITHNEOS). Icarus 324, 41–76 (2019).

    Article  Google Scholar 

  4. Brunetto, R., Loeffler, M. J., Nesvorny, D., Sasaki, S. & Strazzulla, G. in Asteroids IV (eds Michel, P., DeMeo, F. E. & Bottke, W. F.) 597–616 (University of Arizona Press, 2015).

  5. Sasaki, S., Nakamura, K., Hamabe, Y., Kurahashi, E. & Hiroi, T. Production of iron nanoparticles by laser irradiation in a simulation of lunar-like space weathering. Nature 410, 555–557 (2001).

    Article  Google Scholar 

  6. Noguchi, T. et al. Incipient space weathering observed on the surface of Itokawa dust particles. Science 331, 1121–1125 (2011).

    Article  Google Scholar 

  7. Strazzulla, G. et al. Spectral alteration of the meteorite Epinal (H5) induced by heavy ion irradiation: a simulation of space weathering effects on near-Earth asteroids. Icarus 174, 31–35 (2005).

    Article  Google Scholar 

  8. Vernazza, P., Binzel, R. P., Rossi, A., Fulchignoni, M. & Birlan, M. Solar wind as the origin of rapid reddening of asteroid surfaces. Nature 458, 993–995 (2009).

    Article  Google Scholar 

  9. DeMeo, F. E. et al. Isolating the mechanisms for asteroid surface refreshing. Icarus 389, 115264 (2023).

    Article  Google Scholar 

  10. Sergeyev, A. V. et al. Compositional properties of planet-crossing asteroids from astronomical surveys. Astron. Astrophys. 679, A148 (2023).

    Article  Google Scholar 

  11. Binzel, R. P. et al. Earth encounters as the origin of fresh surfaces on near-Earth asteroids. Nature 463, 331–334 (2010).

    Article  Google Scholar 

  12. Carry, B., Solano, E., Eggl, S. & DeMeo, F. Spectral properties of near-Earth and Mars-crossing asteroids using Sloan photometry. Icarus 268, 340–354 (2016).

    Article  Google Scholar 

  13. Graves, K. J., Minton, D. A., Molaro, J. L. & Hirabayashi, M. Resurfacing asteroids from thermally induced surface degradation. Icarus 322, 1–12 (2019).

    Article  Google Scholar 

  14. Delbo, M. et al. Thermal fatigue as the origin of regolith on small asteroids. Nature 508, 233–236 (2014).

    Article  Google Scholar 

  15. Hazeli, K., El Mir, C., Papanikolaou, S., Delbo, M. & Ramesh, K. T. The origins of asteroid rock disaggregation: interplay of thermal fatigue and microstructure. Icarus 304, 172–182 (2018).

    Article  Google Scholar 

  16. Eppes, M. C., McFadden, L. D., Wegmann, K. W. & Scuderi, L. A. Cracks in desert pavement rocks: further insights into mechanical weathering by directional insolation. Geomorphology 123, 97–108 (2010).

    Article  Google Scholar 

  17. Libourel, G. et al. Network of thermal cracks in meteorites due to temperature variations: new experimental evidence and implications for asteroid surfaces. Mon. Not. R. Astron. Soc. 500, 1905–1920 (2021).

    Article  Google Scholar 

  18. Patzek, M., Rüsch, O. & Molaro, J. L. On the response of chondrites to diurnal temperature change—experimental simulation of asteroidal surface conditions. J. Geophys. Res. Planets 129, e2023JE007944 (2024).

    Article  Google Scholar 

  19. Anderson, R. S. & Anderson, S. P. Geomorphology: The Mechanics and Chemistry of Landscapes Ch. 7 (Cambridge Univ. Press, 2010).

  20. Molaro, J. & Byrne, S. Rates of temperature change of airless landscapes and implication for thermal stress weathering. J. Geophys. Res. 117, E10011 (2012).

    Google Scholar 

  21. Veras, D. & Breedt, E. Eclipse, transit and occultation geometry of planetary systems at exo-syzygy. Mon. Not. R. Astron. Soc. 468, 2672–2683 (2017).

    Article  Google Scholar 

  22. Nesvorný, D., Bottke, W. F., Vokrouhlický, D., Chapman, C. R. & Rafkin, S. Do planetary encounters reset surfaces of near Earth asteroids?. Icarus 209, 510–519 (2010).

    Article  Google Scholar 

  23. Fujiwara, A. et al. The Rubble-pile asteroid Itokawa as observed by Hayabusa. Science 312, 1330–1334 (2006).

    Article  Google Scholar 

  24. Chabot, N. et al. Achievement of the planetary defense investigations of the Double Asteroid Redirection Test (DART) mission. Planet. Sci. J. 5, 49 (2024).

