Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Renewability of fossil groundwaters affected by present-day climate conditions

Abstract

Aquifer residence times are commonly used to make inferences about groundwater renewability. However, the link between aquifer residence times and hydraulic response times, which control groundwater storage changes, remains unclear. Here we show that water levels in many aquifers containing fossil groundwater are controlled by modern climates. Evaluation of the renewability of fossil groundwaters should include hydraulic analysis that consider their responses to abstraction and shifts in climate.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Aquifer systems with similar residence times exhibit a range of hydraulic response times.
Fig. 2: Hydraulic anomalies may correspond to different climate events than those associated with recharge of fossil groundwater.

Data availability

Compiled aquifer residence time and hydraulic response time necessary to recreate Fig. 1 is available via the Consortium of Universities for the Advancement of Hydrologic Science (CUAHSI) Hydroshare repository at https://www.hydroshare.org/resource/39d42f15f720431e8114d79cc6baeb9b/.

References

  1. Gleeson, T., Befus, K. M., Jasechko, S., Luijendijk, E. & Cardenas, M. B. The global volume and distribution of modern groundwater. Nat. Geosci. 9, 161–167 (2016).

    Article  CAS  Google Scholar 

  2. Jasechko, S. et al. Global aquifers dominated by fossil groundwaters but wells vulnerable to modern contamination. Nat. Geosci. 10, 425–429 (2017).

    Article  CAS  Google Scholar 

  3. Sherwood Lollar, B., Warr, O. & Higgins, P. M. The hidden hydrogeosphere: the contribution of deep groundwater to the planetary water cycle. Annu. Rev. Earth Planet. Sci. 52, 040722–102252 (2024).

    Article  Google Scholar 

  4. Ahmed, M. Sustainable management scenarios for northern Africa’s fossil aquifer systems. J. Hydrol. 589, 125196 (2020).

    Article  Google Scholar 

  5. Vrba, J. & Renaud, F. G. Overview of groundwater for emergency use and human security. Hydrogeol. J. 24, 273–276 (2016).

    Article  Google Scholar 

  6. Bierkens, M. F. & Wada, Y. Non-renewable groundwater use and groundwater depletion: a review. Environ. Res. Lett. 14, 063002 (2019).

    Article  Google Scholar 

  7. Margat, J., Foster, S. & Droubi, A. in Non-renewable Groundwater Resources: A Guidebook on Socially-Sustainable Management for Water-policy Makers (eds Foster, S. & Loucks, D. P.) 13–24 (UNESCO, 2006).

  8. Foster, S., Nanni, M., Kemper, K., Garduno, H. & Tuinhof, A. Utilization of Non-Renewable Groundwater: A Socially-Sustainable Approach to Resource Management (World Bank, 2003).

  9. Poeter, E., Fan, Y., Cherry, J., Wood, W. & Mackay, D. Groundwater in Our Water Cycle—Getting to Know Earth’s Most Important Fresh Water Source (The Groundwater Project, 2020).

  10. Rousseau-Gueutin, P. et al. Time to reach near-steady state in large aquifers. Water Resour. Res. 49, 6893–6908 (2013).

    Article  Google Scholar 

  11. Cuthbert, M. O., Gleeson, T., Bierkens, M. F. P., Ferguson, G. & Taylor, R. G. Defining renewable groundwater use and its relevance to sustainable groundwater management. Water Resour. Res. 59, e2022WR032831 (2023).

    Article  Google Scholar 

  12. Ferguson, G., Cuthbert, M. O., Befus, K., Gleeson, T. & McIntosh, J. C. Rethinking groundwater age. Nat. Geosci. 13, 592–594 (2020).

    Article  CAS  Google Scholar 

  13. Cuthbert, M. O. et al. Global patterns and dynamics of climate–groundwater interactions. Nat. Clim. Change 9, 137–141 (2019).

    Article  Google Scholar 

  14. Jurgens, B. C., Böhlke, J. K. & Eberts, S. M. TracerLPM (Version 1): An Excel Workbook for Interpreting Groundwater Age Distributions from Environmental Tracer Data: US Geological Survey Techniques and Methods Report 4-F3 (USGS, 2012).

  15. Yokochi, R. et al. Radiokrypton unveils dual moisture sources of a deep desert aquifer. Proc. Natl Acad. Sci. USA 116, 16222–16227 (2019).

    Article  CAS  Google Scholar 

  16. Bourdon, D. J. Flow of fossil groundwater. Q. J. Eng. Geol. Hydrogeol. 10, 97–124 (1977).

    Article  Google Scholar 

  17. Bakiewicz, W., Milne, D. M. & Noori, M. Hydrogeology of the Umm Er Radhuma aquifer, Saudi Arabia, with reference to fossil gradients. Q. J. Eng. Geol. Hydrogeol.15, 105–126 (1982).

    Article  Google Scholar 

  18. Ram, R. et al. Large-scale paleo water-table rise in a deep desert aquifer recorded by dissolved noble gases. J. Hydrol. 612, 128114 (2022).

    Article  CAS  Google Scholar 

  19. Ram, R. et al. Identifying recharge processes into a vast ‘fossil’ aquifer based on dynamic groundwater 81Kr age evolution. J. Hydrol. 587, 124946 (2020).

    Article  CAS  Google Scholar 

  20. Vogt, M.-L. A. et al. Infiltration and recharge dynamics in the Nubian Sandstone Aquifer System of northern Chad. Hydrogeol. J. 1, 15 (2024).

    Google Scholar 

  21. Konikow, L. F. & Leake, S. A. Depletion and capture: revisiting ‘the source of water derived from wells’. Groundwater 52, 100–111 (2014).

    Article  CAS  Google Scholar 

  22. Gleeson, T., Cuthbert, M., Ferguson, G. & Perrone, D. Global groundwater sustainability, resources, and systems in the anthropocene. Annu. Rev. Earth Planet. Sci. 48, 431–463 (2020).

    Article  CAS  Google Scholar 

  23. Currell, M., Gleeson, T. & Dahlhaus, P. A new assessment framework for transience in hydrogeological systems. Groundwater 54, 4–14 (2016).

    Article  CAS  Google Scholar 

  24. Das Gupta, A. & Siddique, M. Hydrodynamic response of Nakhon Luang Aquifer, Bangkok, Thailand. Groundwater 19, 469–475 (1981).

    Article  Google Scholar 

  25. Bush, P. W. & Johnston, R. H. Ground-Water Hydraulics, Regional Flow, and Ground-Water Development of the Floridan Aquifer System in Florida and in Parts of Georgia, South Carolina, and Alabama (USGC, 1988).

  26. Zhu, C., Waddell Jr, R. K., Star, I. & Ostrander, M. Responses of ground water in the Black Mesa basin, northeastern Arizona, to paleoclimatic changes during the late Pleistocene and Holocene. Geology 26, 127–130 (1998).

    Article  CAS  Google Scholar 

  27. Fogg, G. E. A Ground-water Modelling Study in the Tucson Basin. MSc thesis, Univ. of Arizona (1978).

  28. Manga, M. On the timescales characterizing groundwater discharge at springs. J. Hydrol. 219, 56–69 (1999).

    Article  CAS  Google Scholar 

  29. Villegas, P., Paredes, V., Betancur, T., Taupin, J. D. & Toro, L. E. Groundwater evolution and mean water age inferred from hydrochemical and isotopic tracers in a tropical confined aquifer. Hydrol. Processes 32, 2158–2175 (2018).

    Article  CAS  Google Scholar 

  30. Kamundu, K. Integrated Hydrological Modeling of Groundwater Recharge and Groundwater Resources in the Auob Catchment (Namibia) (Univ. Twente, 2019).

  31. Freethey, G. W. & Cordy, G. E. Geohydrology of Mesozoic Rocks in the Upper Colorado River Basin in Arizona, Colorado, New Mexico, Utah, and Wyoming, Excluding the San Juan Basin (USGS, 1991).

  32. Mace, R. E., Smyth, R. C. & Xu, L. Transmissivity, Hydraulic Conductivity, and Storativity of the Carrizo-Wilcox Aquifer in Texas (Univ. of Texas, 2000).

  33. Kuniansky, E. L. & Bellino, J. C. Tabulated Transmissivity and Storage Properties of the Floridan Aquifer System in Florida and Parts of Georgia, South Carolina, and Alabama (USGS, 2016).

  34. Meyboom, P. Geology and Water Resources of the Milk River Sandstone in Southern Alberta (Alberta Research Council, 1960).

  35. Dirks, H., Al Ajmi, H., Kienast, P. & Rausch, R. Hydrogeology of the umm er radhuma aquifer (Arabian Peninsula). Grundwasser 23, 5–15 (2018).

    Article  CAS  Google Scholar 

  36. Mancewicz, L. Assessing the Sensitivity of a Volcanic Aquifer-Spring System to Climate Change (Univ. Nevada, Reno, 2018).

  37. Draft Final Mojave Salt and Nutrient Management Plan (Kennedy/Jenks Consultants and Todd Groundwater, 2015).

  38. Phillips, F. M., Tansey, M. K., Peeters, L. A., Cheng, S. & Long, A. An isotopic investigation of groundwater in the central San Juan Basin, New Mexico: carbon 14 dating as a basis for numerical flow modeling. Water Resour. Res. 25, 2259–2273 (1989).

    Article  CAS  Google Scholar 

  39. Noyes, C. E. Pleistocene to Holocene Evolution and Connectivity of Groundwater Flow Systems Using Multi-Tracer Approaches. PhD thesis, Univ. Arizona (2023).

  40. Rose, T. P., Davisson, M. L. & Criss, R. E. Isotope hydrology of voluminous cold springs in fractured rock from an active volcanic region, northeastern California. J. Hydrol. 179, 207–236 (1996).

    Article  CAS  Google Scholar 

  41. Saltel, M. et al. Paleoclimate variations and impact on groundwater recharge in multi-layer aquifer systems using a multi-tracer approach (northern Aquitaine basin, France). Hydrogeol. J. 27, 1439–1457 (2019).

    Article  CAS  Google Scholar 

  42. Castro, M. C., Stute, M. & Schlosser, P. Comparison of 4He ages and 14C ages in simple aquifer systems: implications for groundwater flow and chronologies. Appl. Geochem. 15, 1137–1167 (2000).

    Article  CAS  Google Scholar 

  43. Matsumoto, T. et al. Application of combined 81Kr and 4He chronometers to the dating of old groundwater in a tectonically active region of the North China Plain. Earth Planet. Sci. Lett. 493, 208–217 (2018).

    Article  CAS  Google Scholar 

  44. Yokochi, R., Zappala, J. C., Purtschert, R. & Mueller, P. Origin of water masses in Floridan Aquifer System revealed by 81Kr. Earth Planet. Sci. Lett. 569, 117060 (2021).

    Article  CAS  Google Scholar 

  45. Bethke, C. M., Zhao, X. & Torgersen, T. Groundwater flow and the 4He distribution in the Great Artesian Basin of Australia. J. Geophys. Res. Solid Earth 104, 12999–13011 (1999).

    Article  Google Scholar 

  46. Stute, M. & Deak, J. Environmental isotope study (14C, 13C, 18O, D, noble gases) on deep groundwater circulation systems in Hungary with reference to paleoclimate. Radiocarbon 31, 902–918 (1989).

    Article  Google Scholar 

  47. Gonçalves, R. D., Teramoto, E. H. & Chang, H. K. Regional groundwater modeling of the Guarani Aquifer System. Water 12, 2323 (2020).

    Article  Google Scholar 

  48. McMahon, P. B., Böhlke, J. K. & Christenson, S. C. Geochemistry, radiocarbon ages, and paleorecharge conditions along a transect in the central High Plains aquifer, southwestern Kansas, USA. Appl. Geochem. 19, 1655–1686 (2004).

    Article  CAS  Google Scholar 

  49. Phillips, F. M., Bentley, H. W., Davis, S. N., Elmore, D. & Swanick, G. B. Chlorine 36 dating of very old groundwater: 2. Milk River aquifer, Alberta, Canada. Water Resour. Res. 22, 2003–2016 (1986).

    Article  CAS  Google Scholar 

  50. Izbicki, J. A. & Michel, R. L. Movement and age of ground water in the western part of the Mojave Desert, southern California, USA. Water-Resour. Invest. Rep. 3, 4314 (2004).

    Google Scholar 

  51. Sanford, W. E. & Buapeng, S. Assessment of a groundwater flow model of the Bangkok Basin, Thailand, using carbon-14-based ages and paleohydrology. Hydrogeol. J. 4, 26–40 (1996).

    Article  Google Scholar 

  52. Sturchio, N. et al. One million year old groundwater in the Sahara revealed by krypton-81 and chlorine-36. Geophys. Res. Lett. 31, L05503 (2004).

    Article  Google Scholar 

  53. Castro, M. C., Goblet, P., Ledoux, E., Violette, S. & De Marsily, G. Noble gases as natural tracers of water circulation in the Paris Basin: 2. calibration of a groundwater flow model using noble gas isotope data. Water Resour. Res. 34, 2467–2483 (1998).

    Article  CAS  Google Scholar 

  54. Müller, T. et al. Use of multiple age tracers to estimate groundwater residence times and long-term recharge rates in arid southern Oman. Appl. Geochem. 74, 67–83 (2016).

    Article  Google Scholar 

  55. James, E. R., Manga, M., Rose, T. P. & Hudson, G. B. The use of temperature and the isotopes of O, H, C, and noble gases to determine the pattern and spatial extent of groundwater flow. J. Hydrol. 237, 100–112 (2000).

    Article  CAS  Google Scholar 

  56. Mancewicz, L. K. et al. Impacts of climate change on groundwater availability and spring flows: observations from the highly productive Medicine Lake Highlands/Fall River Springs Aquifer System. J. Am. Water Resour. Assoc. 57, 1021–1036 (2021).

    Article  Google Scholar 

  57. Peters, E., Visser, A., Esser, B. K. & Moran, J. E. Tracers reveal recharge elevations, groundwater flow paths and travel times on Mount Shasta. Calif. Water 10, 97 (2018).

    Article  Google Scholar 

  58. Noyes, C. et al. Variations in groundwater recharge and water table elevations across the Holocene in a semi‐arid alluvial basin. Water Resour. Res. 61, e2024WR037606 (2025).

    Article  Google Scholar 

  59. Bethke, C. M. & Johnson, T. M. Groundwater age and groundwater age dating. Annu. Rev. Earth Planet. Sci. 36, 121–152 (2008).

    Article  CAS  Google Scholar 

  60. Suckow, A. The age of groundwater—definitions, models and why we do not need this term. Appl. Geochem. 50, 222–230 (2014).

    Article  CAS  Google Scholar 

  61. Begemann, F. & Libby, W. F. Continental water balance, ground water inventory and storage times, surface ocean mixing rates and world-wide water circulation patterns from cosmic-ray and bomb tritium. Geochim. Cosmochim. Acta 12, 277–296 (1957).

    Article  CAS  Google Scholar 

  62. Eriksson, E. The possible use of tritium for estimating groundwater storage. Tellus A 10, 472–478 (1958).

    Article  CAS  Google Scholar 

  63. Cook, P. G. & Böhlke, J.-K. in Environmental Tracers in Subsurface Hydrology (eds Cook, P. G. & Herczeg, A. L.) 1–30 (Springer, 2000).

  64. McCallum, J. L., Cook, P. G. & Simmons, C. T. Limitations of the use of environmental tracers to infer groundwater age. Groundwater 53, 56–70 (2015).

    Article  CAS  Google Scholar 

  65. Mancewicz, L. Assessing the Sensitivity of a Volcanic Aquifer-Spring System to Climate Change. MSc thesis, Univ. Nevada, Reno (2018).

  66. Rousseau-Gueutin, P. et al. Time to reach near-steady state in large aquifers: time to reach near-steady state in large aquifers. Water Resour. Res. 49, 6893–6908 (2013).

    Article  Google Scholar 

  67. Manga, M. & Kirchner, J. W. Interpreting the temperature of water at cold springs and the importance of gravitational potential energy. Water Resour. Res. 40, 2003WR002905 (2004).

    Article  Google Scholar 

Download references

Acknowledgements

This research was funded by a Natural Sciences and Engineering Research Council (NSERC) Discovery Grant to G.F. M.O.C. gratefully acknowledges funding for an Independent Research Fellowship from the UK Natural Environment Research Council (NE/P017819/1). Ideas were further developed at a Canadian Institute for Advanced Research (CIFAR) Catalyst workshop organized by M.M. and R.G.T. M.M., J.J.M., J.C.M., B.S.L. and R.G.T. are fellows of the CIFAR Earth 4D: Subsurface Science and Exploration programme. C.E.N. was supported by a scholarship from the ARCS Foundation. We are grateful to M. Currell, who provided valuable feedback that improved this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

This research was conceived by G.F., M.O.C. and J.C.M. Data were compiled and analysed by G.F., C.E.N. and M.M. Writing and drafting of figures was led by G.F. with editing by all co-authors.

Corresponding author

Correspondence to Grant Ferguson.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Geoscience thanks Yueqing Xie and Matthew Currell for their contribution to the peer review of this work. Primary Handling Editors: Tamara Goldin and Aliénor Lavergne, in collaboration with the Nature Geoscience team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferguson, G., Cuthbert, M.O., Jasechko, S. et al. Renewability of fossil groundwaters affected by present-day climate conditions. Nat. Geosci. (2026). https://doi.org/10.1038/s41561-026-01923-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41561-026-01923-4

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing