Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Early Pleistocene ecosystem turnover in South Siberia linked to abrupt regional cooling

Abstract

Earth system feedbacks can amplify greenhouse gas forcing but are difficult to quantify, particularly on land where long palaeoclimate records are scarce. Here we reconstructed warm-season temperatures and vegetation at Lake Baikal, Russia, over the past 8.6 million years. We document gradual late Neogene cooling that was punctuated by an abrupt transition approximately 2.7 million years ago to severe cold temperatures during glacial periods. Forests were replaced by open steppe–tundra ecosystems and permafrost probably extended into South Siberia during these Early Pleistocene cold intervals. Compiled palaeobotanical data suggest this ecosystem turnover occurred throughout the Arctic and subarctic, although the timescale of these changes is less understood. Reconstructed Early Pleistocene glacial temperatures and vegetation resemble Late Pleistocene glacial periods at Lake Baikal, despite much warmer mean global temperatures in the Early Pleistocene. These geologic observations support the view that regional climate can respond nonlinearly to global forcing. We hypothesize that both vegetation albedo and permafrost carbon storage may have played a key role in amplifying glacial–interglacial climate cycles through the last 2.7 million years alongside ocean and ice sheet feedbacks.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Late Neogene ecosystem and temperature change at Lake Baikal.
Fig. 2: Compiled vegetation data.
Fig. 3: Lake Baikal warm-season temperature anomalies as a function of global mean surface temperature change.
Fig. 4: Continuous permafrost during glacial periods since 2.7 Ma.

Data availability

All data are available in the Supplementary Information, via figshare at https://doi.org/10.6084/m9.figshare.28498862 (ref. 92) and via PANGAEA at https://doi.org/10.1594/PANGAEA.986603 (ref. 93). Source data are provided with this paper.

References

  1. Herbert, T. D. et al. Late Miocene global cooling and the rise of modern ecosystems. Nat. Geosci. 9, 843–847 (2016).

    Article  CAS  Google Scholar 

  2. Ravelo, A. C., Andreasen, D. H., Lyle, M., Olivarez Lyle, A. & Wara, M. W. Regional climate shifts caused by gradual global cooling in the Pliocene epoch. Nature 429, 263–267 (2004).

    Article  CAS  Google Scholar 

  3. McClymont, E. L. et al. Climate evolution through the onset and intensification of Northern Hemisphere glaciation. Rev. Geophys. 61, e2022RG000793 (2023).

    Article  Google Scholar 

  4. Abell, J. T., Winckler, G., Anderson, R. F. & Herbert, T. D. Poleward and weakened westerlies during Pliocene warmth. Nature 589, 70–75 (2021).

    Article  CAS  Google Scholar 

  5. Haug, G. H., Sigman, D. M., Tiedemann, R., Pedersen, T. F. & Sarnthein, M. Onset of permanent stratification in the subarctic Pacific Ocean. Nature 401, 779–782 (1999).

    Article  CAS  Google Scholar 

  6. Lawrence, K. T. et al. Time-transgressive North Atlantic productivity changes upon Northern Hemisphere glaciation. Paleoceanography 28, 740–751 (2013).

    Article  Google Scholar 

  7. Bailey, I. et al. Iron fertilisation and biogeochemical cycles in the sub-Arctic northwest Pacific during the late Pliocene intensification of Northern Hemisphere glaciation. Earth Planet. Sci. Lett. 307, 253–265 (2011).

    Article  CAS  Google Scholar 

  8. Flesche Kleiven, H., Jansen, E., Fronval, T. & Smith, T. M. Intensification of Northern Hemisphere glaciations in the circum Atlantic region (3.5–2.4 Ma)—ice-rafted detritus evidence. Palaeogeogr. Palaeoclimatol. Palaeoecol. 184, 213–223 (2002).

    Article  Google Scholar 

  9. Natali, S. M. et al. Permafrost carbon feedbacks threaten global climate goals. Proc. Natl Acad. Sci. USA 118, e2100163118 (2021).

    Article  CAS  Google Scholar 

  10. Liu, Y. & Jiang, D. Mid-Holocene permafrost: results from CMIP5 simulations. J. Geophys. Res. Atmos. 121, 221–240 (2016).

    Article  Google Scholar 

  11. Saito, K. et al. LGM permafrost distribution: how well can the latest PMIP multi-model ensembles perform reconstruction?. Clim. Past 9, 1697–1714 (2013).

    Article  Google Scholar 

  12. Guo, D. et al. Highly restricted near-surface permafrost extent during the mid-Pliocene warm period. Proc. Natl Acad. Sci. USA 120, e2301954120 (2023).

    Article  CAS  Google Scholar 

  13. Kuzmin, M. I. et al. Deep drilling on Lake Baikal: main results. Russ. Geol. Geophys. 42, 8–34 (2001).

    CAS  Google Scholar 

  14. Naafs, B. D. A., Oliveira, A. S. F. & Mulholland, A. J. Molecular dynamics simulations support the hypothesis that the brGDGT paleothermometer is based on homeoviscous adaptation. Geochim. Cosmochim. Acta 312, 44–56 (2021).

    Article  CAS  Google Scholar 

  15. Novak, J. B. et al. The branched GDGT isomer ratio refines lacustrine paleotemperature estimates. Geochem. Geophys. Geosyst. 26, e2024GC012069 (2025).

    Article  CAS  Google Scholar 

  16. Maki, T. et al. in Long Continental Records from Lake Baikal (ed Kashiwaya, K.) 123–135 (Springer-Verlag, 2003); https://doi.org/10.1007/978-4-431-67859-5_8

  17. Hase, Y. et al. Vegetation history during the past 12 million years based on pollen analysis from sediment cores of Lake Baikal. Russia Chikyu Kankyo 7, 87–101 (2002).

    Google Scholar 

  18. Kawamuro, K. et al. in Lake Baikal: A Mirror in Space and Time for Understanding Global Change Processes. (ed Minoura, K.) 101–107 (Elsevier, 2000); https://doi.org/10.1016/b978-044450434-0/50009-3

  19. Prentice, C., Guiot, J., Huntley, B., Jolly, D. & Cheddadi, R. Reconstructing biomes from palaeoecological data: a general method and its application to European pollen data at 0 and 6 ka. Clim. Dyn. 12, 185–194 (1996).

    Article  Google Scholar 

  20. Brigham-Grette, J. et al. Pliocene warmth, polar amplification, and stepped Pleistocene cooling recorded in NE Arctic Russia. Science 340, 1421–1427 (2013).

    Article  CAS  Google Scholar 

  21. Tarasov, P. E. et al. Last glacial vegetation reconstructions in the extreme-continental eastern Asia: potentials of pollen and n-alkane biomarker analyses. Quat. Int. 290–291, 253–263 (2013).

    Article  Google Scholar 

  22. Wright, H. E. The use of surface samples in quaternary pollen analysis. Rev. Palaeobot. Palynol. 2, 321–330 (1967).

    Article  Google Scholar 

  23. Bezrukova, E. V., Kulagina, N. V., Letunova, P. P. & Shestakova, O. N. Climatic and vegetation changes in the Baikal region for the last 5 Ma: (according to palynological data on the Baikal sediments). Geol. Geofiz. 40, 739–749 (1999).

    Google Scholar 

  24. Xiao, S. et al. Influence of climate factors on the global dynamic distribution of Tsuga (Pinaceae). Ecol. Indic. 158, 111533 (2024).

    Article  Google Scholar 

  25. Raberg, J. H., de Wet, G. A., Geirsdóttir, Á., Sepúlveda, J. & Miller, G. H. Oxygen depletion in lake waters may skew brGDGT-inferred temperatures by more than 10 °C. Geophys. Res. Lett. 52, e2024GL113562 (2025).

  26. Kashiwaya, K., Ochiai, S., Sakai, H. & Kawai, T. Onset of current Milankovitch-type climatic oscillations in Lake Baikal sediments at around 4 Ma. Earth Planet. Sci. Lett. 213, 185–190 (2003).

    Article  CAS  Google Scholar 

  27. BDP-98 Project Members. The new BDP-98 600-m drill core from Lake Baikal: a key late Cenozoic sedimentary section in continental Asia. Quat. Int. 80–81, 19–36 (2001).

    Google Scholar 

  28. Prokopenko, A. A. & Khursevich, G. K. Plio-Pleistocene transition in the continental record from Lake Baikal: diatom biostratigraphy and age model. Quat. Int. 219, 26–36 (2010).

    Article  Google Scholar 

  29. Melles, M. et al. 2.8 Million years of arctic climate change from Lake El’gygytgyn, NE Russia. Science 337, 315–320 (2012).

    Article  CAS  Google Scholar 

  30. Ashastina, K. et al. Woodlands and steppes: Pleistocene vegetation in Yakutia’s most continental part recorded in the Batagay permafrost sequence. Quat. Sci. Rev. 196, 38–61 (2018).

    Article  Google Scholar 

  31. Kienast, F. & Davydov, S. P. Forest steppe-like vegetation near Cherskiy (West Beringia) during the Early Pleistocene Olyorian period reconstructed using plant macrofossils. Front. Earth Sci. (Lausanne) 9, 741473 (2021).

    Article  Google Scholar 

  32. Binney, H. et al. Vegetation of Eurasia from the last glacial maximum to present: key biogeographic patterns. Quat. Sci. Rev. 157, 80–97 (2017).

    Article  Google Scholar 

  33. Khan, S. et al. Late Pliocene continental climate and vegetation variability in the Arctic-Atlantic gateway region prior to the intensification of Northern Hemisphere glaciations. Palaeogeogr. Palaeoclimatol. Palaeoecol. 586, 110746 (2022).

    Article  Google Scholar 

  34. Zhang, J. et al. Evolutionary history of the Arctic flora. Nat. Commun. 14, 4021 (2023).

    Article  CAS  Google Scholar 

  35. Feng, R. et al. Past terrestrial hydroclimate sensitivity controlled by Earth system feedbacks. Nat. Commun. 13, 1306 (2022).

    Article  CAS  Google Scholar 

  36. Clark, P. U., Shakun, J. D., Rosenthal, Y., Köhler, P. & Bartlein, P. J. Global and regional temperature change over the past 4.5 million years. Science 383, 884–890 (2024).

    Article  CAS  Google Scholar 

  37. Xiangyu, L. I. et al. Mid-Pliocene westerlies from PlioMIP simulations. Adv. Atmos. Sci. 32, 909–923 (2015).

    Article  Google Scholar 

  38. Wang, N., Jiang, D. & Lang, X. Northern westerlies during the Last Glacial Maximum: results from CMIP5 simulations. J. Clim. 31, 1135–1153 (2018).

    Article  Google Scholar 

  39. Lunt, D. J. et al. Paleoclimate data provide constraints on climate models’ large-scale response to past CO2 changes. Commun. Earth Environ. 5, 419 (2024).

    Article  Google Scholar 

  40. Gaskell, D. E. et al. The latitudinal temperature gradient and its climate dependence as inferred from foraminiferal δ18O over the past 95 million years. Proc. Natl Acad. Sci. USA 119, e2111332119 (2022).

    Article  CAS  Google Scholar 

  41. Feldl, N. & Merlis, T. M. Polar amplification in idealized climates: the role of ice, moisture, and seasons. Geophys. Res. Lett. 48, e2021GL094130 (2021).

    Article  Google Scholar 

  42. Vaks, A. et al. Speleothems reveal 500,000-year history of Siberian permafrost. Science 340, 183–186 (2013).

    Article  CAS  Google Scholar 

  43. Vaks, A. et al. Palaeoclimate evidence of vulnerable permafrost during times of low sea ice. Nature 577, 221–225 (2020).

    Article  CAS  Google Scholar 

  44. Alexeeva, N. V. & Erbajeva, M. A. Pleistocene permafrost in Western Transbaikalia. Quat. Int. 68–71, 5–12 (2000).

    Article  Google Scholar 

  45. Biller-Celander, N. et al. Increasing Pleistocene permafrost persistence and carbon cycle conundrums inferred from Canadian speleothems. Sci. Adv. 7, 15–20 (2021).

    Article  Google Scholar 

  46. Sigman, D. M. & Boyle, E. A. Glacial/interglacial variations in atmospheric carbon dioxide. Nature 407, 859–869 (2000).

    Article  CAS  Google Scholar 

  47. Tarnocai, C. et al. Soil organic carbon pools in the northern circumpolar permafrost region. Glob. Biogeochem. Cycles 10.1029/2008GB003327 (2009).

  48. Nicholas, J. R. J. & Hinkel, K. M. Concurrent permafrost aggradation and degradation induced by forest clearing, central Alaska, U.S.A. Arct. Alp. Res. 28, 294–299 (1996).

    Article  Google Scholar 

  49. Crichton, K. A., Bouttes, N., Roche, D. M., Chappellaz, J. & Krinner, G. Permafrost carbon as a missing link to explain CO2 changes during the last deglaciation. Nat. Geosci. 9, 683–686 (2016).

    Article  CAS  Google Scholar 

  50. Jones, M. C. et al. Past permafrost dynamics can inform future permafrost carbon-climate feedbacks. Commun. Earth Environ. 4, 272 (2023).

    Article  Google Scholar 

  51. Peck, J. A., King, J. W., Colman, S. M. & Kravchinsky, V. A. A rock-magnetic record from Lake Baikal, Siberia: evidence for Late Quaternary climate change. Earth Planet. Sci. Lett. 122, 221–238 (1994).

    Article  CAS  Google Scholar 

  52. Prokopenko, A. A., Hinnov, L. A., Williams, D. F. & Kuzmin, M. I. Orbital forcing of continental climate during the Pleistocene: a complete astronomically tuned climatic record from Lake Baikal, SE Siberia. Quat. Sci. Rev. 25, 3431–3457 (2006).

    Article  Google Scholar 

  53. Kravchinsky, V. A. et al. A 640 kyr geomagnetic and palaeoclimatic record from Lake Baikal sediments. Geophys. J. Int. 170, 101–116 (2007).

    Article  Google Scholar 

  54. Kravchinsky, V. A. et al. Magnetic record of Lake Baikal sediments: chronological and paleoclimatic implication for the last 6.7 Myr. Palaeogeogr. Palaeoclimatol. Palaeoecol. 195, 281–298 (2003).

    Article  Google Scholar 

  55. Meyers, S. R. Astrochron: an R package for astrochronology. CRAN http://cran.r-project.org/package=astrochron (2014).

  56. Kravchinsky, V. A. Magnetostratigraphy of the Lake Baikal sediments: a unique record of 8.4 Ma of continuous sedimentation in the continental environment. Glob. Planet. Change 152, 209–226 (2017).

    Article  Google Scholar 

  57. Auderset, A., Schmitt, M. & Martínez-García, A. Simultaneous extraction and chromatographic separation of n-alkanes and alkenones from glycerol dialkyl glycerol tetraethers via selective accelerated solvent extraction. Org. Geochem. 143, 103979 (2020).

    Article  CAS  Google Scholar 

  58. Powers, L. et al. Applicability and calibration of the TEX86 paleothermometer in lakes. Org. Geochem. 41, 404–413 (2010).

    Article  CAS  Google Scholar 

  59. Hopmans, E. C., Schouten, S. & Sinninghe Damsté, J. S. The effect of improved chromatography on GDGT-based palaeoproxies. Org. Geochem. 93, 1–6 (2016).

    Article  CAS  Google Scholar 

  60. Huguet, C. et al. An improved method to determine the absolute abundance of glycerol dibiphytanyl glycerol tetraether lipids. Org. Geochem. 37, 1036–1041 (2006).

    Article  CAS  Google Scholar 

  61. Eglinton, G. & Hamilton, R. J. Leaf epicuticular waxes. Science 156, 1322–1335 (1967).

    Article  CAS  Google Scholar 

  62. Brincat, D., Yamada, K., Ishiwatari, R., Uemura, H. & Naraoka, H. Molecular-isotopic stratigraphy of long-chain n-alkanes in Lake Baikal Holocene and glacial age sediments. Org. Geochem. 31, 287–294 (2000).

    Article  CAS  Google Scholar 

  63. Bray, E. E. & Evans, E. D. Distribution of n-paraffins as a clue to recognition of source beds. Geochim. Cosmochim. Acta 22, 2–15 (1961).

    Article  CAS  Google Scholar 

  64. De Jonge, C. et al. Occurrence and abundance of 6-methyl branched glycerol dialkyl glycerol tetraethers in soils: implications for palaeoclimate reconstruction. Geochim. Cosmochim. Acta 141, 97–112 (2014).

    Article  Google Scholar 

  65. Dang, X., Xue, J., Yang, H. & Xie, S. Environmental impacts on the distribution of microbial tetraether lipids in Chinese lakes with contrasting pH: implications for lacustrine paleoenvironmental reconstructions. Sci. China Earth Sci. 59, 939–950 (2016).

    Article  CAS  Google Scholar 

  66. Schouten, S., Hopmans, E. C., Schefuß, E. & Sinninghe Damsté, J. S. Distributional variations in marine crenarchaeotal membrane lipids: a new tool for reconstructing ancient sea water temperatures?. Earth Planet. Sci. Lett. 204, 265–274 (2002).

    Article  CAS  Google Scholar 

  67. Blaga, C. I., Reichart, G. J., Heiri, O. & Sinninghe Damsté, J. S. Tetraether membrane lipid distributions in water-column particulate matter and sediments: a study of 47 European lakes along a north-south transect. J. Paleolimnol. 41, 523–540 (2009).

    Article  Google Scholar 

  68. Baxter, A. J. et al. Seasonal and multi-annual variation in the abundance of isoprenoid GDGT membrane lipids and their producers in the water column of a meromictic equatorial crater lake (Lake Chala, East Africa). Quat. Sci. Rev. 273, 107263 (2021).

    Article  Google Scholar 

  69. Hopmans, E. C. et al. A novel proxy for terrestrial organic matter in sediments based on branched and isoprenoid tetraether lipids. Earth Planet. Sci. Lett. 224, 107–116 (2004).

    Article  CAS  Google Scholar 

  70. Tarasov, P. E. et al. Progress in the reconstruction of Quaternary climate dynamics in the Northwest Pacific: a new modern analogue reference dataset and its application to the 430-kyr pollen record from Lake Biwa. Earth Sci. Rev. 108, 64–79 (2011).

    Article  Google Scholar 

  71. Takahara, H. et al. Millennial-scale variability in vegetation records from the East Asian Islands: Taiwan, Japan and Sakhalin. Quat. Sci. Rev. 29, 2900–2917 (2010).

    Article  Google Scholar 

  72. Takahara, H. et al. Pollen-based reconstructions of Japanese biomes at 0, 6000 and 18,000 14 C yr bp. J. Biogeogr. 27, 665–683 (2000).

    Article  Google Scholar 

  73. Gotanda, K. et al. Biome classification from Japanese pollen data: application to modern-day and Late Quaternary samples. Quat. Sci. Rev. 21, 647–657 (2002).

    Article  Google Scholar 

  74. Prokopenko, A. A. et al. Climate in continental interior Asia during the longest interglacial of the past 500 000 years: the new MIS 11 records from Lake Baikal, SE Siberia. Clim. Past 6, 31–48 (2010).

    Article  Google Scholar 

  75. Bush, R. T. & McInerney, F. A. Leaf wax n-alkane distributions in and across modern plants: Implications for paleoecology and chemotaxonomy. Geochim. Cosmochim. Acta 117, 161–179 (2013).

    Article  CAS  Google Scholar 

  76. Vogts, A., Schefuß, E., Badewien, T. & Rullkötter, J. n-Alkane parameters from a deep sea sediment transect off southwest Africa reflect continental vegetation and climate conditions. Org. Geochem. 47, 109–119 (2012).

    Article  CAS  Google Scholar 

  77. Ishiwatari, R. et al. A 35 kyr record of organic matter composition and δ13C of n-alkanes in bog sediments close to Lake Baikal: implications for paleoenvironmental studies. Org. Geochem. 40, 51–60 (2009).

    Article  CAS  Google Scholar 

  78. Struck, J. et al. Leaf wax n-alkane patterns and compound-specific δ13C of plants and topsoils from semi-arid and arid Mongolia. Biogeosciences 17, 567–580 (2020).

    Article  CAS  Google Scholar 

  79. Strelnikova, E. B., Russkikh, I. V. & Preis, Y. I. n-Alkanes and n-Alkan-2-ones as lipid biomarkers of high-moor peats and marsh plants in western Siberia. Solid Fuel Chem. 55, 321–331 (2021).

    Article  CAS  Google Scholar 

  80. Li, Q. et al. Distribution and carbon isotopic composition of long-chain leaf wax n-alkanes from Holocene lake sediments in the Altai Mountains. Quat. Int. 625, 29–37 (2022).

    Article  Google Scholar 

  81. Schlanser, K. M. et al. Conifers are a major source of sedimentary leaf wax n-alkanes when dominant in the landscape: case studies from the Paleogene. Org. Geochem. 147, 104069 (2020).

    Article  CAS  Google Scholar 

  82. Xiao, B. et al. Long chain n-alkanes in lake sediment track differences in adjacent land vegetation. Org. Geochem. 202, 104934 (2025).

    Article  CAS  Google Scholar 

  83. Afonina, T. E. & Karabanov, E. B. Sources and distributions of organic matter in the Pleistocene-Holocene sediments of northern Baikal (by the example of n-alkane biomarkers). Russ. Geol. Geophys. 42, 241–253 (2001).

    CAS  Google Scholar 

  84. Shichi, K. et al. Climate and vegetation changes around Lake Baikal during the last 350,000 years. Palaeogeogr. Palaeoclimatol. Palaeoecol. 248, 357–375 (2007).

    Article  Google Scholar 

  85. Bezrukova, E. V. & Letunova, P. P. A high-resolution record of east Siberian paleoclimates in the early and middle Pleistocene by palynological studies of Baikal sediments from the deep borehole BDP-96-1. Russ. Geol. Geophys. 42, 88–96 (2001).

    Google Scholar 

  86. Pawlowicz, R. M_Map: a mapping package for MATLAB, version 1.4 m. https://www-old.eoas.ubc.ca/~rich/map.html (2020).

  87. Brown, R. M., Chalk, T. B., Crocker, A. J., Wilson, P. A. & Foster, G. L. Late Miocene cooling coupled to carbon dioxide with Pleistocene-like climate sensitivity. Nat. Geosci. 15, 664–670 (2022).

    Article  CAS  Google Scholar 

  88. Tierney, J. E. & Tingley, M. P. BAYSPLINE: a new calibration for the alkenone paleothermometer. Paleoceanogr. Paleoclimatol. 33, 281–301 (2018).

    Article  Google Scholar 

  89. Müller, P. J., Kirst, G., Ruhland, G., Von Storch, I. & Rosell-Melé, A. Calibration of the alkenone paleotemperature index UK’37 based on core-tops from the eastern South Atlantic and the global ocean (60° N–60° S). Geochim. Cosmochim. Acta 62, 1757–1772 (1998).

    Article  Google Scholar 

  90. Martinot, C. et al. Drivers of Late Miocene tropical sea surface cooling: a new perspective from the equatorial Indian Ocean. Paleoceanogr. Paleoclimatol. 37, e2021PA004407 (2022).

    Article  Google Scholar 

  91. Liu, X., Huber, M., Foster, G. L., Dessler, A. & Zhang, Y. G. Persistent high latitude amplification of the Pacific Ocean over the past 10 million years. Nat. Commun. 13, 7310 (2022).

    Article  CAS  Google Scholar 

  92. Novak, J. B. et al. Early Pleistocene ecosystem turnover in South Siberia linked to abrupt regional cooling. figshare https://doi.org/10.6084/m9.figshare.28498862 (2025).

  93. Novak, J. B. et al. Paleotemperature and vegetation records from Lake Baikal, Russia, over the last 8.6 million years. Pangaea https://doi.org/10.1594/PANGAEA.986603 (2025).

Download references

Acknowledgements

This work is dedicated to the memory of Mikhail I. Kuzmin, who, together with Takayoshi Kawai and Douglas F. Williams, led the Baikal Drilling Project (BDP) in 1992–2002. In 2019 he welcomed J.B.N. in Irkutsk and helped initiate this research. We thank the BDP members and the University of Rhode Island Marine Geological Samples Laboratory for access to drill core materials. J.B.N. thanks M. R. Alexandre for assistance analysing GDGTs at Brown University. J.B.N. thanks M. I. Kuzmin and A. T. Korolkov for their support and encouragement. This work was supported by the National Science Foundation NNA 22-02918 (J.B.N., P.J.P.), PR 1414/1-1 Deutsche Forchungsgemeinshaft Priority Program ‘ICDP’ 1006 (AAP), Geological Society of America Continental Drilling Science Division Graduate Student Grant 13282-21 (J.B.N.) and Sigma Xi Grants in Aid of Research G20211001-101 (J.B.N.) and the ARCS Scholarship (J.B.N.).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: J.B.N., P.J.P., A.A.P., J.M.R., R.S.V. and G.E.A.S. Methodology: J.B.N., P.J.P., A.A.P., P.E.T. and J.M.R. Investigation: J.B.N., E.R.L., A.A.P., P.E.T., K.S., K.K. and J.P. Visualization: J.B.N. Funding acquisition: J.B.N., P.J.P. and A.A.P. Project administration: P.J.P. Supervision: P.J.P. Writing–original draft: J.B.N. Writing–review and editing: J.B.N., P.J.P., A.A.P., P.E.T., J.M.R., K.S., K.K., J.P., R.S.V. and G.E.A.S.

Corresponding authors

Correspondence to Joseph B. Novak or Pratigya J. Polissar.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Geoscience thanks Sarah Feakins and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: James Super, in collaboration with the Nature Geoscience team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Climate and environmental changes at Lake Baikal 2.7 Ma.

(a) Warm season temperatures reconstructed from brGDGTs. Gray shading is the 68% confidence interval, red points are the mean. (b) Average chain length of n-alkanes (ACL, vegetation proxy). (c) Warm–temperate broad-leaved evergreen plant functional-type score. (d) Median grain size of bulk sediments26. φ values of ~8 correspond to glacial clays, φ values of 6–7 correspond to the typical size of diatom frustules in Late Pliocene and Early Pleistocene Lake Baikal sediments reported by ref. 28.

Source data

Supplementary information

Supplementary Information

Supplementary Data

All supporting data associated with this work.

Source data

Source Data Fig. 1

The Lake Baikal palaeotemperature record, pollen plant functional-type scores, reconstructed dominant biomes and the global mean surface temperature change stacks.

Source Data Fig. 2

Compiled palaeobotanical datasets from Northern Hemisphere boreal regions.

Source Data Fig. 3

Global mean surface temperature stack anomaly data and Lake Baikal temperature anomalies.

Source Data Fig. 4

The Lake Baikal palaeotemperature and n-alkane average chain length records, with samples from the last ~500 ka classified as belonging to periods with or without local permafrost.

Source Data Extended Data Fig. 1

Lake Baikal palaeotemperature record, n-alkane average chain length record, warm–temperate evergreen plant functional-type scores and median grain size records from 2.0 to 3.5 Ma.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Novak, J.B., Prokopenko, A.A., Tarasov, P.E. et al. Early Pleistocene ecosystem turnover in South Siberia linked to abrupt regional cooling. Nat. Geosci. (2026). https://doi.org/10.1038/s41561-025-01914-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41561-025-01914-x

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing