Abstract
Earth system feedbacks can amplify greenhouse gas forcing but are difficult to quantify, particularly on land where long palaeoclimate records are scarce. Here we reconstructed warm-season temperatures and vegetation at Lake Baikal, Russia, over the past 8.6 million years. We document gradual late Neogene cooling that was punctuated by an abrupt transition approximately 2.7 million years ago to severe cold temperatures during glacial periods. Forests were replaced by open steppe–tundra ecosystems and permafrost probably extended into South Siberia during these Early Pleistocene cold intervals. Compiled palaeobotanical data suggest this ecosystem turnover occurred throughout the Arctic and subarctic, although the timescale of these changes is less understood. Reconstructed Early Pleistocene glacial temperatures and vegetation resemble Late Pleistocene glacial periods at Lake Baikal, despite much warmer mean global temperatures in the Early Pleistocene. These geologic observations support the view that regional climate can respond nonlinearly to global forcing. We hypothesize that both vegetation albedo and permafrost carbon storage may have played a key role in amplifying glacial–interglacial climate cycles through the last 2.7 million years alongside ocean and ice sheet feedbacks.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to the full article PDF.
USD 39.95
Prices may be subject to local taxes which are calculated during checkout




Data availability
All data are available in the Supplementary Information, via figshare at https://doi.org/10.6084/m9.figshare.28498862 (ref. 92) and via PANGAEA at https://doi.org/10.1594/PANGAEA.986603 (ref. 93). Source data are provided with this paper.
References
Herbert, T. D. et al. Late Miocene global cooling and the rise of modern ecosystems. Nat. Geosci. 9, 843–847 (2016).
Ravelo, A. C., Andreasen, D. H., Lyle, M., Olivarez Lyle, A. & Wara, M. W. Regional climate shifts caused by gradual global cooling in the Pliocene epoch. Nature 429, 263–267 (2004).
McClymont, E. L. et al. Climate evolution through the onset and intensification of Northern Hemisphere glaciation. Rev. Geophys. 61, e2022RG000793 (2023).
Abell, J. T., Winckler, G., Anderson, R. F. & Herbert, T. D. Poleward and weakened westerlies during Pliocene warmth. Nature 589, 70–75 (2021).
Haug, G. H., Sigman, D. M., Tiedemann, R., Pedersen, T. F. & Sarnthein, M. Onset of permanent stratification in the subarctic Pacific Ocean. Nature 401, 779–782 (1999).
Lawrence, K. T. et al. Time-transgressive North Atlantic productivity changes upon Northern Hemisphere glaciation. Paleoceanography 28, 740–751 (2013).
Bailey, I. et al. Iron fertilisation and biogeochemical cycles in the sub-Arctic northwest Pacific during the late Pliocene intensification of Northern Hemisphere glaciation. Earth Planet. Sci. Lett. 307, 253–265 (2011).
Flesche Kleiven, H., Jansen, E., Fronval, T. & Smith, T. M. Intensification of Northern Hemisphere glaciations in the circum Atlantic region (3.5–2.4 Ma)—ice-rafted detritus evidence. Palaeogeogr. Palaeoclimatol. Palaeoecol. 184, 213–223 (2002).
Natali, S. M. et al. Permafrost carbon feedbacks threaten global climate goals. Proc. Natl Acad. Sci. USA 118, e2100163118 (2021).
Liu, Y. & Jiang, D. Mid-Holocene permafrost: results from CMIP5 simulations. J. Geophys. Res. Atmos. 121, 221–240 (2016).
Saito, K. et al. LGM permafrost distribution: how well can the latest PMIP multi-model ensembles perform reconstruction?. Clim. Past 9, 1697–1714 (2013).
Guo, D. et al. Highly restricted near-surface permafrost extent during the mid-Pliocene warm period. Proc. Natl Acad. Sci. USA 120, e2301954120 (2023).
Kuzmin, M. I. et al. Deep drilling on Lake Baikal: main results. Russ. Geol. Geophys. 42, 8–34 (2001).
Naafs, B. D. A., Oliveira, A. S. F. & Mulholland, A. J. Molecular dynamics simulations support the hypothesis that the brGDGT paleothermometer is based on homeoviscous adaptation. Geochim. Cosmochim. Acta 312, 44–56 (2021).
Novak, J. B. et al. The branched GDGT isomer ratio refines lacustrine paleotemperature estimates. Geochem. Geophys. Geosyst. 26, e2024GC012069 (2025).
Maki, T. et al. in Long Continental Records from Lake Baikal (ed Kashiwaya, K.) 123–135 (Springer-Verlag, 2003); https://doi.org/10.1007/978-4-431-67859-5_8
Hase, Y. et al. Vegetation history during the past 12 million years based on pollen analysis from sediment cores of Lake Baikal. Russia Chikyu Kankyo 7, 87–101 (2002).
Kawamuro, K. et al. in Lake Baikal: A Mirror in Space and Time for Understanding Global Change Processes. (ed Minoura, K.) 101–107 (Elsevier, 2000); https://doi.org/10.1016/b978-044450434-0/50009-3
Prentice, C., Guiot, J., Huntley, B., Jolly, D. & Cheddadi, R. Reconstructing biomes from palaeoecological data: a general method and its application to European pollen data at 0 and 6 ka. Clim. Dyn. 12, 185–194 (1996).
Brigham-Grette, J. et al. Pliocene warmth, polar amplification, and stepped Pleistocene cooling recorded in NE Arctic Russia. Science 340, 1421–1427 (2013).
Tarasov, P. E. et al. Last glacial vegetation reconstructions in the extreme-continental eastern Asia: potentials of pollen and n-alkane biomarker analyses. Quat. Int. 290–291, 253–263 (2013).
Wright, H. E. The use of surface samples in quaternary pollen analysis. Rev. Palaeobot. Palynol. 2, 321–330 (1967).
Bezrukova, E. V., Kulagina, N. V., Letunova, P. P. & Shestakova, O. N. Climatic and vegetation changes in the Baikal region for the last 5 Ma: (according to palynological data on the Baikal sediments). Geol. Geofiz. 40, 739–749 (1999).
Xiao, S. et al. Influence of climate factors on the global dynamic distribution of Tsuga (Pinaceae). Ecol. Indic. 158, 111533 (2024).
Raberg, J. H., de Wet, G. A., Geirsdóttir, Á., Sepúlveda, J. & Miller, G. H. Oxygen depletion in lake waters may skew brGDGT-inferred temperatures by more than 10 °C. Geophys. Res. Lett. 52, e2024GL113562 (2025).
Kashiwaya, K., Ochiai, S., Sakai, H. & Kawai, T. Onset of current Milankovitch-type climatic oscillations in Lake Baikal sediments at around 4 Ma. Earth Planet. Sci. Lett. 213, 185–190 (2003).
BDP-98 Project Members. The new BDP-98 600-m drill core from Lake Baikal: a key late Cenozoic sedimentary section in continental Asia. Quat. Int. 80–81, 19–36 (2001).
Prokopenko, A. A. & Khursevich, G. K. Plio-Pleistocene transition in the continental record from Lake Baikal: diatom biostratigraphy and age model. Quat. Int. 219, 26–36 (2010).
Melles, M. et al. 2.8 Million years of arctic climate change from Lake El’gygytgyn, NE Russia. Science 337, 315–320 (2012).
Ashastina, K. et al. Woodlands and steppes: Pleistocene vegetation in Yakutia’s most continental part recorded in the Batagay permafrost sequence. Quat. Sci. Rev. 196, 38–61 (2018).
Kienast, F. & Davydov, S. P. Forest steppe-like vegetation near Cherskiy (West Beringia) during the Early Pleistocene Olyorian period reconstructed using plant macrofossils. Front. Earth Sci. (Lausanne) 9, 741473 (2021).
Binney, H. et al. Vegetation of Eurasia from the last glacial maximum to present: key biogeographic patterns. Quat. Sci. Rev. 157, 80–97 (2017).
Khan, S. et al. Late Pliocene continental climate and vegetation variability in the Arctic-Atlantic gateway region prior to the intensification of Northern Hemisphere glaciations. Palaeogeogr. Palaeoclimatol. Palaeoecol. 586, 110746 (2022).
Zhang, J. et al. Evolutionary history of the Arctic flora. Nat. Commun. 14, 4021 (2023).
Feng, R. et al. Past terrestrial hydroclimate sensitivity controlled by Earth system feedbacks. Nat. Commun. 13, 1306 (2022).
Clark, P. U., Shakun, J. D., Rosenthal, Y., Köhler, P. & Bartlein, P. J. Global and regional temperature change over the past 4.5 million years. Science 383, 884–890 (2024).
Xiangyu, L. I. et al. Mid-Pliocene westerlies from PlioMIP simulations. Adv. Atmos. Sci. 32, 909–923 (2015).
Wang, N., Jiang, D. & Lang, X. Northern westerlies during the Last Glacial Maximum: results from CMIP5 simulations. J. Clim. 31, 1135–1153 (2018).
Lunt, D. J. et al. Paleoclimate data provide constraints on climate models’ large-scale response to past CO2 changes. Commun. Earth Environ. 5, 419 (2024).
Gaskell, D. E. et al. The latitudinal temperature gradient and its climate dependence as inferred from foraminiferal δ18O over the past 95 million years. Proc. Natl Acad. Sci. USA 119, e2111332119 (2022).
Feldl, N. & Merlis, T. M. Polar amplification in idealized climates: the role of ice, moisture, and seasons. Geophys. Res. Lett. 48, e2021GL094130 (2021).
Vaks, A. et al. Speleothems reveal 500,000-year history of Siberian permafrost. Science 340, 183–186 (2013).
Vaks, A. et al. Palaeoclimate evidence of vulnerable permafrost during times of low sea ice. Nature 577, 221–225 (2020).
Alexeeva, N. V. & Erbajeva, M. A. Pleistocene permafrost in Western Transbaikalia. Quat. Int. 68–71, 5–12 (2000).
Biller-Celander, N. et al. Increasing Pleistocene permafrost persistence and carbon cycle conundrums inferred from Canadian speleothems. Sci. Adv. 7, 15–20 (2021).
Sigman, D. M. & Boyle, E. A. Glacial/interglacial variations in atmospheric carbon dioxide. Nature 407, 859–869 (2000).
Tarnocai, C. et al. Soil organic carbon pools in the northern circumpolar permafrost region. Glob. Biogeochem. Cycles 10.1029/2008GB003327 (2009).
Nicholas, J. R. J. & Hinkel, K. M. Concurrent permafrost aggradation and degradation induced by forest clearing, central Alaska, U.S.A. Arct. Alp. Res. 28, 294–299 (1996).
Crichton, K. A., Bouttes, N., Roche, D. M., Chappellaz, J. & Krinner, G. Permafrost carbon as a missing link to explain CO2 changes during the last deglaciation. Nat. Geosci. 9, 683–686 (2016).
Jones, M. C. et al. Past permafrost dynamics can inform future permafrost carbon-climate feedbacks. Commun. Earth Environ. 4, 272 (2023).
Peck, J. A., King, J. W., Colman, S. M. & Kravchinsky, V. A. A rock-magnetic record from Lake Baikal, Siberia: evidence for Late Quaternary climate change. Earth Planet. Sci. Lett. 122, 221–238 (1994).
Prokopenko, A. A., Hinnov, L. A., Williams, D. F. & Kuzmin, M. I. Orbital forcing of continental climate during the Pleistocene: a complete astronomically tuned climatic record from Lake Baikal, SE Siberia. Quat. Sci. Rev. 25, 3431–3457 (2006).
Kravchinsky, V. A. et al. A 640 kyr geomagnetic and palaeoclimatic record from Lake Baikal sediments. Geophys. J. Int. 170, 101–116 (2007).
Kravchinsky, V. A. et al. Magnetic record of Lake Baikal sediments: chronological and paleoclimatic implication for the last 6.7 Myr. Palaeogeogr. Palaeoclimatol. Palaeoecol. 195, 281–298 (2003).
Meyers, S. R. Astrochron: an R package for astrochronology. CRAN http://cran.r-project.org/package=astrochron (2014).
Kravchinsky, V. A. Magnetostratigraphy of the Lake Baikal sediments: a unique record of 8.4 Ma of continuous sedimentation in the continental environment. Glob. Planet. Change 152, 209–226 (2017).
Auderset, A., Schmitt, M. & Martínez-García, A. Simultaneous extraction and chromatographic separation of n-alkanes and alkenones from glycerol dialkyl glycerol tetraethers via selective accelerated solvent extraction. Org. Geochem. 143, 103979 (2020).
Powers, L. et al. Applicability and calibration of the TEX86 paleothermometer in lakes. Org. Geochem. 41, 404–413 (2010).
Hopmans, E. C., Schouten, S. & Sinninghe Damsté, J. S. The effect of improved chromatography on GDGT-based palaeoproxies. Org. Geochem. 93, 1–6 (2016).
Huguet, C. et al. An improved method to determine the absolute abundance of glycerol dibiphytanyl glycerol tetraether lipids. Org. Geochem. 37, 1036–1041 (2006).
Eglinton, G. & Hamilton, R. J. Leaf epicuticular waxes. Science 156, 1322–1335 (1967).
Brincat, D., Yamada, K., Ishiwatari, R., Uemura, H. & Naraoka, H. Molecular-isotopic stratigraphy of long-chain n-alkanes in Lake Baikal Holocene and glacial age sediments. Org. Geochem. 31, 287–294 (2000).
Bray, E. E. & Evans, E. D. Distribution of n-paraffins as a clue to recognition of source beds. Geochim. Cosmochim. Acta 22, 2–15 (1961).
De Jonge, C. et al. Occurrence and abundance of 6-methyl branched glycerol dialkyl glycerol tetraethers in soils: implications for palaeoclimate reconstruction. Geochim. Cosmochim. Acta 141, 97–112 (2014).
Dang, X., Xue, J., Yang, H. & Xie, S. Environmental impacts on the distribution of microbial tetraether lipids in Chinese lakes with contrasting pH: implications for lacustrine paleoenvironmental reconstructions. Sci. China Earth Sci. 59, 939–950 (2016).
Schouten, S., Hopmans, E. C., Schefuß, E. & Sinninghe Damsté, J. S. Distributional variations in marine crenarchaeotal membrane lipids: a new tool for reconstructing ancient sea water temperatures?. Earth Planet. Sci. Lett. 204, 265–274 (2002).
Blaga, C. I., Reichart, G. J., Heiri, O. & Sinninghe Damsté, J. S. Tetraether membrane lipid distributions in water-column particulate matter and sediments: a study of 47 European lakes along a north-south transect. J. Paleolimnol. 41, 523–540 (2009).
Baxter, A. J. et al. Seasonal and multi-annual variation in the abundance of isoprenoid GDGT membrane lipids and their producers in the water column of a meromictic equatorial crater lake (Lake Chala, East Africa). Quat. Sci. Rev. 273, 107263 (2021).
Hopmans, E. C. et al. A novel proxy for terrestrial organic matter in sediments based on branched and isoprenoid tetraether lipids. Earth Planet. Sci. Lett. 224, 107–116 (2004).
Tarasov, P. E. et al. Progress in the reconstruction of Quaternary climate dynamics in the Northwest Pacific: a new modern analogue reference dataset and its application to the 430-kyr pollen record from Lake Biwa. Earth Sci. Rev. 108, 64–79 (2011).
Takahara, H. et al. Millennial-scale variability in vegetation records from the East Asian Islands: Taiwan, Japan and Sakhalin. Quat. Sci. Rev. 29, 2900–2917 (2010).
Takahara, H. et al. Pollen-based reconstructions of Japanese biomes at 0, 6000 and 18,000 14 C yr bp. J. Biogeogr. 27, 665–683 (2000).
Gotanda, K. et al. Biome classification from Japanese pollen data: application to modern-day and Late Quaternary samples. Quat. Sci. Rev. 21, 647–657 (2002).
Prokopenko, A. A. et al. Climate in continental interior Asia during the longest interglacial of the past 500 000 years: the new MIS 11 records from Lake Baikal, SE Siberia. Clim. Past 6, 31–48 (2010).
Bush, R. T. & McInerney, F. A. Leaf wax n-alkane distributions in and across modern plants: Implications for paleoecology and chemotaxonomy. Geochim. Cosmochim. Acta 117, 161–179 (2013).
Vogts, A., Schefuß, E., Badewien, T. & Rullkötter, J. n-Alkane parameters from a deep sea sediment transect off southwest Africa reflect continental vegetation and climate conditions. Org. Geochem. 47, 109–119 (2012).
Ishiwatari, R. et al. A 35 kyr record of organic matter composition and δ13C of n-alkanes in bog sediments close to Lake Baikal: implications for paleoenvironmental studies. Org. Geochem. 40, 51–60 (2009).
Struck, J. et al. Leaf wax n-alkane patterns and compound-specific δ13C of plants and topsoils from semi-arid and arid Mongolia. Biogeosciences 17, 567–580 (2020).
Strelnikova, E. B., Russkikh, I. V. & Preis, Y. I. n-Alkanes and n-Alkan-2-ones as lipid biomarkers of high-moor peats and marsh plants in western Siberia. Solid Fuel Chem. 55, 321–331 (2021).
Li, Q. et al. Distribution and carbon isotopic composition of long-chain leaf wax n-alkanes from Holocene lake sediments in the Altai Mountains. Quat. Int. 625, 29–37 (2022).
Schlanser, K. M. et al. Conifers are a major source of sedimentary leaf wax n-alkanes when dominant in the landscape: case studies from the Paleogene. Org. Geochem. 147, 104069 (2020).
Xiao, B. et al. Long chain n-alkanes in lake sediment track differences in adjacent land vegetation. Org. Geochem. 202, 104934 (2025).
Afonina, T. E. & Karabanov, E. B. Sources and distributions of organic matter in the Pleistocene-Holocene sediments of northern Baikal (by the example of n-alkane biomarkers). Russ. Geol. Geophys. 42, 241–253 (2001).
Shichi, K. et al. Climate and vegetation changes around Lake Baikal during the last 350,000 years. Palaeogeogr. Palaeoclimatol. Palaeoecol. 248, 357–375 (2007).
Bezrukova, E. V. & Letunova, P. P. A high-resolution record of east Siberian paleoclimates in the early and middle Pleistocene by palynological studies of Baikal sediments from the deep borehole BDP-96-1. Russ. Geol. Geophys. 42, 88–96 (2001).
Pawlowicz, R. M_Map: a mapping package for MATLAB, version 1.4 m. https://www-old.eoas.ubc.ca/~rich/map.html (2020).
Brown, R. M., Chalk, T. B., Crocker, A. J., Wilson, P. A. & Foster, G. L. Late Miocene cooling coupled to carbon dioxide with Pleistocene-like climate sensitivity. Nat. Geosci. 15, 664–670 (2022).
Tierney, J. E. & Tingley, M. P. BAYSPLINE: a new calibration for the alkenone paleothermometer. Paleoceanogr. Paleoclimatol. 33, 281–301 (2018).
Müller, P. J., Kirst, G., Ruhland, G., Von Storch, I. & Rosell-Melé, A. Calibration of the alkenone paleotemperature index UK’37 based on core-tops from the eastern South Atlantic and the global ocean (60° N–60° S). Geochim. Cosmochim. Acta 62, 1757–1772 (1998).
Martinot, C. et al. Drivers of Late Miocene tropical sea surface cooling: a new perspective from the equatorial Indian Ocean. Paleoceanogr. Paleoclimatol. 37, e2021PA004407 (2022).
Liu, X., Huber, M., Foster, G. L., Dessler, A. & Zhang, Y. G. Persistent high latitude amplification of the Pacific Ocean over the past 10 million years. Nat. Commun. 13, 7310 (2022).
Novak, J. B. et al. Early Pleistocene ecosystem turnover in South Siberia linked to abrupt regional cooling. figshare https://doi.org/10.6084/m9.figshare.28498862 (2025).
Novak, J. B. et al. Paleotemperature and vegetation records from Lake Baikal, Russia, over the last 8.6 million years. Pangaea https://doi.org/10.1594/PANGAEA.986603 (2025).
Acknowledgements
This work is dedicated to the memory of Mikhail I. Kuzmin, who, together with Takayoshi Kawai and Douglas F. Williams, led the Baikal Drilling Project (BDP) in 1992–2002. In 2019 he welcomed J.B.N. in Irkutsk and helped initiate this research. We thank the BDP members and the University of Rhode Island Marine Geological Samples Laboratory for access to drill core materials. J.B.N. thanks M. R. Alexandre for assistance analysing GDGTs at Brown University. J.B.N. thanks M. I. Kuzmin and A. T. Korolkov for their support and encouragement. This work was supported by the National Science Foundation NNA 22-02918 (J.B.N., P.J.P.), PR 1414/1-1 Deutsche Forchungsgemeinshaft Priority Program ‘ICDP’ 1006 (AAP), Geological Society of America Continental Drilling Science Division Graduate Student Grant 13282-21 (J.B.N.) and Sigma Xi Grants in Aid of Research G20211001-101 (J.B.N.) and the ARCS Scholarship (J.B.N.).
Author information
Authors and Affiliations
Contributions
Conceptualization: J.B.N., P.J.P., A.A.P., J.M.R., R.S.V. and G.E.A.S. Methodology: J.B.N., P.J.P., A.A.P., P.E.T. and J.M.R. Investigation: J.B.N., E.R.L., A.A.P., P.E.T., K.S., K.K. and J.P. Visualization: J.B.N. Funding acquisition: J.B.N., P.J.P. and A.A.P. Project administration: P.J.P. Supervision: P.J.P. Writing–original draft: J.B.N. Writing–review and editing: J.B.N., P.J.P., A.A.P., P.E.T., J.M.R., K.S., K.K., J.P., R.S.V. and G.E.A.S.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Geoscience thanks Sarah Feakins and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: James Super, in collaboration with the Nature Geoscience team.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Extended data
Extended Data Fig. 1 Climate and environmental changes at Lake Baikal 2.7 Ma.
(a) Warm season temperatures reconstructed from brGDGTs. Gray shading is the 68% confidence interval, red points are the mean. (b) Average chain length of n-alkanes (ACL, vegetation proxy). (c) Warm–temperate broad-leaved evergreen plant functional-type score. (d) Median grain size of bulk sediments26. φ values of ~8 correspond to glacial clays, φ values of 6–7 correspond to the typical size of diatom frustules in Late Pliocene and Early Pleistocene Lake Baikal sediments reported by ref. 28.
Supplementary information
Supplementary Data
All supporting data associated with this work.
Source data
Source Data Fig. 1
The Lake Baikal palaeotemperature record, pollen plant functional-type scores, reconstructed dominant biomes and the global mean surface temperature change stacks.
Source Data Fig. 2
Compiled palaeobotanical datasets from Northern Hemisphere boreal regions.
Source Data Fig. 3
Global mean surface temperature stack anomaly data and Lake Baikal temperature anomalies.
Source Data Fig. 4
The Lake Baikal palaeotemperature and n-alkane average chain length records, with samples from the last ~500 ka classified as belonging to periods with or without local permafrost.
Source Data Extended Data Fig. 1
Lake Baikal palaeotemperature record, n-alkane average chain length record, warm–temperate evergreen plant functional-type scores and median grain size records from 2.0 to 3.5 Ma.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Novak, J.B., Prokopenko, A.A., Tarasov, P.E. et al. Early Pleistocene ecosystem turnover in South Siberia linked to abrupt regional cooling. Nat. Geosci. (2026). https://doi.org/10.1038/s41561-025-01914-x
Received:
Accepted:
Published:
Version of record:
DOI: https://doi.org/10.1038/s41561-025-01914-x