    Article  Google Scholar 

  25. Farinella, P. et al. Asteroids falling into the Sun. Nature 371, 314–317 (1994).

    Article  Google Scholar 

  26. Nesvorný, D., Jedicke, R., Whiteley, R. J. & Ivezić, Ž Evidence for asteroid space weathering from the Sloan Digital Sky Survey. Icarus 173, 132–152 (2005).

    Article  Google Scholar 

  27. Marchi, S., Magrin, S., Nesvorný, D., Paolicchi, P. & Lazzarin, M. A spectral slope versus perihelion distance correlation for planet-crossing asteroids. Mon. Not. R. Astron. Soc. 368, L39–L42 (2006).

    Article  Google Scholar 

  28. Richardson, D. C., Bottke, W. F. & Love, S. G. Tidal distortion and disruption of Earth-crossing asteroids. Icarus 134, 47–76 (1998).

    Article  Google Scholar 

  29. Holsapple, K. A. & Michel, P. Tidal disruptions: a continuum theory for solid bodies. Icarus 183, 331–348 (2006).

    Article  Google Scholar 

  30. Zhang, Y. & Michel, P. Tidal distortion and disruption of rubble-pile bodies revisited. Astron. Astrophys. 640, A102 (2020).

    Article  Google Scholar 

  31. Pravec, P., Harris, A. W. & Michalowski, T. in Asteroids III (eds Bottke, W. F., Cellino, A. & Paolicchi, P.) 113–122 (University of Arizona Press, 2002).

  32. Birtwhistle, P. Lightcurve analysis for two near-Earth asteroids eclipsed by Earth’s shadow. Minor Planet Bull. 45, 215–219 (2018).

    Google Scholar 

  33. Delbo, M., Dell’Oro, A., Harris, A. W., Mottola, S. & Mueller, M. Thermal inertia of near-Earth asteroids and implications for the magnitude of the Yarkovsky effect. Icarus 190, 236–249 (2007).

    Article  Google Scholar 

  34. Cambioni, S., Delbo, M., Ryan, A. J., Furfaro, R. & Asphaug, E. Constraining the thermal properties of planetary surfaces using machine learning: application to airless bodies. Icarus 325, 16–30 (2019).

    Article  Google Scholar 

  35. Richter, D. & Simmons, G. Thermal expansion behavior of igneous rocks. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 11, 403–411 (1974).

    Article  Google Scholar 

  36. McKay, C. P., Molaro, J. L. & Marinova, M. M. High-frequency rock temperature data from hyper-arid desert environments in the Atacama and the Antarctic Dry Valleys and implications for rock weathering. Geomorphology 110, 182–187 (2009).

    Article  Google Scholar 

  37. Lamp, J. L., Marchant, D. R., Mackay, S. L. & Head, J. W. Thermal stress weathering and the spalling of Antarctic rocks. J. Geophys. Res. Earth Surf. 122, 3–24 (2016).

    Article  Google Scholar 

  38. Browning, J., Meredith, P. & Gudmundsson, A. Cooling-dominated cracking in thermally stressed volcanic rocks. Geophys. Res. Lett. 43, 8417–8425 (2016).

    Article  Google Scholar 

  39. Buratti, B. J. et al. 9969 Braille: Deep Space 1 infrared spectroscopy, geometric albedo, and classification. Icarus 167, 129–135 (2004).

    Article  Google Scholar 

  40. Farquhar, R. et al. in Asteroids III (eds Bottke, W. F., Cellino, A. & Paolicchi, P.) 367–376 (University of Arizona Press, 2002).

  41. Ishiguro, M. et al. Global mapping of the degree of space weathering on asteroid 25143 Itokawa by Hayabusa/AMICA observations. Meteorit. Planet. Sci. 42, 1791–1800 (2007).

    Article  Google Scholar 

  42. Pajola, M. et al. The pristine interior of comet 67P revealed by the combined Aswan outburst and cliff collapse. Nat. Astron. 1, 0092 (2017).

    Article  Google Scholar 

  43. Alí-Lagoa, V., Delbo, M. & Libourel, G. Rapid temperature changes and the early activity on comet 67P/Churyumov–Gerasimenko. Astrophys. J. Lett. 810, L22 (2015).

    Article  Google Scholar 

  44. Kim, Y., DeMartini, J. V., Richardson, D. C. & Hirabayashi, M. Tidal resurfacing model for (99942) Apophis during the 2029 close approach with Earth. Mon. Not. R. Astron. Soc. 520, 3405–3415 (2023).

    Article  Google Scholar 

  45. Richardson, J. E., Melosh, H. J., Greenberg, R. J. & O’Brien, D. P. The global effects of impact-induced seismic activity on fractured asteroid surface morphology. Icarus 179, 325–349 (2005).

    Article  Google Scholar 

  46. Yamada, T. M., Ando, K., Morota, T. & Katsuragi, H. Timescale of asteroid resurfacing by regolith convection resulting from the impact-induced global seismic shaking. Icarus 272, 165–177 (2016).

    Article  Google Scholar 

  47. Graves, K. J., Minton, D. A., Hirabayashi, M., DeMeo, F. E. & Carry, B. Resurfacing asteroids from YORP spin-up and failure. Icarus 304, 162–171 (2018).

    Article  Google Scholar 

  48. Miyamoto, H. et al. Regolith migration and sorting on asteroid Itokawa. Science 316, 1011–1014 (2007).

    Article  Google Scholar 

  49. Hirabayashi, M. et al. Hayabusa2 extended mission: new voyage to rendezvous with a small asteroid rotating with a short period. Adv. Space Res. 68, 1533–1555 (2021).

    Article  Google Scholar 

  50. Michel, P. et al. The ESA Hera mission: detailed characterization of the DART impact outcome and of the binary asteroid (65803) Didymos. Planet. Sci. J. 3, 160 (2022).

    Article  Google Scholar 

  51. DellaGiustina, D. N. et al. OSIRIS-APEX: an OSIRIS-REx extended mission to asteroid Apophis. Planet. Sci. J. 4, 198 (2023).

    Article  Google Scholar 

  52. Rein, H. & Spiegel, D. S. IAS15: a fast, adaptive, high-order integrator for gravitational dynamics, accurate to machine precision over a billion orbits. Mon. Not. R. Astron. Soc. 446, 1424–1437 (2015).

    Article  Google Scholar 

  53. Morbidelli, A., Bottke, W. F., Froeschlé, C. & Michel, P. in Asteroids III (eds Bottke, W. F., Cellino, A. & Paolicchi, P.) 409–422 (University of Arizona Press, 2002).

  54. Shene, C.-K. in Graphics Gems V (ed. Paeth, A.) 227–231 (AP Professional, 1995).

  55. Michel, P., Froeschlé, C. & Farinella, P. Dynamical evolution of two near-Earth asteroids to be explored by spacecraft: (433) Eros and (4660) Nereus. Astron. Astrophys. 313, 993–1007 (1996).

    Google Scholar 

  56. Kührt, E. & Giese, E. A thermal model of the Martian satellites. Icarus 81, 102–112 (1989).

    Article  Google Scholar 

  57. Spencer, J. R. et al. Systematic biases in radiometric diameter determinations. Icarus 78, 337–354 (1989).

    Article  Google Scholar 

  58. Press, W. H., Teukolsky, S. A., Vetterling, W. T. & Flannery, B. P. Numerical Recipes: The Art of Scientific Computing chap. 20 (Cambridge Univ. Press, 2007).

  59. Kitazato, K., Sakurai, S., Hyodo, R. & Hirata, N. Surface rejuvenation of stony near-Earth asteroids triggered by planetary shadows. Zenodo https://doi.org/10.5281/zenodo.17760427 (2025).

  60. Kitazato, K., Sakurai, S., Hyodo, R. & Hirata, N. Surface rejuvenation of stony near-Earth asteroids triggered by planetary shadows—orbital simulation. Code Ocean https://codeocean.com/capsule/1902179/tree (2025).

  61. Kitazato, K., Sakurai, S., Hyodo, R. & Hirata, N. Surface rejuvenation of stony near-Earth asteroids triggered by planetary shadows—thermophysical model. Code Ocean https://codeocean.com/capsule/2257197/tree (2025).

Download references

Acknowledgements

This work was supported by Grants-in-Aid for Scientific Research (KAKENHI) from the Japan Society for the Promotion of Science (JSPS): JP21K03647 and JP25K07393 to K.K.; JP23KK0253, JP22K14091, JP21H04512, JP21H04514 and JP20KK0080 to R.H.; and JP21K03647 to N.H. K.K. thanks S. Iwamoto, Y. Kimura, S. Kimura, S. Toyooka and Y. Takahashi for their support, which made this work possible.

Author information

Authors and Affiliations

Authors

Contributions

K.K. designed the study and wrote the manuscript with contributions from all the authors. K.K., S.S. and R.H. performed orbital simulations. K.K. performed thermophysical modelling.

Corresponding author

Correspondence to Kohei Kitazato.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Geoscience thanks Saverio Cambioni and Eric MacLennan for their contribution to the peer review of this work. Primary Handling Editor: Tamara Goldin and Alison Hunt, in collaboration with the Nature Geoscience team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1 and 2, Notes and Figs. 1–3.

Supplementary Table 1

Details of asteroid samples used in orbital simulations.

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 4

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kitazato, K., Sakurai, S., Hyodo, R. et al. Surface rejuvenation of stony near-Earth asteroids triggered by planetary shadows. Nat. Geosci. (2026). https://doi.org/10.1038/s41561-025-01907-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41561-025-01907-w

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing