Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Human inference reflects a normative balance of complexity and accuracy

Abstract

We must often infer latent properties of the world from noisy and changing observations. Complex, probabilistic approaches to this challenge such as Bayesian inference are accurate but cognitively demanding, relying on extensive working memory and adaptive processing. Simple heuristics are easy to implement but may be less accurate. What is the appropriate balance between complexity and accuracy? Here we model a hierarchy of strategies of variable complexity and find a power law of diminishing returns: increasing complexity gives progressively smaller gains in accuracy. The rate of diminishing returns depends systematically on the statistical uncertainty in the world, such that complex strategies do not provide substantial benefits over simple ones when uncertainty is either too high or too low. In between, there is a complexity dividend. In two psychophysical experiments, we confirm specific model predictions about how working memory and adaptivity should be modulated by uncertainty.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: A hierarchy of cognitive functions maps to a hierarchy of inference strategies.
Fig. 2: Gaussian change-point processes.
Fig. 3: Adaptive models reduce to calibrated simpler strategies when variability is low or high.
Fig. 4: Diminishing returns from increasing complexity.
Fig. 5: Simple inference strategies are usually sufficient.
Fig. 6: Optimal cognitive engagement.
Fig. 7: Human participants switch between simple and complex strategies as predicted by the theory in the Gaussian estimation task.
Fig. 8: Human participants switch between simple and complex strategies as indicated by the theory in the Bernoulli prediction task.

Similar content being viewed by others

Data availability

The experimental data used in Figs. 7 and 8 and Supplementary Figs. 610 are available on GitHub under the open-source license GNU-GPL-v3: https://github.com/gaiat/Modeling-Human-Inference. The data were collected using psiTurk (v.2.3.0)66 (http://psiturk.org/, https://github.com/NYUCCL/psiTurk), jsPsych (v.6.0)67 (https://www.jspsych.org/, https://github.com/jspsych/jsPsych/), chart.js (v.2.8.0) (https://www.chartjs.org/, https://github.com/chartjs/Chart.js) and papaparse.js (v.5.0) (https://www.papaparse.com/, https://github.com/mholt/PapaParse).

Code availability

The codes are available on GitHub under the open-source license GNU-GPL-v3: https://github.com/gaiat/Modeling-Human-Inference.

References

  1. Rao, R. P. N. Bayesian computation in recurrent neural circuits. Neural Comput. 16, 1–38 (2004).

    Article  PubMed  Google Scholar 

  2. Bogacz, R., Brown, E., Moehlis, J., Holmes, P. & Cohen, J. D. The physics of optimal decision making: a formal analysis of models of performance in two-alternative forced-choice tasks. Psychol. Rev. 113, 700–765 (2006).

    Article  PubMed  Google Scholar 

  3. Fearnhead, P. & Liu, Z. On-line inference for multiple changepoint problems. J. R. Stat. Soc. B 69, 589–605 (2007).

    Article  Google Scholar 

  4. Shi, L. & Griffiths, T. L. Neural implementation of hierarchical Bayesian inference by importance sampling. Adv. Neural Inf. Process. Syst. 22, 1669–1677 (2009).

    Google Scholar 

  5. Brown, S. D. & Steyvers, M. Detecting and predicting changes. Cogn. Psychol. 58, 49–67 (2009).

    Article  PubMed  Google Scholar 

  6. Gigerenzer, G. & Gaissmaier, W. Heuristic decision making. Annu. Rev. Psychol. 62, 451–482 (2011).

    Article  PubMed  Google Scholar 

  7. Wilson, R., Nassar, M. & Gold, J. A mixture of delta-rules approximation to Bayesian inference in change-point problems. PLoS Comput. Biol. 9, e1003150 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Legenstein, R. & Maass, W. Ensembles of spiking neurons with noise support optimal probabilistic inference in a dynamically changing environment. PLoS Comput. Biol. 10, e1003859 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Gershman, S. J., Horvitz, E. J. & Tenenbaum, J. B. Computational rationality: a converging paradigm for intelligence in brains, minds, and machines. Science 349, 273–278 (2015).

    Article  CAS  PubMed  Google Scholar 

  10. Ortega, P. A. & Braun, D. A. Thermodynamics as a theory of decision-making with information-processing costs. Proc. R. Soc. A 469, 20120683 (2013).

    Article  Google Scholar 

  11. Glaze, C. M., Filipowicz, A. L. S., Kable, J. W., Balasubramanian, V. & Gold, J. I. A bias–variance trade-off governs individual differences in on-line learning in an unpredictable environment. Nat. Hum. Behav. 2, 213–224 (2018).

    Article  Google Scholar 

  12. Adams, R. & MacKay, D. Bayesian online changepoint detection. Preprint at https://doi.org/10.48550/arXiv.0710.3742 (2007).

  13. Wilson, R. C., Nassar, M. R. & Gold, J. I. Bayesian online learning of the hazard rate in change-point problems. Neural Comput. 22, 2452–2476 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Nassar, M. R., Wilson, R. C., Heasly, B. & Gold, J. I. An approximately Bayesian delta-rule model explains the dynamics of belief updating in a changing environment. J. Neurosci. 30, 12366–12378 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Heilbron, M. & Meyniel, F. Confidence resets reveal hierarchical adaptive learning in humans. PLoS Comput. Biol. 15, e1006972 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Behrens, T. E. J., Woolrich, M. W., Walton, M. E. & Rushworth, M. F. S. Learning the value of information in an uncertain world. Nat. Neurosci. 10, 1214–1221 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. Sutton, R. S. & Barto, A. G. Reinforcement Learning: An Introduction (MIT Press, 1998).

  18. Balasubramanian, V. Statistical inference, Occam’s razor, and statistical mechanics on the space of probability distributions. Neural Comput. 9, 349–368 (1997).

    Article  Google Scholar 

  19. Barron, A., Rissanen, J. & Yu, B. The minimum description length principle in coding and modeling. IEEE Trans. Inf. Theory 44, 2743–2760 (1998).

    Article  Google Scholar 

  20. Gutenkunst, R. et al. Universally sloppy parameter sensitivities in systems biology models. PLoS Comput. Biol. 3, e189 (2007).

    Article  PubMed Central  CAS  Google Scholar 

  21. Transtrum, M. K. & Qiu, P. Model reduction by manifold boundaries. Phys. Rev. Lett. 113, 098701 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Fan, Y., Gold, J. I. & Ding, L. Ongoing, rational calibration of reward-driven perceptual biases. eLife 7, e36018 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Schwarz, G. Estimating the dimension of a model. Ann. Stat. 6, 461–464 (1978).

    Article  Google Scholar 

  24. Zeng, X., Song, T., Zhang, X. & Pan, L. Performing four basic arithmetic operations with spiking neural P systems. IEEE Trans. Nanobiosci. 11, 366–374 (2012).

    Article  Google Scholar 

  25. Shenhav, A. et al. Toward a rational and mechanistic account of mental effort. Annu. Rev. Neurosci. 40, 99–124 (2017).

    Article  CAS  PubMed  Google Scholar 

  26. Vul, E., Goodman, N., Griffiths, T. L. & Tenenbaum, J. B. One and done? Optimal decisions from very few samples. Cogn. Sci. 38, 599–637 (2014).

    Article  PubMed  Google Scholar 

  27. Schmidhuber, J. Formal theory of creativity, fun, and intrinsic motivation (1990–2010). IEEE Trans. Auton. Ment. Dev. 2, 230–247 (2010).

    Article  Google Scholar 

  28. Gold, J. I. & Shadlen, M. N. Banburismus and the brain: decoding the relationship between sensory stimuli, decisions, and reward. Neuron 36, 299–308 (2002).

    Article  CAS  PubMed  Google Scholar 

  29. Krugel, L. K., Biele, G., Mohr, P. N. C., Li, S. C. & Heekeren, H. R. Genetic variation in dopaminergic neuromodulation influences the ability to rapidly and flexibly adapt decisions. Proc. Natl Acad. Sci. USA 106, 17951–17956 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Stephan, K. E., Penny, W. D., Daunizeau, J., Moran, R. J. & Friston, K. J. Bayesian model selection for group studies. NeuroImage 46, 1004–1017 (2009).

    Article  PubMed  Google Scholar 

  31. Mathys, C. & Weber, L. Hierarchical Gaussian filtering of sufficient statistic time series for active inference. In International Workshop on Active Inference (eds Verbelen, T. et al.) 52–58 (Springer, 2020).

  32. Mathys, C. D. et al. Uncertainty in perception and the hierarchical Gaussian filter. Front. Hum. Neurosci. 8, 825 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Lee, S., Gold, J. I. & Kable, J. W. The human as delta-rule learner. Decision 7, 55–66 (2020).

    Article  CAS  Google Scholar 

  34. Glaze, C. M., Kable, J. W. & Gold, J. I. Normative evidence accumulation in unpredictable environments. eLife 4, e08825 (2015).

    Article  PubMed Central  Google Scholar 

  35. Walton, M. E., Behrens, T. E. J., Buckley, M. J., Rudebeck, P. H. & Rushworth, M. F. S. Separable learning systems in the macaque brain and the role of orbitofrontal cortex in contingent learning. Neuron 65, 927–939 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sul, J. H., Jo, S., Lee, D. & Jung, M. W. Role of rodent secondary motor cortex in value-based action selection. Nat. Neurosci. 14, 1202–1210 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Cover, T. M. & Thomas, J. A. Elements of Information Theory (John Wiley & Sons, 2012).

  38. Tishby, N., Pereira, F. C. & Bialek, W. The information bottleneck method. Preprint at https://doi.org/10.48550/arXiv.physics/0004057 (2000).

  39. Canziani, A., Paszke, A. & Culurciello, E. An analysis of deep neural network models for practical applications. Preprint at https://doi.org/10.48550/arXiv.1605.07678 (2016).

  40. Cheeseman, P. C., Kanefsky, B. & Taylor, W. M. Where the really hard problems are. IJCAI (US) 91, 331–340 (1991).

    Google Scholar 

  41. Biroli, G., Cocco, S. & Monasson, R. Phase transitions and complexity in computer science: an overview of the statistical physics approach to the random satisfiability problem. Physica A 306, 381–394 (2002).

    Article  Google Scholar 

  42. Mitchell, D., Selman, B. & Levesque, H. Hard and easy distributions of SAT problems. AAAI 92, 459–465 (1992).

    Google Scholar 

  43. Zdeborová, L. Statistical physics of hard optimization problems. Acta Physica Slovaca Rev. Tutor. 59, 169–303 (2009).

    Google Scholar 

  44. Wilson, R. C., Nassar, M. R., Tavoni, G. & Gold, J. I. Correction: a mixture of delta-rules approximation to Bayesian inference in change-point problems. PLoS Comput. Biol. 14, e1006210 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Gerstner, W., Kistler, W. M., Naud, R. & Paninski, L. Neuronal Dynamics: From Single Neurons to Networks and Models of Cognition (Cambridge Univ. Press, 2014).

  46. Schultz, W., Dayan, P. & Montague, P. R. A neural substrate of prediction and reward. Science 275, 1593–1599 (1997).

    Article  CAS  PubMed  Google Scholar 

  47. Goldman-Rakic, P. S. Cellular basis of working memory. Neuron 14, 477–485 (1995).

    Article  CAS  PubMed  Google Scholar 

  48. Gläscher, J. & Büchel, C. Formal learning theory dissociates brain regions with different temporal integration. Neuron 47, 295–306 (2005).

    Article  PubMed  CAS  Google Scholar 

  49. Hasson, U., Yang, E., Vallines, I., Heeger, D. J. & Rubin, N. A hierarchy of temporal receptive windows in human cortex. J. Neurosci. 28, 2539–2550 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Bernacchia, A., Seo, H., Lee, D. & Wang, X. J. A reservoir of time constants for memory traces in cortical neurons. Nat. Neurosci. 14, 366–372 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Scott, B. B. et al. Fronto-parietal cortical circuits encode accumulated evidence with a diversity of timescales. Neuron 95, 385–398 (2017).

    Article  CAS  PubMed  Google Scholar 

  52. Runyan, C. A., Piasini, E., Panzeri, S. & Harvey, C. D. Distinct timescales of population coding across cortex. Nature 548, 92–96 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Meder, D. et al. Simultaneous representation of a spectrum of dynamically changing value estimates during decision making. Nat. Commun. 8, 1942 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Joshi, S. & Gold, J. I. Pupil size as a window on neural substrates of cognition. Trends Cogn. Sci. 24, 466–480 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Arnsten, A. F. T., Wang, M. J. & Paspalas, C. D. Neuromodulation of thought: flexibilities and vulnerabilities in prefrontal cortical network synapses. Neuron 76, 223–239 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Yerkes, R. M. & Dodson, J. D. The relation of strength of stimulus to rapidity of habit-formation. J. Comp. Neurol. Psychol. 18, 459–482 (1908).

    Article  Google Scholar 

  57. Cools, R. & D’Esposito, M. Inverted-U-shaped dopamine actions on human working memory and cognitive control. Biol. Psychiatry 69, e113–e125 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Aston-Jones, G. & Cohen, J. D. An integrative theory of locus coeruleus–norepinephrine function: adaptive gain and optimal performance. Annu. Rev. Neurosci. 28, 403–450 (2005).

    Article  CAS  PubMed  Google Scholar 

  59. Griffiths, T. L., Vul, E. & Sanborn, A. N. Bridging levels of analysis for probabilistic models of cognition. Curr. Dir. Psychol. Sci. 21, 263–268 (2012).

    Article  Google Scholar 

  60. Fusi, S., Asaad, W. F., Miller, E. K. & Wang, X. J. A neural circuit model of flexible sensorimotor mapping: learning and forgetting on multiple timescales. Neuron 54, 319–333 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kalman, R. E. & Bucy, R. S. New results in linear filtering and prediction theory. J. Basic Eng. 83, 95–108 (1961).

    Article  Google Scholar 

  62. Welch, G. & Bishop, G. An Introduction to the Kalman Filter https://perso.crans.org/club-krobot/doc/kalman.pdf (1997).

  63. Mathys, C., Daunizeau, J., Friston, K. J. & Stephan, K. E. A Bayesian foundation for individual learning under uncertainty. Front. Hum. Neurosci. 5, 39 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Ossmy, O. et al. The timescale of perceptual evidence integration can be adapted to the environment. Curr. Biol. 23, 981–986 (2013).

    Article  CAS  PubMed  Google Scholar 

  65. Efron, B. & Tibshirani, R. J. An Introduction to the Bootstrap (CRC Press, 1994).

  66. McDonnell, J. V. et al. psiTurk v.1.02 (New York University, 2012).

  67. De Leeuw, J. R. jspsych: a JavaScript library for creating behavioral experiments in a Web browser. Behav. Res. Methods 47, 1–12 (2015).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank A. Filipowicz for sharing the codes to run the psychophysical experiment for the Bernoulli task. We also thank K. Krishnamurthy and E. Piasini for interesting discussions, and A. Cavagna and A. Ingrosso for pointing out a possible connection between one of our results and spin-glass systems. G.T. was supported by the Swartz Foundation (award no. 575556) and the Computational Neuroscience Initiative of the University of Pennsylvania, and is currently supported by Washington University in St. Louis. V.B. and J.I.G. are supported in part by NIH BRAIN Initiative grant no. R01EB026945. J.I.G. is also supported by grant nos R01 MH115557 and NSF-NCS 1533623. The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

G.T., V.B. and J.I.G. developed the ideas and wrote the paper. All the authors designed the psychophysics experiments. T.D. and C.P. performed the experiments. G.T. developed the theory and analysed the data.

Corresponding author

Correspondence to Gaia Tavoni.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Human Behaviour thanks the anonymous reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Figs. 1–10 and Table 1.

Reporting Summary

Peer Review File

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tavoni, G., Doi, T., Pizzica, C. et al. Human inference reflects a normative balance of complexity and accuracy. Nat Hum Behav 6, 1153–1168 (2022). https://doi.org/10.1038/s41562-022-01357-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41562-022-01357-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing