Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Group identities can undermine social tipping after intervention

Abstract

Social tipping can accelerate behaviour change consistent with policy objectives in diverse domains from social justice to climate change. Hypothetically, however, group identities might undermine tipping in ways that policymakers do not anticipate. To examine this, we implemented an experiment around the 2020 US federal elections. The participants faced consistent incentives to coordinate their choices. Once the participants had established a coordination norm, an intervention created pressure to tip to a new norm. Our control treatment used neutral labels for choices. Our identity treatment used partisan political images. This simple pay-off-irrelevant relabelling generated extreme differences. The control groups developed norms slowly before intervention but transitioned to new norms rapidly after intervention. The identity groups developed norms rapidly before intervention but persisted in a state of costly disagreement after intervention. Tipping was powerful but unreliable. It supported striking cultural changes when choice and identity were unlinked, but even a trivial link destroyed tipping entirely.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The two images used to label the buttons in the identity treatment.
Fig. 2: Distributions of normalized spillovers by treatment.
Fig. 3: Choice dynamics by treatment.
Fig. 4: Choice of alternative behaviour by treatment.
Fig. 5: Pay-off dynamics.

Similar content being viewed by others

Data availability

The data are publicly available at the Open Science Framework, at https://doi.org/10.17605/OSF.IO/KN3A2.

Code availability

The code for the analyses is publicly available at the Open Science Framework, at https://doi.org/10.17605/OSF.IO/KN3A2. To collect the interactive group data, we used the open-source otree software, version 3.3, accessible at otree.org. We used Qualtrics (October 2020 version) to collect the questionnaire data.

References

  1. Young, H. P. The evolution of social norms. Annu. Rev. Econ. 7, 359–387 (2015).

    Article  Google Scholar 

  2. Rosenfeld, M. J. Moving a mountain: the extraordinary trajectory of same-sex marriage approval in the United States. Socius 3, 2378023117727658 (2017).

    Article  Google Scholar 

  3. Rode, J. & Weber, A. Does localized imitation drive technology adoption? A case study on rooftop photovoltaic systems in Germany. J. Environ. Econ. Manage. 78, 38–48 (2016).

    Article  Google Scholar 

  4. Winkelmann, R. et al. Social tipping processes towards climate action: a conceptual framework. Ecol. Econ. 192, 107242 (2022).

    Article  Google Scholar 

  5. Andreoni, J., Nikiforakis, N. & Siegenthaler, S. Predicting social tipping and norm change in controlled experiments. Proc. Natl Acad. Sci. USA 118(16) (2021).

  6. Mackie, G. Ending footbinding and infibulation: a convention account. Am. Sociol. Rev. 61, 999–1017 (1996).

    Article  Google Scholar 

  7. Nyborg, K. et al. Social norms as solutions. Science 354, 42–43 (2016).

    Article  CAS  Google Scholar 

  8. Christakis, N. A. & Fowler, J. H. The spread of obesity in a large social network over 32 years. N. Engl. J. Med. 357, 370–379 (2007).

    Article  CAS  Google Scholar 

  9. Arnot, M. et al. How evolutionary behavioural sciences can help us understand behaviour in a pandemic. Evol. Med. Public Health 2020, 264–278 (2020).

    Article  Google Scholar 

  10. Cloward, K. When Norms Collide: Local Responses to Activism against Female Genital Mutilation and Early Marriage (Oxford Univ. Press, 2016); https://oxford.universitypressscholarship.com/view/10.1093/acprof:oso/9780190274917.001.0001/acprof-9780190274917

  11. Platteau, J.-P., Camilotti, G. & Auriol, E. in Towards Gender Equity in Development (eds. Anderson, S. et al.) Ch. 15 (Oxford Univ. Press, 2018).

  12. Castilla-Rho, J. C., Rojas, R., Andersen, M. S., Holley, C. & Mariethoz, G. Social tipping points in global groundwater management. Nat. Hum. Behav. 1, 640–649 (2017).

    Article  Google Scholar 

  13. Travers, H., Walsh, J., Vogt, S., Clements, T. & Milner-Gulland, E. Delivering behavioural change at scale: what conservation can learn from other fields. Biol. Conserv. 257, 109092 (2021).

    Article  Google Scholar 

  14. Barrett, S. & Dannenberg, A. Sensitivity of collective action to uncertainty about climate tipping points. Nat. Clim. Change 4, 36–39 (2014).

    Article  Google Scholar 

  15. Kopp, R. E., Shwom, R. L., Wagner, G. & Yuan, J. Tipping elements and climate–economic shocks: pathways toward integrated assessment. Earth’s Future 4, 346–372 (2016).

    Article  Google Scholar 

  16. Farmer, J. D. et al. Sensitive intervention points in the post-carbon transition. Science 364, 132–134 (2019).

    Article  CAS  Google Scholar 

  17. Otto, I. M. et al. Social tipping dynamics for stabilizing Earth’s climate by 2050. Proc. Natl Acad. Sci. USA 117, 2354–2365 (2020).

    Article  CAS  Google Scholar 

  18. Bicchieri, C. & Dimant, E. Nudging with care: the risks and benefits of social information. Public Choice 191, 443–464 (2019).

    Article  Google Scholar 

  19. Smith, S. R., Christie, I. & Willis, R. Social tipping intervention strategies for rapid decarbonization need to consider how change happens. Proc. Natl Acad. Sci. USA 117, 10629–10630 (2020).

    Article  CAS  Google Scholar 

  20. Efferson, C. Policy to activate cultural change to amplify policy. Proc. Natl Acad. Sci. USA 118(23) (2021).

  21. Smaldino, P. E., Janssen, M. A., Hillis, V. & Bednar, J. Adoption as a social marker: innovation diffusion with outgroup aversion. J. Math. Sociol. 41, 26–45 (2017).

    Article  Google Scholar 

  22. Efferson, C., Vogt, S. & Fehr, E. The promise and the peril of using social influence to reverse harmful traditions. Nat. Hum. Behav. 4, 55–68 (2020).

    Article  Google Scholar 

  23. Smaldino, P. E. & Jones, J. H. Coupled dynamics of behaviour and disease contagion among antagonistic groups. Evol. Hum. Sci. 3, e28 (2021).

    Article  Google Scholar 

  24. Henrich, J. Cultural transmission and the diffusion of innovations: adoption dynamics indicate that biased cultural transmission is the predominate force in behavioral change. Am. Anthropol. 103, 992–1013 (2001).

    Article  Google Scholar 

  25. Young, H. P. & Burke, M. A. Competition and custom in economic contracts: a case study of Illinois agriculture. Am. Econ. Rev. 91, 559–573 (2001).

    Article  Google Scholar 

  26. Rogers, E. M. Diffusion of Innovations (Simon and Schuster, 2010).

  27. Eugster, B., Lalive, R., Steinhauer, A. & Zweimüller, J. The demand for social insurance: does culture matter? Econ. J. 121, F413–F448 (2011).

    Article  Google Scholar 

  28. Eugster, B., Lalive, R., Steinhauer, A. & Zweimüller, J. Culture, work attitudes, and job search: evidence from the Swiss language border. J. Eur. Econ. Assoc. 15, 1056–1100 (2017).

    Article  Google Scholar 

  29. Centola, D., Becker, J., Brackbill, D. & Baronchelli, A. Experimental evidence for tipping points in social convention. Science 360, 1116–1119 (2018).

    Article  CAS  Google Scholar 

  30. Bellemare, M. F., Novak, L. & Steinmetz, T. L. All in the family: explaining the persistence of female genital cutting in West Africa. J. Dev. Econ. 116, 252–265 (2015).

    Article  Google Scholar 

  31. Muthukrishna, M. Cultural evolutionary public policy. Nat. Hum. Behav. 4, 12–13 (2020).

    Article  Google Scholar 

  32. Novak, L. Persistent norms and tipping points: the case of female genital cutting. J. Econ. Behav. Organ. 177, 433–474 (2020).

    Article  Google Scholar 

  33. Kuran, T. Now out of never: the element of surprise in the East European revolution of 1989. World Polit. 44, 7–48 (1991).

    Article  Google Scholar 

  34. Shell-Duncan, B. & Hernlund, Y. Female ‘Circumcision’ in Africa: Culture, Controversy, and Change (Lynne Rienner, 2000).

  35. Christakis, N. A. & Fowler, J. H. The collective dynamics of smoking in a large social network. N. Engl. J. Med. 358, 2249–2258 (2008).

    Article  CAS  Google Scholar 

  36. Schief, M., Vogt, S. & Efferson, C. Investigating the structure of son bias in Armenia with novel measures of individual preferences. Demography 58, 1737–1764 (2021).

    Article  Google Scholar 

  37. DellaVigna, S. & La Ferrara, E. in Handbook of Media Economics Vol. 1 (eds Anderson, S.P. et al.) 723–768 (Elsevier, 2015).

  38. La Ferrara, E. Mass media and social change: can we use television to fight poverty? J. Eur. Econ. Assoc. 14, 791–827 (2016).

    Article  Google Scholar 

  39. Vogt, S., Zaid, N. A. M., Ahmed, H. E. F., Fehr, E. & Efferson, C. Changing cultural attitudes towards female genital cutting. Nature 538, 506–509 (2016).

    Article  Google Scholar 

  40. Schimmelpfennig, R., Vogt, S., Ehret, S. & Efferson, C. Promotion of behavioural change for health in a heterogeneous population. Bull. World Health Organ. 99, 819–827 (2021).

    Article  Google Scholar 

  41. Granovetter, M. Threshold models of collective behavior. Am. J. Sociol. 83, 1420–1443 (1978).

    Article  Google Scholar 

  42. Efferson, C., Lalive, R. & Fehr, E. The coevolution of cultural groups and ingroup favoritism. Science 321, 1844–1849 (2008).

    Article  CAS  Google Scholar 

  43. Tajfel, H. Human Groups and Social Categories: Studies in Social Psychology (Cup Archive, 1981).

  44. De Dreu, C. K., Gross, J., Fariña, A. & Ma, Y. Group cooperation, carrying-capacity stress, and intergroup conflict. Trends Cogn. Sci. 24, 760–776 (2020).

    Article  Google Scholar 

  45. Young, H. P. Innovation diffusion in heterogeneous populations: contagion, social influence, and social learning. Am. Econ. Rev. 99, 1899–1924 (2009).

    Article  Google Scholar 

  46. Jackson, M. O. & López-Pintado, D. Diffusion and contagion in networks with heterogeneous agents and homophily. Netw. Sci. 1, 49–67 (2013).

    Article  Google Scholar 

  47. Gavrilets, S. The dynamics of injunctive social norms. Evol. Hum. Sci. 2, e60 (2020).

    Article  Google Scholar 

  48. Berger, J., Efferson, C. & Vogt, S. Tipping pro-environmental norm diffusion at scale: opportunities and limitations. Behav. Public Policy 1–26 https://doi.org/10.1017/bpp.2021.36 (2021).

  49. Boyd, R. & Richerson, P. J. The evolution of ethnic markers. Cult. Anthropol. 2, 65–79 (1987).

    Article  Google Scholar 

  50. Choi, J.-K. & Bowles, S. The coevolution of parochial altruism and war. Science 318, 636–640 (2007).

    Article  CAS  Google Scholar 

  51. Handley, C. & Mathew, S. Human large-scale cooperation as a product of competition between cultural groups. Nat. Commun. 11, 702 (2020).

    Article  CAS  Google Scholar 

  52. Thomas, L. M. in Female 'Circumcision' in Africa: Culture, Controversy, and Change (eds Shell-Duncan, B. and Hernlund, Y.) Ch. 7 (Lynne Rienner, 2000).

  53. Smaldino, P. E. & Turner, M. A. Covert signaling is an adaptive communication strategy in diverse populations. Psychol. Rev. 129, 812–829 (2022).

  54. Iyengar, S., Sood, G. & Lelkes, Y. Affect, not ideology: a social identity perspective on polarization. Public Opin. Q. 76, 405–431 (2012).

    Article  Google Scholar 

  55. Iyengar, S., Lelkes, Y., Levendusky, M., Malhotra, N. & Westwood, S. J. The origins and consequences of affective polarization in the United States. Annu. Rev. Polit. Sci. 22, 129–146 (2019).

    Article  Google Scholar 

  56. McConnell, C., Margalit, Y., Malhotra, N. & Levendusky, M. The economic consequences of partisanship in a polarized era. Am. J. Polit. Sci. 62, 5–18 (2018).

    Article  Google Scholar 

  57. Finkel, E. J. et al. Political sectarianism in America. Science 370, 533–536 (2020).

    Article  CAS  Google Scholar 

  58. Bowles, S. Microeconomics: Behavior, Institutions, and Evolution (Princeton Univ. Press, 2004).

  59. Henrich, J. et al. ‘Economic man’ in cross-cultural perspective: behavioral experiments in 15 small-scale societies. Behav. Brain Sci. 28, 795–815 (2005).

    Article  Google Scholar 

  60. Cooper, D. J. & Kagel, J. H. Other-regarding preferences. Handb. Exp. Econ. 2, 217–289 (2016).

    Google Scholar 

  61. Falk, A. et al. Global evidence on economic preferences. Q. J. Econ. 133, 1645–1692 (2018).

    Article  Google Scholar 

  62. Fehr, E. & Schmidt, K. M. A theory of fairness, competition, and cooperation. Q. J. Econ. 114, 817–868 (1999).

    Article  Google Scholar 

  63. Fairlie, R. W. & Robinson, J. Experimental evidence on the effects of home computers on academic achievement among schoolchildren. Am. Econ. J. Appl. Econ. 5, 211–240 (2013).

    Article  Google Scholar 

  64. Hanna, R., Duflo, E. & Greenstone, M. Up in smoke: the influence of household behavior on the long-run impact of improved cooking stoves. Am. Econ. J. Econ. Policy 8, 80–114 (2016).

    Article  Google Scholar 

  65. Schelling, T. C. The Strategy of Conflict (Harvard Univ. Press, 1960).

  66. Crawford, V. P., Gneezy, U. & Rottenstreich, Y. The power of focal points is limited: even minute payoff asymmetry may yield large coordination failures. Am. Econ. Rev. 98, 1443–1458 (2008).

    Article  Google Scholar 

  67. Goeree, J. K. & Holt, C. A. Asymmetric inequality aversion and noisy behavior in alternating-offer bargaining games. Eur. Econ. Rev. 44, 1079–1089 (2000).

    Article  Google Scholar 

  68. Blanco, M., Engelmann, D. & Normann, H. T. A within-subject analysis of other-regarding preferences. Games Econ. Behav. 72, 321–338 (2011).

    Article  Google Scholar 

  69. Beranek, B., Cubitt, R. & Gächter, S. Stated and revealed inequality aversion in three subject pools. J. Econ. Sci. Assoc. 1, 43–58 (2015).

    Article  Google Scholar 

  70. Druckman, J. N., Klar, S., Krupnikov, Y., Levendusky, M. & Ryan, J. B. Affective polarization, local contexts and public opinion in America. Nat. Hum. Behav. 5, 28–38 (2021).

    Article  Google Scholar 

  71. Angrist, J. D. & Pischke, J.-S. Mostly Harmless Econometrics (Princeton Univ. Press, 2009).

  72. Fiorina, M. P. Unstable Majorities: Polarization, Party Sorting, and Political Stalemate (Hoover, 2017).

  73. Stroud, N. J. & Lee, J. K. Perceptions of cable news credibility. Mass Commun. Soc. 16, 67–88 (2013).

    Article  Google Scholar 

  74. Hughes, L. Alternative rites of passage: faith, rights, and performance in FGM/C abandonment campaigns in Kenya. Afr. Stud. 77, 274–292 (2018).

    Article  Google Scholar 

  75. Gulesci, S. et al. A stepping stone approach to understanding harmful norms. CEPR Discussion PaperNo. DP15776. SSRN https://ssrn.com/abstract=3784002 (2021).

  76. Hänni, S. & Lichand, G. Harming to Signal: Child Marriage vs. Public Donations in Malawi Working Paper (University of Zurich, Department of Economics, 2021).

  77. Efferson, C., Vogt, S. & von Flüe, L. in Oxford Handbook of Cultural Evolution (eds Kendal, J. et al.) Ch. TBD (Oxford Univ. Press, 2023).

  78. Chen, Y. & Li, S. X. Group identity and social preferences. Am. Econ. Rev. 99, 431–457 (2009).

    Article  Google Scholar 

  79. Mason, L. Ideologues without issues: the polarizing consequences of ideological identities. Public Opin. Q. 82, 866–887 (2018).

    Article  Google Scholar 

  80. Wooldridge, J. M. Econometric Analysis of Cross Section and Panel Data (MIT Press, 2010).

  81. Arai, M. Cluster-robust standard errors using R. https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.573.9323&rep=rep1&type=pdf (2011).

Download references

Acknowledgements

For helpful comments, we thank J. Barceló, S. Lonati, H. Nax, N. Nikiforakis, C. Zehnder and seminar participants at the Collegio Carlo Alberto, the University of Lausanne, NYUAD, Oxford University, Princeton University and the University of Zurich. We thank Clara Sfeir for research assistance. The study was funded by the Swiss National Science Foundation (grant no. 100018 185417/1 to C.E. and S.V.). E.U.W. and S.M.C. thank the High Meadows Environmental Institute at Princeton for funding. The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors designed the study. S.E. programmed the main experiment. S.E. and S.V. worked with a freelance artist to develop the images of Biden and Trump. S.E. and S.M.C. pre-tested the images, ran the initial surveys to identify partisan commitments and ran the experimental sessions. S.E., S.M.C. and C.E. analysed the data. All authors interpreted the results. S.E., S.M.C. and C.E. wrote the paper with input from E.U.W. and S.V., S.E., S.M.C. and S.V. wrote the Supplementary Information with input from E.U.W. and C.E.

Corresponding authors

Correspondence to Sönke Ehret, Sara M. Constantino, Charles Efferson or Sonja Vogt.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Human Behaviour thanks Paul Smaldino, Simon Siegenthaler and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–13, Tables 1–23 and Sections 1–9.

Reporting Summary

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ehret, S., Constantino, S.M., Weber, E.U. et al. Group identities can undermine social tipping after intervention. Nat Hum Behav 6, 1669–1679 (2022). https://doi.org/10.1038/s41562-022-01440-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41562-022-01440-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing