Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Dissociable habits of response preparation versus response initiation

Abstract

Behaviours we repeat often tend to become habitual. The process of habit formation in humans is commonly studied in the context of learning an arbitrary association between stimuli and responses. Assessing whether or not this association becomes habitual usually involves testing either whether participants can withhold certain responses or whether participants can generate different responses to certain stimuli. However, studies using these two methods have yielded conflicting findings. Here we propose that this discrepancy arises because these approaches target distinct forms of habit associated with different components of action control: response initiation and response preparation, respectively. Through a series of experiments (total n = 215), along with computational models, we show that these two approaches indeed measure dissociable forms of habit. Our results illustrate that a given behaviour can become habitual in multiple, qualitatively different ways, with important implications for how habits can best be promoted or eliminated.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Experimental procedures.
Fig. 2: Habitual behaviour revealed in the Remapping group but not in the Withholding group.
Fig. 3: A computational model confirmed that response preparation was habitual, but response initiation was not.
Fig. 4: Habitual behaviour revealed in the Remapping group but not in the Withholding group when task difficulty was matched.
Fig. 5: Habitual behaviour revealed in both the Remapping group and the Withholding group for a pre-established association.
Fig. 6: Habitual initiation and habitual preparation are distinct processes.

Similar content being viewed by others

Data availability

The data supporting the results of this study are available via GitHub at https://github.com/YueDu-Science/Preparation-versus-Initiation.

Code availability

The code for reproducing the experiment and the results is available via GitHub at https://github.com/YueDu-Science/Preparation-versus-Initiation.

References

  1. Robbins, T. W. & Costa, R. M. Habits. Curr. Biol. 27, R1200–R1206 (2017).

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  2. Wood, W. & Neal, D. T. A new look at habits and the habit–goal interface. Psychol. Rev. 114, 843–863 (2007).

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  3. Du, Y., Krakauer, J. W. & Haith, A. M. The relationship between habits and motor skills in humans. Trends Cogn. Sci. 26, 371–387 (2022).

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  4. Gardner, B. & Lally, P. Habit and habitual behaviour. Health Psychol. Rev. https://doi.org/10.1080/17437199.2022.2105249 (2022).

  5. Graybiel, A. M. & Grafton, S. T. The striatum: where skills and habits meet. Cold Spring Harb. Perspect. Biol. 7, a021691 (2015).

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  6. James, W. The Principles of Psychology (Macmillan London, 1890).

  7. Toner, J., Montero, B. G. & Moran, A. The perils of automaticity. Rev. Gen. Psychol. 19, 431–442 (2015).

    ArticleĀ  Google ScholarĀ 

  8. Wood, W., Quinn, J. M. & Kashy, D. A. Habits in everyday life: thought, emotion, and action. J. Pers. Soc. Psychol. 83, 1281–1297 (2002).

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  9. Wood, W. & Rünger, D. Psychology of habit. Annu. Rev. Psychol. 67, 289–314 (2016).

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  10. Ach, N. On Volition (trans. Herz, T.) (University of Konstanz, Cognitive Psychology, 2006).

  11. Grol, M. J., de Lange, F. P., Verstraten, F. A., Passingham, R. E. & Toni, I. Cerebral changes during performance of overlearned arbitrary visuomotor associations. J. Neurosci. 26, 117–125 (2006).

    ArticleĀ  PubMedĀ  PubMed CentralĀ  CASĀ  Google ScholarĀ 

  12. Hardwick, R. M., Forrence, A. D., Krakauer, J. W. & Haith, A. M. Time-dependent competition between goal-directed and habitual response preparation. Nat. Hum. Behav. https://doi.org/10.1038/s41562-019-0725-0 (2019).

  13. HĆ©lie, S., Waldschmidt, J. G. & Ashby, F. G. Automaticity in rule-based and information-integration categorization. Atten. Percept. Psychophys. 72, 1013–1031 (2010).

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  14. de Wit, S. et al. Shifting the balance between goals and habits: five failures in experimental habit induction. J. Exp. Psychol. Gen. 147, 1043–1065 (2018).

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  15. Delorme, C. et al. Enhanced habit formation in Gilles de la Tourette syndrome. Brain 139, 605–615 (2016).

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  16. Ersche, K. D. et al. Carrots and sticks fail to change behavior in cocaine addiction. Science 352, 1468–1471 (2016).

    ArticleĀ  PubMedĀ  PubMed CentralĀ  CASĀ  Google ScholarĀ 

  17. Pool, E. R. et al. Determining the effects of training duration on the behavioral expression of habitual control in humans: a multilaboratory investigation. Learn. Mem. 29, 16–28 (2022).

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  18. Watson, P., Gladwin, T. E., Verhoeven, A. A. C. & De Wit, S. Investigating habits in humans with a symmetrical outcome-revaluation task. Behav. Res. Methods https://doi.org/10.3758/s13428-022-01922-4 (2022).

  19. Waldschmidt, J. G. & Ashby, F. G. Cortical and striatal contributions to automaticity in information-integration categorization. NeuroImage 56, 1791–1802 (2011).

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  20. Ashby, F. G. & Crossley, M. J. Automaticity and multiple memory systems. WIREs Cogn. Sci. 3, 363–376 (2012).

    ArticleĀ  Google ScholarĀ 

  21. Luque, D., Molinero, S., Watson, P., López, F. J. & Le Pelley, M. E. Measuring habit formation through goal-directed response switching. J. Exp. Psychol. Gen. 149, 1449–1459 (2020).

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  22. MacLeod, C. M. & Dunbar, K. Training and Stroop-like interference: evidence for a continuum of automaticity. J. Exp. Psychol. Learn. Mem. Cogn. 14, 126–135 (1988).

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  23. Tricomi, E., Balleine, B. W. & O’Doherty, J. P. A specific role for posterior dorsolateral striatum in human habit learning. Eur. J. Neurosci. 29, 2225–2232 (2009).

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  24. De Houwer, J., Tanaka, A., Moors, A. & Tibboel, H. Kicking the habit: why evidence for habits in humans might be overestimated. Motiv. Sci. 4, 50–59 (2018).

    ArticleĀ  Google ScholarĀ 

  25. Ceceli, A. O., Myers, C. E. & Tricomi, E. Demonstrating and disrupting well-learned habits. PLoS ONE 15, e0234424 (2020).

    ArticleĀ  PubMedĀ  PubMed CentralĀ  CASĀ  Google ScholarĀ 

  26. Watson, P. & de Wit, S. Current limits of experimental research into habits and future directions. Curr. Opin. Behav. Sci. 20, 33–39 (2018).

    ArticleĀ  Google ScholarĀ 

  27. Carlsen, A. N., Chua, R., Inglis, J. T., Sanderson, D. J. & Franks, I. M. Prepared movements are elicited early by startle. J. Mot. Behav. 36, 253–264 (2004).

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  28. Haith, A. M. & Bestmann, S. in The Cognitive Neurosciences (eds Poeppel, D. et al.) 541–548 (MIT Press, 2020).

  29. Haith, A. M., Pakpoor, J. & Krakauer, J. W. Independence of movement preparation and movement initiation. J. Neurosci. 36, 3007–3015 (2016).

    ArticleĀ  PubMedĀ  PubMed CentralĀ  CASĀ  Google ScholarĀ 

  30. Heckman, R. L., Ludvig, D. & Perreault, E. J. A motor plan is accessible for voluntary initiation and involuntary triggering at similar short latencies. Exp. Brain Res. 241, 2395–2407 (2023).

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  31. Churchland, M. M. & Shenoy, K. V. Preparatory activity and the expansive null-space. Nat. Rev. Neurosci. 25, 213–236 (2024).

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  32. Kaufman, M. T. et al. The largest response component in the motor cortex reflects movement timing but not movement type. eNeuro 3, 477–490 (2016).

    ArticleĀ  Google ScholarĀ 

  33. Kobler, R. J., Kolesnichenko, E., Sburlea, A. I. & Müller-Putz, G. R. Distinct cortical networks for hand movement initiation and directional processing: an EEG study. NeuroImage 220, 117076 (2020).

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  34. Lara, A. H., Elsayed, G. F., Zimnik, A. J., Cunningham, J. P. & Churchland, M. M. Conservation of preparatory neural events in monkey motor cortex regardless of how movement is initiated. eLife 7, e31826 (2018).

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  35. Wickelgren, W. A. Speed–accuracy tradeoff and information processing dynamics. Acta Psychol. 41, 67–85 (1977).

    ArticleĀ  Google ScholarĀ 

  36. Du, Y., Forrence, A. D., Metcalf, D. M. & Haith, A. M. Action initiation and action inhibition follow the same time course when compared under matched experimental conditions. J. Neurophysiol. 131, 757–767 (2024).

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  37. BƤchtold, D., Baumüller, M. & Brugger, P. Stimulus–response compatibility in representational space. Neuropsychologia 36, 731–735 (1998).

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  38. Dehaene, S., Bossini, S. & Giraux, P. The mental representation of parity and number magnitude. J. Exp. Psychol. Gen. 122, 371–396 (1993).

    ArticleĀ  Google ScholarĀ 

  39. Fias, W. & Fischer, M. H. in The Handbook of Mathematical Cognition (ed. Campbell, J.) 43–54 (Psychology Press, 2005).

  40. Fischer, M. H., Castel, A. D., Dodd, M. D. & Pratt, J. Perceiving numbers causes spatial shifts of attention. Nat. Neurosci. 6, 555–556 (2003).

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  41. Gevers, W., Reynvoet, B. & Fias, W. The mental representation of ordinal sequences is spatially organized. Cognition 87, B87–B95 (2003).

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  42. Mathieu, R., Gourjon, A., Couderc, A., Thevenot, C. & Prado, J. Running the number line: rapid shifts of attention in single-digit arithmetic. Cognition 146, 229–239 (2016).

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  43. Zhang, M. et al. Spatial representation of ordinal information. Front. Psychol. 7, 505 (2016).

    PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  44. Heitz, R. P. The speed–accuracy tradeoff: history, physiology, methodology, and behavior. Front. Neurosci. 8, 150 (2014).

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  45. Liesefeld, H. R. & Janczyk, M. Combining speed and accuracy to control for speed-accuracy trade-offs(?). Behav. Res. 51, 40–60 (2019).

  46. Hick, W. E. On the rate of gain of information. Q. J. Exp. Psychol. 4, 11–26 (1952).

    ArticleĀ  Google ScholarĀ 

  47. Proctor, R. W. & Schneider, D. W. Hick’s law for choice reaction time: a review. Q. J. Exp. Psychol. 71, 1281–1299 (2018).

    ArticleĀ  Google ScholarĀ 

  48. Du, Y. & Haith, A. Habits are not automatic. Preprint at PsyArXiv https://doi.org/10.31234/osf.io/gncsf (2023).

  49. Du, Y. & Haith, A. Seemingly ā€˜habitual’ responses can be caused by both habits and strategic action selection. OSF https://osf.io/7qs4r/download (2024).

  50. Van Dessel, P. et al. Exploring the role of goal-dependent processes in action slips under time pressure. Motiv. Sci. 10, 128–137 (2024).

    ArticleĀ  Google ScholarĀ 

  51. Daw, N. D., Niv, Y. & Dayan, P. Uncertainty-based competition between prefrontal and dorsolateral striatal systems for behavioral control. Nat. Neurosci. 8, 1704–1711 (2005).

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  52. Thorndike, E. L. Animal intelligence: an experimental study of the associative processes in animals. Psychol. Rev. Monogr. Suppl. 2, i–109 (1898).

  53. Miller, K. J., Shenhav, A. & Ludvig, E. A. Habits without values. Psychol. Rev. 126, 292–311 (2019).

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  54. Piray, P. & Daw, N. D. Linear reinforcement learning in planning, grid fields, and cognitive control. Nat. Commun. 12, 4942 (2021).

    ArticleĀ  PubMedĀ  PubMed CentralĀ  CASĀ  Google ScholarĀ 

  55. Nebe, S., Kretzschmar, A., Brandt, M. C. & Tobler, P. N. Characterizing human habits in the lab. Collabra Psychol. 10, 92949 (2024).

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  56. Adams, C. D. Variations in the sensitivity of instrumental responding to reinforcer devaluation. Q. J. Exp. Psychol. Sect. B 34, 77–98 (1982).

    ArticleĀ  Google ScholarĀ 

  57. Dickinson, A. Actions and habits: the development of behavioural autonomy. Phil. Trans. R. Soc. Lond. B 308, 67–78 (1985).

    ArticleĀ  Google ScholarĀ 

  58. Colwill, R. M. An associative analysis of instrumental learning. Curr. Dir. Psychol. Sci. 2, 111–116 (1993).

    ArticleĀ  Google ScholarĀ 

  59. Watson, P. in Habits (ed. Vandaele, Y.) 3–22 (Springer International, 2024); https://doi.org/10.1007/978-3-031-55889-4_1

  60. de Wit, S., Barker, R. A., Dickinson, A. D. & Cools, R. Habitual versus goal-directed action control in Parkinson disease. J. Cogn. Neurosci. 23, 1218–1229 (2011).

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  61. Everitt, B. J. & Robbins, T. W. Drug addiction: updating actions to habits to compulsions ten years on. Annu. Rev. Psychol. 67, 23–50 (2016).

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  62. Hommel, B. & Wiers, R. W. Towards a unitary approach to human action control. Trends Cogn. Sci. 21, 940–949 (2017).

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  63. Colwill, R. M. & Rescorla, R. A. in Psychology of Learning and Motivation (ed. Bower, G. H.) Vol. 20, 55–104 (Elsevier, 1986).

  64. Holland, P. C. Cognitive versus stimulus–response theories of learning. Learn. Behav. 36, 227–241 (2008).

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  65. Berner, L. A. et al. Impaired belief updating and devaluation in adult women with bulimia nervosa. Transl. Psychiatry 13, 2 (2023).

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  66. Buabang, E. K. et al. A goal-directed account of action slips: the reliance on old contingencies. J. Exp. Psychol. Gen. 152, 496–508 (2023).

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  67. De Houwer, J., Buabang, E. K., Boddez, Y., Kƶster, M. & Moors, A. Reasons to remain critical about the literature on habits: a commentary on Wood et al. (2022). Perspect. Psychol. Sci. 18, 871–875 (2023).

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  68. de Wit, S. et al. Corticostriatal connectivity underlies individual differences in the balance between habitual and goal-directed action control. J. Neurosci. 32, 12066–12075 (2012).

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  69. Sjoerds, Z. et al. Slips of action and sequential decisions: a cross-validation study of tasks assessing habitual and goal-directed action control. Front. Behav. Neurosci. 10, 234 (2016).

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  70. Haggard, P. Human volition: towards a neuroscience of will. Nat. Rev. Neurosci. 9, 934–946 (2008).

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  71. Elsayed, G. F., Lara, A. H., Kaufman, M. T., Churchland, M. M. & Cunningham, J. P. Reorganization between preparatory and movement population responses in motor cortex. Nat. Commun. 7, 13239 (2016).

    ArticleĀ  PubMedĀ  PubMed CentralĀ  CASĀ  Google ScholarĀ 

  72. De Rugy, A., Loeb, G. E. & Carroll, T. J. Muscle coordination is habitual rather than optimal. J. Neurosci. 32, 7384–7391 (2012).

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  73. Jurado-Parras, M.-T. et al. The dorsal striatum energizes motor routines. Curr. Biol. 30, 4362–4372.e6 (2020).

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  74. Mannell, R. C. & Duthie, J. H. Habit lag: when ā€˜automatization’ is dysfunctional. J. Psychol. 89, 73–80 (1975).

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  75. Verstynen, T. & Sabes, P. N. How each movement changes the next: an experimental and theoretical study of fast adaptive priors in reaching. J. Neurosci. 31, 10050–10059 (2011).

    ArticleĀ  PubMedĀ  PubMed CentralĀ  CASĀ  Google ScholarĀ 

  76. Wong, A. L., Goldsmith, J., Forrence, A. D., Haith, A. M. & Krakauer, J. W. Reaction times can reflect habits rather than computations. eLife 6, e28075 (2017).

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  77. Haith, A. M., Huberdeau, D. M. & Krakauer, J. W. The influence of movement preparation time on the expression of visuomotor learning and savings. J. Neurosci. 35, 5109–5117 (2015).

    ArticleĀ  PubMedĀ  PubMed CentralĀ  CASĀ  Google ScholarĀ 

  78. Mirabella, G., Pani, P. & Ferraina, S. Neural correlates of cognitive control of reaching movements in the dorsal premotor cortex of rhesus monkeys. J. Neurophysiol. 106, 1454–1466 (2011).

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  79. Resulaj, A., Kiani, R., Wolpert, D. M. & Shadlen, M. N. Changes of mind in decision-making. Nature 461, 263–266 (2009).

    ArticleĀ  PubMedĀ  PubMed CentralĀ  CASĀ  Google ScholarĀ 

  80. Gardner, B. et al. Developing habit-based health behaviour change interventions: twenty-one questions to guide future research. Psychol. Health 38, 518–540 (2023).

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  81. Kok, G. et al. A taxonomy of behaviour change methods: an intervention mapping approach. Health Psychol. Rev. 10, 297–312 (2016).

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  82. Lally, P. & Gardner, B. Promoting habit formation. Health Psychol. Rev. 7, S137–S158 (2013).

    ArticleĀ  Google ScholarĀ 

  83. Michie, S. & Prestwich, A. Are interventions theory-based? Development of a theory coding scheme. Health Psychol. 29, 1–8 (2010).

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  84. Quinn, J. M., Pascoe, A., Wood, W. & Neal, D. T. Can’t control yourself? Monitor those bad habits. Pers. Soc. Psychol. Bull. 36, 499–511 (2010).

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  85. Ashby, F. G., Turner, B. O. & Horvitz, J. C. Cortical and basal ganglia contributions to habit learning and automaticity. Trends Cogn. Sci. 14, 208–215 (2010).

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  86. Balsters, J. H. & Ramnani, N. Cerebellar plasticity and the automation of first-order rules. J. Neurosci. 31, 2305–2312 (2011).

    ArticleĀ  PubMedĀ  PubMed CentralĀ  CASĀ  Google ScholarĀ 

  87. Desmurget, M. & Turner, R. S. Motor sequences and the basal ganglia: kinematics, not habits. J. Neurosci. 30, 7685–7690 (2010).

    ArticleĀ  PubMedĀ  PubMed CentralĀ  CASĀ  Google ScholarĀ 

  88. HĆ©lie, S. & Cousineau, D. The cognitive neuroscience of automaticity: behavioral and brain signatures. Cogn. Sci. 6, 35–53 (2011).

    Google ScholarĀ 

  89. Wu, T., Kansaku, K. & Hallett, M. How self-initiated memorized movements become automatic: a functional MRI study. J. Neurophysiol. 91, 1690–1698 (2004).

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  90. Yin, H. H. & Knowlton, B. J. The role of the basal ganglia in habit formation. Nat. Rev. Neurosci. 7, 464–476 (2006).

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  91. Dolan, R. J. & Dayan, P. Goals and habits in the brain. Neuron 80, 312–325 (2013).

    ArticleĀ  PubMedĀ  PubMed CentralĀ  CASĀ  Google ScholarĀ 

  92. Haith, A. M. & Krakauer, J. W. The multiple effects of practice: skill, habit and reduced cognitive load. Curr. Opin. Behav. Sci. 20, 196–201 (2018).

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  93. Cisek, P. & Kalaska, J. F. Neural correlates of reaching decisions in dorsal premotor cortex: specification of multiple direction choices and final selection of action. Neuron 45, 801–814 (2005).

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  94. Cisek, P. & Kalaska, J. F. Neural mechanisms for interacting with a world full of action choices. Annu. Rev. Neurosci. 33, 269–298 (2010).

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  95. Crammond, D. J. & Kalaska, J. F. Modulation of preparatory neuronal activity in dorsal premotor cortex due to stimulus–response compatibility. J. Neurophysiol. 71, 1281–1284 (1994).

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  96. Wise, S. P. & Murray, E. A. Arbitrary associations between antecedents and actions. Trends Neurosci. 23, 271–276 (2000).

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  97. Dudman, J. T. & Krakauer, J. W. The basal ganglia: from motor commands to the control of vigor. Curr. Opin. Neurobiol. 37, 158–166 (2016).

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  98. Park, J., Coddington, L. T. & Dudman, J. T. Basal ganglia circuits for action specification. Annu. Rev. Neurosci. 43, 485–507 (2020).

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  99. Thura, D. & Cisek, P. The basal ganglia do not select reach targets but control the urgency of commitment. Neuron 95, 1160–1170 (2017).

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  100. Turner, R. S. & Desmurget, M. Basal ganglia contributions to motor control: a vigorous tutor. Curr. Opin. Neurobiol. 20, 704–716 (2010).

    ArticleĀ  PubMedĀ  PubMed CentralĀ  CASĀ  Google ScholarĀ 

  101. Vandaele, Y. & Ahmed, S. H. Habit, choice, and addiction. Neuropsychopharmacology 46, 689–698 (2021).

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  102. Gillan, C. M. et al. Disruption in the balance between goal-directed behavior and habit learning in obsessive-compulsive disorder. Am. J. Psychiatry 168, 718–726 (2011).

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  103. Fujisawa, S., Amarasingham, A., Harrison, M. T. & BuzsĆ”ki, G. Behavior-dependent short-term assembly dynamics in the medial prefrontal cortex. Nat. Neurosci. 11, 823–833 (2008).

    ArticleĀ  PubMedĀ  PubMed CentralĀ  CASĀ  Google ScholarĀ 

Download references

Acknowledgements

This work was supported by National Science Foundation Grant No. 2218406 to A.M.H.

Author information

Authors and Affiliations

Authors

Contributions

Y.D. and A.M.H. conceptualized the experiments and wrote the manuscript. Y.D. programmed the task, collected and analysed the data, and prepared the figures.

Corresponding author

Correspondence to Yue Du.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Human Behaviour thanks David Luque, Klaus Rothermund and Poppy Watson for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–21 and Results.

Reporting Summary

Peer Review File

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, Y., Haith, A.M. Dissociable habits of response preparation versus response initiation. Nat Hum Behav 9, 1941–1958 (2025). https://doi.org/10.1038/s41562-025-02215-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41562-025-02215-4

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing