Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Errors of attention adaptively warp spatial cognition

A Publisher Correction to this article was published on 18 March 2025

This article has been updated

Abstract

Adaptation is the process by which we adjust internal models of the body, world and mind in response to sensory feedback. Although adaptation is studied extensively in the context of motor control, there is limited evidence that cognitive functions such as working memory are subject to the same error-driven adaptive control mechanism. To examine the possibility that internal spatial representations undergo adaptation, we had participants perform a task that interleaved a perceptual discrimination task and a spatial working memory task. Perceptual discrimination trials (85% of trials) presented an initial peripheral cue to exogenously capture attention, immediately followed by a displaced target stimulus. This sequence of events served to repeatedly induce a covert attentional allocation error. Interleaved spatial working memory trials (15% of trials) presented a stimulus at a pseudorandom peripheral location followed by a delay interval. On half of the working memory trials, the stimulus was surreptitiously presented at the same location as the initial attentional cue. We found that as attentional errors accumulated over the course of the experiment, participants’ spatial recall shifted to counteract the attentional error. The magnitude of this shift was proportional to the number of induced errors. Recall performance recovered rapidly following the offset of error trials. Multiple control experiments ruled out alternative explanations for these results, such as oculomotor confounds and attentional biases unrelated to error. These findings indicate that the computational mechanisms governing the adaptation of motor commands appear to similarly serve to adjust and calibrate spatial cognition.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Exogenous attention error and spatial working memory experimental paradigm.
Fig. 2: Time course and spatial specificity of spatial recall adaptation in response to spatial attention errors.
Fig. 3: Spatial cognition adaptation displays hallmark features of visuomotor adaptation.
Fig. 4: Attention without error cannot explain spatial cognition adaptation.
Fig. 5: Replication of working memory adaptation across the visual field and controlling for potential oculomotor confounds.

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available at https://osf.io/egskw/.

Code availability

The analysis code supporting the findings of this study is available on GitHub at https://github.com/brissend/WM_adapt.

Change history

References

  1. Shadmehr, R., Smith, M. A. & Krakauer, J. W. Error correction, sensory prediction, and adaptation in motor control. Neuroscience 33, 89–108 (2010).

    CAS  Google Scholar 

  2. McLaughlin, S. C. Parametric adjustment in saccadic eye movements. Percept. Psychophys. 2, 359–362 (1967).

    Article  Google Scholar 

  3. Deubel, H., Wolf, W. & Hauske, G. Adaptive gain control of saccadic eye movements. Hum. Neurobiol. 5, 245–253 (1986).

    CAS  PubMed  Google Scholar 

  4. Frens, M. A. & van Opstal, A. J. Transfer of short-term adaptation in human saccadic eye movements. Exp. Brain Res. 100, 293–306 (1994).

    Article  CAS  PubMed  Google Scholar 

  5. Straube, A., Fuchs, A. F., Usher, S. & Robinson, F. R. Characteristics of saccadic gain adaptation in rhesus macaques. J. Neurophysiol. 77, 874–895 (1997).

    Article  CAS  PubMed  Google Scholar 

  6. Hopp, J. J. & Fuchs, A. F. The characteristics and neuronal substrate of saccadic eye movement plasticity. Prog. Neurobiol. 72, 27–53 (2004).

    Article  PubMed  Google Scholar 

  7. Watanabe, S., Ogino, S., Nakamura, T. & Koizuka, I. Saccadic adaptation in the horizontal and vertical directions in normal subjects. Auris Nasus Larynx 30, 41–45 (2003).

    Article  Google Scholar 

  8. Mazzoni, P. & Krakauer, J. W. An implicit plan overrides an explicit strategy during visuomotor adaptation. J. Neurosci. 26, 3642–3645 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Taylor, J. A., Krakauer, J. W. & Ivry, R. B. Explicit and implicit contributions to learning in a sensorimotor adaptation task. J. Neurosci. 34, 3023–3032 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. McDougle, S. D., Bond, K. M. & Taylor, J. A. Explicit and implicit processes constitute the fast and slow processes of sensorimotor learning. J. Neurosci. 35, 9568–9579 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. van der Kooij, K., Wijdenes, L. O., Rigterink, T., Overvliet, K. E. & Smeets, J. B. J. Reward abundance interferes with error-based learning in a visuomotor adaptation task. PLoS ONE 13, 1–12 (2018).

    Article  Google Scholar 

  12. Albert, S. T. et al. An implicit memory of errors limits human sensorimotor adaptation. Nat. Hum. Behav. 5, 920–934 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Awh, E., Vogel, E. K. & Oh, S.-H. Interactions between attention and working memory. Neuroscience 139, 201–208 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Schmidt, B. K., Vogel, E. K., Woodman, G. F. & Luck, S. J. Voluntary and automatic attentional control of visual working memory. Percept. Psychophys. 64, 754–763 (2002).

    Article  PubMed  Google Scholar 

  15. Cowan, N. & Morey, C. C. Visual working memory depends on attentional filtering. Trends Cogn. Sci. 10, 139–141 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Chun, M. M. & Turk-Browne, N. B. Interactions between attention and memory. Curr. Opin. Neurobiol. 17, 177–184 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. McNab, F. & Klingberg, T. Prefrontal cortex and basal ganglia control access to working memory. Nat. Neurosci. 11, 103–107 (2008).

    Article  CAS  PubMed  Google Scholar 

  18. Kiyonaga, A. & Egner, T. Working memory as internal attention: toward an integrative account of internal and external selection processes. Psychon. Bull. Rev. 20, 228–242 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Fougnie, D. & Marois, R. Attentive tracking disrupts feature binding in visual working memory. Vis. Cogn. 17, 48–66 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Pélisson, D., Alahyane, N., Panouillères, M. & Tilikete, C. Sensorimotor adaptation of saccadic eye movements. Neurosci. Biobehav. Rev. 34, 1103–1120 (2010).

    Article  PubMed  Google Scholar 

  21. Noto, C. T., Watanabe, S. & Fuchs, A. F. Characteristics of simian adaptation fields produced by behavioral changes in saccade size and direction. J. Neurophysiol. 81, 2798–2813 (1999).

    Article  CAS  PubMed  Google Scholar 

  22. Smith, M. A., Ghazizadeh, A. & Shadmehr, R. Interacting adaptive processes with different timescales underlie short-term motor learning. PLoS Biol. 4, 1035–1043 (2006).

    Article  CAS  Google Scholar 

  23. Maljkovic, V. & Nakayama, K. Priming of pop-out: II. The role of position. Percept. Psychophys. 58, 977–991 (1996).

    Article  CAS  PubMed  Google Scholar 

  24. Ede, Fvan Visual working memory and action: functional links and bi-directional influences. Vis. Cogn. 28, 401–413 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Seidler, R. D., Bo, J. & Anguera, J. A. Neurocognitive contributions to motor skill learning: the role of working memory. J. Mot. Behav. 44, 445–453 (2012).

    Article  PubMed  Google Scholar 

  26. Anguera, J. A., Reuter-Lorenz, P. A., Willingham, D. T. & Seidler, R. D. Contributions of spatial working memory to visuomotor learning. J. Cogn. Neurosci. 22, 1917–1930 (2010).

    Article  PubMed  Google Scholar 

  27. Anguera, J. A., Reuter-Lorenz, P. A., Willingham, D. T. & Seidler, R. D. Failure to engage spatial working memory contributes to age-related declines in visuomotor learning. J. Cogn. Neurosci. 23, 11–25 (2011).

    Article  PubMed  Google Scholar 

  28. Benson, B. L., Anguera, J. A. & Seidler, R. D. A spatial explicit strategy reduces error but interferes with sensorimotor adaptation. J. Neurophysiol. 105, 2843–2851 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Anguera, J. A. et al. The effects of working memory resource depletion and training on sensorimotor adaptation. Behav. Brain Res. 228, 107–115 (2012).

    Article  PubMed  Google Scholar 

  30. Taylor, J. A. & Ivry, R. B. Flexible cognitive strategies during motor learning. PLoS Comput. Biol. 7, 1–13 (2011).

    Article  Google Scholar 

  31. McDougle, S. D. & Taylor, J. A. Dissociable cognitive strategies for sensorimotor learning. Nat. Commun. 10, 1–13 (2019).

    Article  Google Scholar 

  32. Wolpert, D. M., Miall, R. C. & Kawato, M. Internal models in the cerebellum. Trends Cogn. Sci. 2, 338–347 (1998).

    Article  CAS  PubMed  Google Scholar 

  33. Bastian, A. J. Learning to predict the future: the cerebellum adapts feedforward movement control. Curr. Opin. Neurobiol. 16, 645–649 (2006).

    Article  CAS  PubMed  Google Scholar 

  34. Tzvi, E., Loens, S. & Donchin, O. Mini-review: the role of the cerebellum in visuomotor adaptation. Cerebellum 21, 306–313 (2022).

    Article  PubMed  Google Scholar 

  35. Miall, R. C. & Wolpert, D. M. Forward models for physiological motor control. Neural Netw. 9, 1265–1279 (1996).

    Article  PubMed  Google Scholar 

  36. Imamizu, H. et al. Human cerebellar activity reflecting an acquired internal model of a new tool. Nature 403, 192–195 (2000).

    Article  CAS  PubMed  Google Scholar 

  37. Tseng, Y., Diedrichsen, J., Krakauer, J. W., Shadmehr, R. & Bastian, A. J. Sensory prediction errors drive cerebellum-dependent adaptation of reaching. J. Neurophysiol. 98, 54–62 (2007).

    Article  PubMed  Google Scholar 

  38. Therrien, A. S. & Bastian, A. J. Cerebellar damage impairs internal predictions for sensory and motor function. Curr. Opin. Neurobiol. 33, 127–133 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Schlerf, J., Ivry, R. B. & Diedrichsen, J. Encoding of sensory prediction errors in the human cerebellum. J. Neurosci. 32, 4913–4922 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Tanaka, H., Ishikawa, T., Lee, J. & Kakei, S. The cerebro-cerebellum as a locus of forward model: a review. Front. Syst. Neurosci. 14, 1–16 (2020).

    Article  Google Scholar 

  41. Raymond, J. L. & Medina, J. F. Computational principles of supervised learning in the cerebellum. Annu. Rev. Neurosci. 41, 233–253 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Allen, G., Buxton, R. B., Wong, E. C. & Courchesne, E. Attentional activation of the cerebellum independent of motor involvement. Science 275, 1940–1943 (1997).

    Article  CAS  PubMed  Google Scholar 

  43. Chen, S. H. A. & Desmond, J. E. Cerebrocerebellar networks during articulatory rehearsal and verbal working memory tasks. Neuroimage 24, 332–338 (2005).

    Article  PubMed  Google Scholar 

  44. Chen, S. H. A. & Desmond, J. E. Temporal dynamics of cerebro-cerebellar network recruitment during a cognitive task. Neuropsychologia 43, 1227–1237 (2005).

    Article  PubMed  Google Scholar 

  45. Kirschen, M. P., Chen, S. H. A., Schraedley-Desmond, P. & Desmond, J. E. Load- and practice-dependent increases in cerebro-cerebellar activation in verbal working memory: an fMRI study. Neuroimage 24, 462–472 (2005).

    Article  PubMed  Google Scholar 

  46. Stoodley, C. J., Valera, E. M. & Schmahmann, J. D. Functional topography of the cerebellum for motor and cognitive tasks: an fMRI study. Neuroimage 59, 1560–1570 (2012).

    Article  PubMed  Google Scholar 

  47. Brissenden, J. A., Levin, E. J., Osher, D. E., Halko, M. A. & Somers, D. C. Functional evidence for a cerebellar node of the dorsal attention network. J. Neurosci. 36, 6083–6096 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Brissenden, J. A. et al. Topographic cortico-cerebellar networks revealed by visual attention and working memory. Curr. Biol. 28, 3364–3372.e5 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Brissenden, J. A., Tobyne, S. M., Halko, M. A. & Somers, D. C. Stimulus-specific visual working memory representations in human cerebellar lobule VIIb/VIIIa. J. Neurosci. 41, 1033–1045 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Sokolov, A. A., Miall, R. C. & Ivry, R. B. The cerebellum: adaptive prediction for movement and cognition. Trends Cogn. Sci. 21, 313–332 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Guell, X., Schmahmann, J. D., Gabrieli, J. D. & Ghosh, S. S. Functional gradients of the cerebellum. eLife 7, 1–22 (2018).

    Article  Google Scholar 

  52. King, M., Hernandez-Castillo, C. R., Poldrack, R. A., Ivry, R. B. & Diedrichsen, J. Functional boundaries in the human cerebellum revealed by a multi-domain task battery. Nat. Neurosci. 22, 1371–1378 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hayter, A. L., Langdon, D. W. & Ramnani, N. Cerebellar contributions to working memory. Neuroimage 36, 943–954 (2007).

    Article  CAS  PubMed  Google Scholar 

  54. ItĹŤ, M. The Cerebellum and Neural Control (Raven Press, 1984).

  55. Ramnani, N. The primate cortico-cerebellar system: anatomy and function. Nat. Rev. Neurosci. 7, 511–522 (2006).

    Article  CAS  PubMed  Google Scholar 

  56. Schmahmann, J. D. The role of the cerebellum in affect and psychosis. J. Neurolinguistics 13, 189–214 (2000).

    Article  Google Scholar 

  57. Ito, M. Control of mental activities by internal models in the cerebellum. Nat. Rev. Neurosci. 9, 304–313 (2008).

    Article  CAS  PubMed  Google Scholar 

  58. Herzfeld, D. J., Kojima, Y., Soetedjo, R. & Shadmehr, R. Encoding of error and learning to correct that error by the Purkinje cells of the cerebellum. Nat. Neurosci. 21, 736–743 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Woodman, G. F. & Vogel, E. K. Fractionating working memory. Psychol. Sci. 16, 106–113 (2004).

    Article  Google Scholar 

  60. Todd, J. J., Han, S. W., Harrison, S. & Marois, R. The neural correlates of visual working memory encoding: a time-resolved fMRI study. Neuropsychologia 49, 1527–1536 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Ye, C. et al. A two-phase model of resource allocation in visual working memory. J. Exp. Psych. Learn. Mem. Cogn. 43, 1557–1566 (2017).

    Article  Google Scholar 

  62. Carrasco, M. Visual attention: the past 25 years. Vision Res. 51, 1484–1525 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  63. McFadden, S. A., Khan, A. & Wallman, J. Gain adaptation of exogenous shifts of visual attention. Vision Res. 42, 2709–2726 (2002).

    Article  PubMed  Google Scholar 

  64. Hikosaka, O., Miyauchi, S. & Shimojo, S. Visual attention revealed by an illusion of motion. Neurosci. Res. 18, 11–18 (1993).

    Article  CAS  PubMed  Google Scholar 

  65. Downing, P. E. & Treisman, A. M. The line–motion illusion: attention or impletion? J. Exp. Psychol. Hum. Percept. Perform. 23, 768–779 (1997).

    Article  CAS  PubMed  Google Scholar 

  66. Tse, P., Cavanagh, P. & Nakayama, K. in High-level Motion Processing: Computational, Neurobiological and Pychophysical Perspectives (ed. Watanabe, T.) 244–261 (MIT Press, 1998).

  67. Schmidt, W. C. Endogenous attention and illusory line motion reexamined. J. Exp. Psychol. Hum. Percept. Perform. 26, 980–996 (2000).

    Article  CAS  PubMed  Google Scholar 

  68. Christie, J. & Klein, R. M. Does attention cause illusory line motion? Percept. Psychophys. 67, 1032–1043 (2005).

    Article  PubMed  Google Scholar 

  69. Ono, F., Yamada, Y., Takahashi, K., Sasaki, K. & Ariga, A. Backward illusory line motion: visual motion perception can be influenced by retrospective stimulation. J. Vis. 23, 1–11 (2023).

    Article  Google Scholar 

  70. Bahcall, D. O. & Kowler, E. Illusory shifts in visual direction accompany adaptation of saccadic eye movements. Nature 400, 864–866 (1999).

    Article  CAS  PubMed  Google Scholar 

  71. Hernandez, T. D., Levitan, C. A., Banks, M. S. & Schor, C. M. How does saccade adaptation affect visual perception? J Vis. 8, 1–16 (2008).

    Article  Google Scholar 

  72. Schnier, F., Zimmermann, E. & Lappe, M. Adaptation and mislocalization fields for saccadic outward adaptation in humans. J. Eye Mov. Res. 3, 1–18 (2010).

    Article  Google Scholar 

  73. Cheviet, A. et al. Cerebellar signals drive motor adjustments and visual perceptual changes during forward and backward adaptation of reactive saccades. Cereb. Cortex 32, 3896–3916 (2022).

    Article  PubMed  Google Scholar 

  74. Awater, H., Burr, D., Lappe, M., Morrone, M. C. & Goldberg, M. E. Effect of saccadic adaptation on localization of visual targets. J. Neurophysiol. 93, 3605–3614 (2005).

    Article  PubMed  Google Scholar 

  75. Collins, T., Doré-Mazars, K. & Lappe, M. Motor space structures perceptual space: evidence from human saccadic adaptation. Brain Res. 1172, 32–39 (2007).

    Article  CAS  PubMed  Google Scholar 

  76. Georg, K. & Lappe, M. Effects of saccadic adaptation on visual localization before and during saccades. Exp. Brain Res. 192, 9–23 (2009).

    Article  CAS  PubMed  Google Scholar 

  77. Sperling, G. The information available in brief visual presentations. Psychol. Monogr. Gen. Appl. 74, 1–29 (1960).

    Article  Google Scholar 

  78. Loftus, G. R., Duncan, J. & Gehrig, P. On the time course of perceptual information that results from a brief visual presentation. J. Exp. Psychol. Hum. Percept. Perform. 18, 530–549 (1992).

    Article  CAS  PubMed  Google Scholar 

  79. Lu, Z.-L., Neuse, J., Madigan, S. & Dosher, B. A. Fast decay of iconic memory in observers with mild cognitive impairments. Proc. Natl Acad. Sci. USA 102, 1797–1802 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Pratte, M. S. Iconic memories die a sudden death. Psychol. Sci. 29, 877–887 (2017).

    Article  Google Scholar 

  81. Teeuwen, R. R. M., Wacongne, C., Schnabel, U. H., Self, M. W. & Roelfsema, P. R. A neuronal basis of iconic memory in macaque primary visual cortex. Curr. Biol. 31, 5401–5414.e4 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Tomić, I. & Bays, P. M. A dynamic neural resource model bridges sensory and working memory. eLife 12, 1–38 (2024).

    Article  Google Scholar 

  83. Averbach, E. & Coriell, A. S. Short-term memory in vision. Bell Syst. Tech. J. 40, 309–328 (1961).

    Article  Google Scholar 

  84. Mewhort, D. J., Merikle, P. M. & Bryden, M. P. On the transfer from iconic to short-term memory. J. Exp. Psychol. 81, 89–94 (1969).

    Article  Google Scholar 

  85. Phillips, W. A. On the distinction between sensory storage and short-term visual memory. Percept. Psychophys. 16, 283–290 (1974).

    Article  Google Scholar 

  86. Coltheart, M. Iconic memory and visible persistence. Percept. Psychophys. 27, 183–228 (1980).

    Article  CAS  PubMed  Google Scholar 

  87. Gegenfurtner, K. R. & Sperling, G. Information transfer in iconic memory experiments. J. Exp. Psychol. Hum. Percept. Perform. 19, 845–866 (1993).

    Article  CAS  PubMed  Google Scholar 

  88. Buckner, R. L., Krienen, F. M., Castellanos, A., Diaz, J. C. & Yeo, B. T. T. The organization of the human cerebellum estimated by intrinsic functional connectivity. J. Neurophysiol. 106, 2322–2345 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Buckner, R. L. The cerebellum and cognitive function: 25 years of insight from anatomy and neuroimaging. Neuron 80, 807–815 (2013).

    Article  CAS  PubMed  Google Scholar 

  90. Manohar, S. G. et al. Reward pays the cost of noise reduction in motor and cognitive control. Curr. Biol. 25, 1707–1716 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Egger, S. W., Remington, E. D., Chang, C.-J. & Jazayeri, M. Internal models of sensorimotor integration regulate cortical dynamics. Nat. Neurosci. 22, 1871–1882 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Ritz, H., Frömer, R. & Shenhav, A. Bridging motor and cognitive control: it’s about time! Trends Cogn. Sci. 24, 6–8 (2020).

    Article  PubMed  Google Scholar 

  93. Peirce, J. et al. PsychoPy2: experiments in behavior made easy. Behav. Res. Methods 51, 195–203 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Peirce, J. W. PsychoPy—Psychophysics software in Python. J. Neurosci. Methods 162, 8–13 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Peirce, J. W. Generating stimuli for neuroscience using PsychoPy. Front. Neuroinform. 2, 1–8 (2008).

    Article  Google Scholar 

  96. Morey, R. & Rouder, J. N. BayesFactor: computation of Bayes factors for common designs. The Comprehensive R Archive Network https://cran.radicaldevelop.com/web/packages/BayesFactor/BayesFactor.pdf (2023).

  97. Jeffreys, H. An invariant form for the prior probability in estimation problems. Proc. R. Soc. Lond. A 186, 453–461 (1946).

    Article  CAS  Google Scholar 

  98. Zellner, A. & Siow, A. Posterior odds ratios for selected regression hypotheses. Trab. Estad. Y Investig. Oper. 31, 585–603 (1980).

    Article  Google Scholar 

  99. Rouder, J. N., Morey, R. D., Speckman, P. L. & Province, J. M. Default Bayes factors for ANOVA designs. J. Math. Psychol. 56, 356–374 (2012).

    Article  Google Scholar 

  100. Robinson, F. R., Soetedjo, R. & Noto, C. Distinct short-term and long-term adaptation to reduce saccade size in monkey. J. Neurophysiol. 96, 1030–1041 (2006).

    Article  PubMed  Google Scholar 

  101. Rotella, M. F. et al. Learning and generalization in an isometric visuomotor task. J. Neurophysiol. 113, 1873–1884 (2015).

    Article  PubMed  Google Scholar 

  102. Stan Development Team. RStan: The R Interface to Stan (2023). https://mc-stan.org/

  103. Bürkner, P.-C. Advanced Bayesian multilevel modeling with the R package brms. R Journal 10, 395–411 (2018).

    Google Scholar 

  104. Bürkner, P.-C. brms: an R package for bayesian multilevel models using stan. J. Stat. Softw. 80, 1–28 (2017).

    Article  Google Scholar 

  105. Vehtari, A., Gelman, A. & Gabry, J. Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC. Stat. Comput. 27, 1413–1432 (2017).

    Article  Google Scholar 

  106. Vehtari, A. et al. loo: Efficient leave-one-out cross-validation and WAIC for bayesian models. R package version 2.6.0. https://cran.r-project.org/web/packages/loo/loo.pdf (2023).

  107. Sivula, T., Magnusson, M., Matamoros, A. A. & Vehtari, A. Uncertainty in Bayesian leave-one-out cross-validation based model comparison. Preprint at https://doi.org/10.48550/arXiv.2008.10296 (2020).

  108. Geller, J., Winn, M. B., Mahr, T. & Mirman, D. GazeR: a package for processing gaze position and pupil size data. Behav. Res. Methods 52, 2232–2255 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank T. Adkins and Q. Nguyen for helpful comments and discussion. This work was supported by National Institutes of Health grant no. F32MH124268 (J.A.B.). The funder had no role in the study design, data collection and analysis, decision to publish or preparation of the paper.

Author information

Authors and Affiliations

Authors

Contributions

J.A.B. and T.G.L. conceived the study. J.A.B. and Y.Y. collected the data. J.A.B. carried out data analysis and wrote the original draft of the paper. All authors reviewed the paper and provided critical revisions. T.G.L. and M.V. provided resources and supervision.

Corresponding authors

Correspondence to James A. Brissenden or Taraz G. Lee.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Human Behaviour thanks Edward Ester and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brissenden, J.A., Yin, Y., Vesia, M. et al. Errors of attention adaptively warp spatial cognition. Nat Hum Behav 9, 769–780 (2025). https://doi.org/10.1038/s41562-025-02109-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41562-025-02109-5

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing