Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Five canonical findings from 30 years of psychological experimentation in virtual reality

Abstract

Virtual reality (VR) is an emerging medium used in work, play and learning. We review experimental research in VR spanning three decades of scholarship. Instead of exhaustively representing the landscape, our unique contribution is providing in-depth reviews of canonical psychological findings balanced across various domains within psychology. We focus on five findings: the benefit of being there depends on the activity; self-avatars influence behaviour; procedural training works better than abstract learning; body tracking makes VR unique; and people underestimate distance in VR. These findings are particularly useful to social scientists who are new to VR as a medium, or those who have studied VR but have focused on specific psychological subfields (for example, social, cognitive or perceptual psychology). We discuss the relevance for researchers and media consumers and suggest future areas for human behaviour research.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: A timeline of selected influential research events.
Fig. 2: Publications over time.

Similar content being viewed by others

References

  1. Loomis, J. M. Distal attribution and presence. Presence 1, 113–119 (1992).

    Article  Google Scholar 

  2. Biocca, F. Will simulation sickness slow down the diffusion of virtual environment technology? Presence 1, 334–343 (1992).

    Article  Google Scholar 

  3. Heater, C. Being there: the subjective experience of presence. Presence 1, 262–271 (1992).

    Article  Google Scholar 

  4. Hennig-Thurau, T., Herting, A. M. & Jütte, D. Adoption of virtual-reality headsets: the role of metaverse trials for consumers’ usage and purchase intentions. J. Interact. Mark. 60, 145–160 (2025).

    Article  Google Scholar 

  5. Milgram, P. & Kishino, F. A taxonomy of mixed reality visual displays. IEICE Trans. Inf. Syst. 77, 1321–1329 (1994).

    Google Scholar 

  6. Lanier, J. Dawn of the New Everything: Encounters with Reality and Virtual Reality (Henry Holt and Company, 2017).

  7. Rauschnabel, P. A., Felix, R., Hinsch, C., Shahab, H. & Alt, F. What is XR? Towards a framework for augmented and virtual reality. Comput. Hum. Behav. 133, 107289 (2022).

    Article  Google Scholar 

  8. Loomis, J. M., Blascovich, J. J. & Beall, A. C. Immersive virtual environment technology as a basic research tool in psychology. Behav. Res. Methods Instrum. Comput. 31, 557–564 (1999).

    Article  CAS  PubMed  Google Scholar 

  9. Wrzus, C., Frenkel, M. O. & Schöne, B. Current opportunities and challenges of immersive virtual reality for psychological research and application. Acta Psychol. 249, 104485 (2024).

    Article  Google Scholar 

  10. Biocca, F. & Levy, M. R. in Communication in the Age of Virtual Reality (eds Biocca, F. & Levy, M. R.) 15–31 (Lawrence Erlbaum Associates, 1995).

  11. Lombard, M. & Ditton, T. At the heart of it all: the concept of presence. J. Comput. Mediat. Comm. 3, 2 (1997).

    Google Scholar 

  12. Slater, M. & Wilbur, S. A framework for immersive virtual environments (FIVE): speculations on the role of presence in virtual environments. Presence 6, 603–616 (1997).

    Article  Google Scholar 

  13. Lee, K. M. Presence, explicated. Commun. Theory 14, 27–50 (2004).

    Article  Google Scholar 

  14. Difede, J. & Hoffman, H. G. Virtual reality exposure therapy for World Trade Center post-traumatic stress disorder: a case report. Cyberpsychol. Behav. 5, 529–535 (2002).

    Article  PubMed  Google Scholar 

  15. Makransky, G., Borre‐Gude, S. & Mayer, R. E. Motivational and cognitive benefits of training in immersive virtual reality based on multiple assessments. J. Comput. Assist. Learn. 35, 691–707 (2019).

    Article  Google Scholar 

  16. Markowitz, D. M. & Bailenson, J. N. A looking glass into a research wonderland: decades of virtual reality scholarship explicated via natural language processing. Cyberpsychol. Behav. Soc. Netw. 28, 227–232 (2025).

    PubMed  Google Scholar 

  17. Peck, T. C., Sockol, L. E. & Hancock, S. M. Mind the gap: the underrepresentation of female participants and authors in virtual reality research. IEEE Trans. Vis. Comput. Graph. 26, 1945–1954 (2020).

    Article  PubMed  Google Scholar 

  18. Slater, M., Usoh, M. & Steed, A. Taking steps: the influence of a walking technique on presence in virtual reality. ACM Trans. Comput. Hum. Interact. 2, 201–219 (1995).

    Article  Google Scholar 

  19. Riva, G., Wiederhold, B. K. & Villani, D. Toward a humane metaverse: challenges and opportunities. Cyberpsychol. Behav. Soc. Netw. 27, 3–8 (2024).

    Article  PubMed  Google Scholar 

  20. Alaker, M., Wynn, G. R. & Arulampalam, T. Virtual reality training in laparoscopic surgery: a systematic review & meta-analysis. Int. J. Surg. 29, 85–94 (2016).

    Article  PubMed  Google Scholar 

  21. Kaplan, A. D. et al. The effects of virtual reality, augmented reality, and mixed reality as training enhancement methods: a meta-analysis. Hum. Factors 63, 706–726 (2021).

    Article  PubMed  Google Scholar 

  22. Scorgie, D. et al. Virtual reality for safety training: a systematic literature review and meta-analysis. Saf. Sci. 171, 106372 (2024).

    Article  Google Scholar 

  23. Rizzo, A. S., Hartholt, A. & Mozgai, S. in Handbook of Media Psychology: the Science and the Practice (eds Dill-Shackleford, K. E. & Sundar, S. S.) 187–213 (Springer Nature, 2024).

  24. Rothbaum, B. O. et al. Effectiveness of computer-generated (virtual reality) graded exposure in the treatment of acrophobia. Am. J. Psychiatry 152, 626–628 (1995).

    Article  CAS  PubMed  Google Scholar 

  25. Wiederhold, B. K. & Wiederhold, M. D. Three-year follow-up for virtual reality exposure for fear of flying. Cyberpsychol. Behav. 6, 441–445 (2003).

    Article  PubMed  Google Scholar 

  26. Van Loenen, I., Scholten, W., Muntingh, A., Smit, J. & Batelaan, N. The effectiveness of virtual reality exposure-based cognitive behavioral therapy for severe anxiety disorders, obsessive–compulsive disorder, and posttraumatic stress disorder: meta-analysis. J. Med. Internet Res. 24, e26736 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Deng, W. et al. The efficacy of virtual reality exposure therapy for PTSD symptoms: a systematic review and meta-analysis. J. Affect. Disord. 257, 698–709 (2019).

    Article  PubMed  Google Scholar 

  28. Hoffman, H. G., Patterson, D. R. & Carrougher, G. J. Use of virtual reality for adjunctive treatment of adult burn pain during physical therapy: a controlled study. Clin. J. Pain 16, 244–250 (2000).

    Article  CAS  PubMed  Google Scholar 

  29. Mallari, B., Spaeth, E. K., Goh, H. & Boyd, B. S. Virtual reality as an analgesic for acute and chronic pain in adults: a systematic review and meta-analysis. J. Pain Res. 12, 2053–2085 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Eijlers, R. et al. Systematic review and meta-analysis of virtual reality in pediatrics: effects on pain and anxiety. Anesth. Analg. 129, 1344–1353 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Nordgard, R. & Lag, T. The effects of virtual reality on procedural pain and anxiety in pediatrics: a systematic review and meta-analysis. Front. Virtual Real. 2, 699383 (2021).

    Article  Google Scholar 

  32. Nem, V. G. VRChat breaks records with 92,000 simultaneous users! Medium https://medium.com/@nemchan_nel/vrchat-breaks-records-with-92-000-simultaneous-users-9464a33f3561 (2023).

  33. Stockdale, H. Gorilla Tag has 1 million daily & 3 million monthly active players. UploadVR https://www.uploadvr.com/gorilla-tag-daily-monthly-users/ (2024).

  34. Wiederhold, B. K. Beyond zoom: the new reality. Cyberpsychol. Behav. Soc. Netw. 23, 809–810 (2020).

    Article  PubMed  Google Scholar 

  35. Bonfert, M. et al. Seeing the faces is so important—experiences from online team meetings on commercial virtual reality platforms. Front. Virtual Real. 3, 945791 (2023).

    Article  Google Scholar 

  36. Freeman, G., Zamanifard, S., Maloney, D. & Acena, D. Disturbing the peace: experiencing and mitigating emerging harassment in social virtual reality. Proc. ACM Hum. Comput. Interact. 6, 1–30 (2022).

    Google Scholar 

  37. Bates, J. Virtual reality, art, and entertainment. Presence 1, 133–138 (1992).

    Article  Google Scholar 

  38. Jurado-Martín, M. in The Future of Digital Communication (ed. Benítez Rojas, R. V.) Ch. 11 (CRC Press, 2024).

  39. Barreda-Ángeles, M., Aleix-Guillaume, S. & Pereda-Baños, A. An “empathy machine” or a “just-for-the-fun-of-it” machine? Effects of immersion in nonfiction 360-video stories on empathy and enjoyment. Cyberpsychol. Behav. Soc. Netw. 23, 683–688 (2020).

    Article  PubMed  Google Scholar 

  40. Hornsey, R. L. & Hibbard, P. B. Current perceptions of virtual reality technology. Appl. Sci. 14, 4222 (2024).

    Article  CAS  Google Scholar 

  41. Nowak, K. L. & Fox, J. Avatars and computer-mediated communication: a review of the definitions, uses, and effects of digital representations. Rev. Commun. Res. 6, 30–53 (2018).

    Article  Google Scholar 

  42. Kilteni, K., Maselli, A., Kording, K. P. & Slater, M. Over my fake body: body ownership illusions for studying the multisensory basis of own-body perception. Front. Hum. Neurosci. 9, 141 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Botvinick, M. & Cohen, J. Rubber hands ‘feel’ touch that eyes see. Nature 391, 756 (1998).

    Article  CAS  PubMed  Google Scholar 

  44. González-Franco, M., Peck, T. C., Rodríguez-Fornells, A. & Slater, M. A threat to a virtual hand elicits motor cortex activation. Exp. Brain Res. 232, 875–887 (2014).

    Article  PubMed  Google Scholar 

  45. Mottelson, A. et al. A systematic review and meta-analysis of the effectiveness of body ownership illusions in virtual reality. ACM Trans. Comput. Hum. Interact. 30, 1–42 (2023).

    Article  Google Scholar 

  46. Slater, M. et al. Towards a digital body: the virtual arm illusion. Front. Hum. Neurosci. 2, 6 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Slater, M., Perez-Marcos, D., Ehrsson, H. H. & Sanchez-Vives, M. V. Inducing illusory ownership of a virtual body. Front. Neurosci. 3, 214–220 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Steed, A., Pan, Y., Zisch, F. & Steptoe, W. The impact of a self-avatar on cognitive load in immersive virtual reality. In Proc. IEEE Virtual Reality 2016 67–76 (IEEE, 2016).

  49. Yee, N. & Bailenson, J. The Proteus effect: the effect of transformed self-representation on behavior. Hum. Commun. Res. 33, 271–290 (2007).

    Article  Google Scholar 

  50. Mal, D. et al. The impact of avatar and environment congruence on plausibility, embodiment, presence, and the Proteus effect in virtual reality. IEEE Trans. Vis. Comput. Graph. 29, 2358–2368 (2023).

    Article  PubMed  Google Scholar 

  51. Kocur, M. et al. Physiological and perceptual responses to athletic avatars while cycling in virtual reality. In Proc. 2021 CHI Conference on Human Factors in Computing Systems 1–18 (Association for Computing Machinery, 2021).

  52. Reinhard, R., Shah, K. G., Christmann, C. A., Faust-Christmann, C. A. & Lachmann, T. Acting your avatar’s age: effects of virtual reality avatar embodiment on real life walking speed. Media Psychol. 23, 293–315 (2020).

    Article  Google Scholar 

  53. Chen, V. H. H., Ibasco, G. C., Leow, V. J. X. & Lew, J. Y. Y. The effect of VR avatar embodiment on improving attitudes and closeness toward immigrants. Front. Psychol. 12, 705574 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Ratan, R. et al. Avatar characteristics induce users’ behavioral conformity with small-to-medium effect sizes: a meta-analysis of the Proteus effect. Media Psychol. 23, 651–675 (2020).

    Article  Google Scholar 

  55. Beyea, D. et al. A new meta-analysis of the Proteus effect: studies in VR find stronger effect sizes. Presence 31, 189–202 (2022).

    Article  Google Scholar 

  56. Banakou, D., Hanumanthu, P. D. & Slater, M. Virtual embodiment of White people in a Black virtual body leads to a sustained reduction in their implicit racial bias. Front. Hum. Neurosci. 10, 601 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Peck, T. C., Seinfeld, S., Aglioti, S. M. & Slater, M. Putting yourself in the skin of a black avatar reduces implicit racial bias. Conscious. Cogn. 22, 779–787 (2013).

    Article  PubMed  Google Scholar 

  58. Lee, J. et al. Using time travel in virtual reality (VR) to increase efficacy perceptions of influenza vaccination. J. Med. Internet Res. 25, e42007 (2023).

    Google Scholar 

  59. Li, B. J. & Kyung Kim, H. Experiencing organ failure in virtual reality: effects of self- versus other-embodied perspective taking on empathy and prosocial outcomes. N. Media Soc. 23, 2144–2166 (2021).

    Article  Google Scholar 

  60. Seinfeld, S., Hoh, J., Lippa, Y. & Slater, M. The role of avatar embodiment and perspective-taking in reducing bias. Soc. Psychol. Pers. Sci. 9, 345–353 (2018).

    Google Scholar 

  61. Banakou, D. et al. Virtual body ownership and its consequences for implicit racial bias are dependent on social context. R. Soc. Open Sci. 7, 201848 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Herrera, F., Bailenson, J., Weisz, E., Ogle, E. & Zaki, J. Building long-term empathy: a large-scale comparison of traditional and virtual reality perspective-taking. PLoS ONE 13, e0204494 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Hassan, R. Digitality, virtual reality and the ‘empathy machine’. Digit. J. 8, 195–212 (2020).

    Google Scholar 

  64. Murray, J. H. Virtual/reality: how to tell the difference. J. Vis. Cult. 19, 11–27 (2020).

    Article  Google Scholar 

  65. Yee, N., Ducheneaut, N., Yao, M. & Nelson, L. Do men heal more when in drag?: Conflicting identity cues between user and avatar. In Proc. SIGCHI Conference on Human Factors in Computing Systems 2011 773–776 (Association for Computing Machinery, 2011).

  66. Wu, B., Yu, X. & Gu, X. Effectiveness of immersive virtual reality using head‐mounted displays on learning performance: a meta‐analysis. Br. J. Educ. Technol. 51, 1991–2005 (2020).

    Article  Google Scholar 

  67. Coban, M., Bolat, Y. I. & Goksu, I. The potential of immersive virtual reality to enhance learning: a meta-analysis. Educ. Res. Rev. 36, 100452 (2022).

    Article  Google Scholar 

  68. Villena-Taranilla, R., Tirado-Olivares, S., Cózar-Gutiérrez, R. & González-Calero, J. A. Effects of virtual reality on learning outcomes in K-6 education: a meta-analysis. Educ. Res. Rev. 35, 100434 (2022).

    Article  Google Scholar 

  69. Bazhenova, E. et al. The impact of virtual reality on post-compulsory students’ learning outcomes: a review with meta-analysis. Int. J. Emerg. Technol. Learn. 17, 209–221 (2022).

    Article  Google Scholar 

  70. Qiu, X. B., Shan, C., Yao, J. & Fu, Q. K. The effects of virtual reality on EFL learning: a meta-analysis. Educ. Inf. Technol. 29, 1379–1405 (2024).

    Article  Google Scholar 

  71. Dalgarno, B. & Lee, M. J. What are the learning affordances of 3‐D virtual environments? Br. J. Educ. Technol. 41, 10–32 (2010).

    Article  Google Scholar 

  72. Fogarty, J., McCormick, J. & El-Tawil, S. Improving student understanding of complex spatial arrangements with virtual reality. J. Prof. Issues Eng. Educ. Pract. 144, 04017013 (2018).

    Article  Google Scholar 

  73. Kwon, C. Verification of the possibility and effectiveness of experiential learning using HMD-based immersive VR technologies. Virtual Real. 23, 101–118 (2019).

    Article  Google Scholar 

  74. Petersen, G. B., Stenberdt, V., Mayer, R. E. & Makransky, G. Collaborative generative learning activities in immersive virtual reality increase learning. Comput. Educ. 207, 104931 (2023).

    Article  Google Scholar 

  75. Moreno, R. & Mayer, R. E. Learning science in virtual reality multimedia environments: role of methods and media. J. Educ. Psychol. 94, 598–610 (2002).

    Article  Google Scholar 

  76. Di Natale, A. F., Repetto, C., Riva, G. & Villani, D. Immersive virtual reality in K‐12 and higher education: a 10‐year systematic review of empirical research. Br. J. Educ. Technol. 51, 2006–2033 (2020).

    Article  Google Scholar 

  77. Radianti, J., Majchrzak, T. A., Fromm, J. & Wohlgenannt, I. A systematic review of immersive virtual reality applications for higher education: design elements, lessons learned, and research agenda. Comput. Educ. 147, 103778 (2020).

    Article  Google Scholar 

  78. Makransky, G., Terkildsen, T. S. & Mayer, R. E. Adding immersive virtual reality to a science lab simulation causes more presence but less learning. Learn. Instr. 60, 225–236 (2019).

    Article  Google Scholar 

  79. McGowin, G., Sonnenfeld, N. A. & Fiore, S. M. Navigating cognitive demand in virtual reality: implications for education and training. Proc. Hum. Factors Ergon. Soc. Annu. Meet. 68, 1668–1673 (2024).

    Article  Google Scholar 

  80. Mayer, R. E. Multimedia learning. Psychol. Learn. Motiv. 41, 85–139 (2002).

    Article  Google Scholar 

  81. Moreno, R. & Mayer, R. Interactive multimodal learning environments: special issue on interactive learning environments: contemporary issues and trends. Educ. Psychol. Rev. 19, 309–326 (2007).

    Article  Google Scholar 

  82. Adamo-Villani, N., Wilbur, R. & Wasburn, M. Gender differences in usability and enjoyment of VR educational games: a study of SMILE™. In Proc. 2008 International Conference Visualisation 114–119 (IEEE, 2008).

  83. Boyd, L. E. et al. Leveling the playing field: supporting neurodiversity via virtual realities. Technol. Innov. 20, 105–116 (2018).

    Article  Google Scholar 

  84. Meyer, O. A., Omdahl, M. K. & Makransky, G. Investigating the effect of pre‐training when learning through immersive virtual reality and video: a media and methods experiment. Comput. Educ. 140, 103603 (2019).

    Article  Google Scholar 

  85. Miguel-Alonso, I., Rodriguez-Garcia, B., Checa, D. & Bustillo, A. Countering the novelty effect: a tutorial for immersive virtual reality learning environments. Appl. Sci. 13, 593 (2023).

    Article  CAS  Google Scholar 

  86. Queiroz, A. C. M., Fauville, G., Herrera, F., Leme, M. I. S. & Bailenson, J. N. Do students learn better with immersive virtual reality videos than conventional videos? A comparison of media effects with middle school girls. Technol. Mind Behav. 3, 3 (2022).

    Google Scholar 

  87. Cummings, J. J. & Bailenson, J. N. How immersive is enough? A meta-analysis of the effect of immersive technology on user presence. Media Psychol. 19, 272–309 (2016).

    Article  Google Scholar 

  88. Anderson, M. L. Embodied cognition: a field guide. Artif. Intell. 149, 91–130 (2003).

    Article  Google Scholar 

  89. Riva, G. From virtual to real body: virtual reality as embodied technology. J. Cyber Ther. Rehabil. 1, 7–22 (2008).

    Google Scholar 

  90. Garau, M. et al. The impact of avatar realism and eye gaze control on perceived quality of communication in a shared immersive virtual environment. In Proc. SIGCHI Conference on Human Factors in Computing Systems 529–536 (Association for Computing Machinery, 2003).

  91. Pan, Y. & Steed, A. Avatar type affects performance of cognitive tasks in virtual reality. In Proc. 25th ACM Symposium on Virtual Reality Software and Technology 1–4 (Association for Computing Machinery, 2019).

  92. Won, A. S., Bailenson, J., Lee, J. & Lanier, J. Homuncular flexibility in virtual reality. J. Comput. Mediat. Commun. 20, 241–259 (2015).

    Article  Google Scholar 

  93. Chen, J., Izadi, S. & Fitzgibbon, A. KinÊtre: animating the world with the human body. In Proc. 25th Annual ACM Symposium on User Interface Software and Technology 435–444 (Association for Computing Machinery, 2012).

  94. Jiang, Y., Li, Z., He, M., Lindlbauer, D. & Yan, Y. HandAvatar: embodying non-humanoid virtual avatars through hands. In Proc. 2023 CHI Conference on Human Factors in Computing Systems 1–17 (Association for Computing Machinery, 2023).

  95. Yaremych, H. E. & Persky, S. Tracing physical behavior in virtual reality: a narrative review of applications to social psychology. J. Exp. Soc. Psychol. 85, 103845 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Huang, C. M., Andrist, S., Sauppé, A. & Mutlu, B. Using gaze patterns to predict task intent in collaboration. Front. Psychol. 6, 1049 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Lukander, K., Toivanen, M. & Puolamäki, K. Inferring intent and action from gaze in naturalistic behavior: a review. Int. J. Mob. Hum. Comput. Interact. 9, 41–57 (2017).

    Article  Google Scholar 

  98. Becchio, C., Manera, V., Sartori, L., Cavallo, A. & Castiello, U. Grasping intentions: from thought experiments to empirical evidence. Front. Hum. Neurosci. 6, 117 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Peck, T. C. & Good, J. J. Measuring embodiment: movement complexity and the impact of personal characteristics. IEEE Trans. Vis. Comput. Graph. 30, 4588–4600 (2023).

    Article  Google Scholar 

  100. Stokes, J. D., Rizzo, A., Geng, J. J. & Schweitzer, J. B. Measuring attentional distraction in children with ADHD using virtual reality technology with eye-tracking. Front. Virtual Real. 3, 855895 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Pallavicini, F. et al. Effectiveness of virtual reality survival horror games for emotional elicitation: preliminary insights using Resident Evil 7: Biohazard. In Proc. Universal Access in HumanComputer Interaction. Virtual, Augmented, and Intelligent Environments: 12th International Conference, UAHCI 2018 87–101 (Springer International Publishing, 2018) (2018).

  102. Luong, T. & Holz, C. Characterizing physiological responses to fear, frustration, and insight in virtual reality. IEEE Trans. Vis. Comput. Graph. 28, 3917–3927 (2022).

    Article  PubMed  Google Scholar 

  103. Sun, Y., Shaikh, O. & Won, A. S. Nonverbal synchrony in virtual reality. PLoS ONE 14, e0221803 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Williamson, J., Li, J., Vinayagamoorthy, V., Shamma, D. A. & Cesar, P. Proxemics and social interactions in an instrumented virtual reality workshop. In Proc. 2021 CHI Conference on Human Factors in Computing Systems 1–13 (Association for Computing Machinery, 2021).

  105. Miller, M. R. et al. Effect of duration and delay on the identifiability of VR motion. In Proc. 2024 IEEE 25th International Symposium on a World of Wireless, Mobile and Multimedia Networks (WoWMoM) 70–75 (IEEE, 2024).

  106. Moore, A. G., McMahan, R. P., Dong, H. & Ruozzi, N. Personal identifiability and obfuscation of user tracking data from VR training sessions. In Proc. 2021 IEEE International Symposium on Mixed and Augmented Reality (ISMAR) 221–228 (IEEE, 2021).

  107. Nair, V. et al. Unique identification of 50,000+ virtual reality users from head & hand motion data. In Proc. 32nd USENIX Conference on Security Symposium 895–910 (USENIX Association, 2023).

  108. Wierzbowski, M. et al. Behavioural biometrics in virtual reality: to what extent can we identify a person based solely on how they watch 360-degree videos? In Proc. 2022 IEEE International Symposium on Mixed and Augmented Reality Adjunct (ISMAR-Adjunct) 417–422 (IEEE, 2022).

  109. Nair, V., Guo, W., O'Brien, J. F., Rosenberg, L. & Song, D. Deep motion masking for secure, usable, and scalable real-time anonymization of ecological virtual reality motion data. In 2024 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW), 493–500 (IEEE, 2024).

  110. Huang, G. et al. AdapTutAR: an adaptive tutoring system for machine tasks in augmented reality. In Proc. 2021 CHI Conference on Human Factors in Computing Systems 1–15 (Association for Computing Machinery, 2021).

  111. Marwecki, S., Wilson, A. D., Ofek, E., Gonzalez Franco, M. & Holz, C. Mise-unseen: using eye tracking to hide virtual reality scene changes in plain sight. In Proc. 32nd Annual ACM Symposium on User Interface Software and Technology 777–789 (Association for Computing Machinery, 2019).

  112. Slater, M. et al. The ethics of realism in virtual and augmented reality. Front. Virtual Real. 1, 512449 (2020).

    Article  Google Scholar 

  113. Loomis, J. & Knapp, J. in Virtual and Adaptive Environments: Applications, Implications, and Human Performance Issues (eds Hettinger, L. J. & Haas, M. W.) 21–46 (Lawrence Erlbaum Associates, 2003).

  114. Renner, R. S., Velichkovsky, B. M. & Helmert, J. R. The perception of egocentric distances in virtual environments—a review. ACM Comput. Surv. 46, 1–40 (2013).

    Article  Google Scholar 

  115. Choudhary, Z. et al. Revisiting distance perception with scaled embodied cues in social virtual reality. In Proc. 2021 IEEE Virtual Reality and 3D User Interfaces (VR) 788–797 (IEEE, 2021).

  116. Thompson, W. B. et al. Does the quality of the computer graphics matter when judging distances in visually immersive environments? Presence 13, 560–571 (2004).

    Article  Google Scholar 

  117. Kelly, J. W. Distance perception in virtual reality: a meta-analysis of the effect of head-mounted display characteristics. IEEE Trans. Vis. Comput. Graph. 29, 4978–4989 (2022).

    Article  Google Scholar 

  118. Batmaz, A. U., Barrera Machuca, M. D., Sun, J. & Stuerzlinger, W. The effect of the vergence-accommodation conflict on virtual hand pointing in immersive displays. In Proc. 2022 CHI Conference on Human Factors in Computing Systems 1–15 (Association for Computing Machinery, 2022).

  119. Gao, Y. et al. Influence of virtual objects’ shadows and lighting coherence on distance perception in optical see‐through augmented reality. J. Soc. Inf. Disp. 28, 117–135 (2020).

    Article  Google Scholar 

  120. Barrett, T. J. & Hegarty, M. Effects of interface and spatial ability on manipulation of virtual models in a STEM domain. Comput. Hum. Behav. 65, 220–231 (2016).

    Article  Google Scholar 

  121. Adams, H. et al. Shedding light on cast shadows: an investigation of perceived ground contact in AR and VR. IEEE Trans. Vis. Comput. Graph. 28, 4624–4639 (2021).

    Article  Google Scholar 

  122. Šoltészová, V., Patel, D. & Viola, I. Chromatic shadows for improved perception. In Proc. ACM SIGGRAPH/Eurographics Symposium on Non-Photorealistic Animation and Rendering 105–116 (Association for Computing Machinery, 2011).

  123. Gagnon, H. C. et al. Far distance estimation in mixed reality. In Proc. ACM Symposium on Applied Perception 2020 1–8 (Association for Computing Machinery, 2020).

  124. Vaziri, K., Liu, P., Aseeri, S. & Interrante, V. Impact of visual and experiential realism on distance perception in VR using a custom video see-through system. In Proc. ACM Symposium on Applied Perception 1–8 (Association for Computing Machinery, 2017).

  125. Pfeil, K., Masnadi, S., Belga, J., Sera-Josef, J. V. T. & LaViola, J. Distance perception with a video see-through head-mounted display. In Proc. 2021 CHI Conference on Human Factors in Computing Systems 1–9 (Association for Computing Machinery, 2021).

  126. Vienne, C., Masfrand, S., Bourdin, C. & Vercher, J. L. Depth perception in virtual reality systems: effect of screen distance, environment richness and display factors. IEEE Access 8, 29099–29110 (2020).

    Article  Google Scholar 

  127. Leyrer, M., Linkenauger, S. A., Bülthoff, H. H. & Mohler, B. J. Eye height manipulations: a possible solution to reduce underestimation of egocentric distances in head-mounted displays. ACM Trans. Appl. Percept. 12, 1–23 (2015).

    Article  Google Scholar 

  128. Ries, B., Interrante, V., Kaeding, M. & Anderson, L. The effect of self-embodiment on distance perception in immersive virtual environments. In Proc. 2008 ACM Symposium on Virtual Reality Software and Technology 167–170 (Association for Computing Machinery, 2008).

  129. Xu, J. et al. Spatial computing: defining the vision for the future. In Extended Abstracts of the CHI Conference on Human Factors in Computing Systems 1–4 (Association for Computing Machinery, 2024).

  130. Norouzi, N., Bruder, G. & Welch, G. Assessing vignetting as a means to reduce VR sickness during amplified head rotations. In Proc. 15th ACM Symposium on Applied Perception 1–8 (Association for Computing Machinery, 2018).

  131. Bailenson, J. Experience on Demand: What Virtual Reality Is, How It Works, and What It Can Do (W. W. Norton & Company, 2018).

  132. Grabowski, A. & Jach, K. The use of virtual reality in the training of professionals: with the example of firefighters. Comput. Animat. Virtual Worlds 32, e1981 (2021).

    Article  Google Scholar 

  133. Mubin, O., Alnajjar, F., Jishtu, N., Alsinglawi, B. & Al Mahmud, A. Exoskeletons with virtual reality, augmented reality, and gamification for stroke patients’ rehabilitation: systematic review. JMIR Rehabil. Assist. Technol. 6, e12010 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Hutson, J. & Olsen, T. Virtual reality and art history: a case study of digital humanities and immersive learning environments. J. High. Educ. Theory Pract. 22, 50–65 (2022).

    Google Scholar 

  135. Pimentel, D. & Kalyanaraman, S. The effects of embodying wildlife in virtual reality on conservation behaviors. Sci. Rep. 12, 6439 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Han, E., Miller, M. R., Ram, N., Nowak, K. L. & Bailenson, J. N. Understanding group behavior in virtual reality: a large-scale, longitudinal study in the metaverse. In Proc. 72nd Annual International Communication Association Conference 1–27 (International Communication Association, 2022).

  137. Kaimara, P., Oikonomou, A. & Deliyannis, I. Could virtual reality applications pose real risks to children and adolescents? A systematic review of ethical issues and concerns. Virtual Real. 26, 697–735 (2022).

    Article  PubMed  Google Scholar 

  138. Bailey, J. O. & Schloss, J. I. Knowing versus doing: children’s social conceptions of and behaviors toward virtual reality agents. Int. J. Child-Comput. Interact. 40, 100647 (2024).

    Article  Google Scholar 

  139. Peng, K. et al. iVR-fNIRS: studying brain functions in a fully immersive virtual environment. Neurophotonics 11, 020601 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Slater, M. How colorful was your day? Why questionnaires cannot assess presence in virtual environments. Presence 13, 484–493 (2004).

    Article  Google Scholar 

  141. Alvidrez, S. & Peña, J. Verbal mimicry predicts social distance and social attraction to an outgroup member in virtual reality. In Proc. IEEE International Conference on Artificial Intelligence and Virtual Reality (AIVR) 68–73 (IEEE, 2020).

  142. Tausczik, Y. R. & Pennebaker, J. W. The psychological meaning of words: LIWC and computerized text analysis methods. J. Lang. Soc. Psychol. 29, 24–54 (2010).

    Article  Google Scholar 

  143. Banks, J. & Bowman, N. D. Avatars are (sometimes) people too: linguistic indicators of parasocial and social ties in player–avatar relationships. N. Media Soc. 18, 1257–1276 (2016).

    Article  Google Scholar 

  144. Sykownik, P., Karaosmanoglu, S., Emmerich, K., Steinicke, F. & Masuch, M. VR almost there: simulating co-located multiplayer experiences in social virtual reality. In Proc. 2023 CHI Conference on Human Factors in Computing Systems 1–19 (Association for Computing Machinery, 2023).

  145. Van Brakel, V., Barreda-Ángeles, M. & Hartmann, T. Feelings of presence and perceived social support in social virtual reality platforms. Comput. Hum. Behav. 139, 107523 (2023).

    Article  Google Scholar 

  146. Sutherland, I. E. The ultimate display. Proc. IFIP Congr. 2, 506–508 (1965).

    Google Scholar 

  147. Rizzo, A. et al. From training to treatment: design and development of a post-traumatic stress disorder virtual reality exposure therapy application for Iraq war veterans. In Proc. 3rd International Workshop on Virtual Rehabilitation 35–42 (VRLab, EPFL & Troisième Cycle Romand d’Informatique, 2004).

Download references

Acknowledgements

We thank the incredible panel of scholars who helped make this work possible with their insights and the time they put into phone calls and emails as we refined the list of five findings and selected events for the timeline shown in Fig. 1. In alphabetical order, the panel comprises S. J. Ahn, J. Bailey, G. Bruder, M. Miller, T. Peck, S. Persky, S. Rizzo, A. Steed, A. Stevenson Won, B. Weiderhold and G. Welch. The panel members bear no responsibility for any specific choices in the paper; instead, they were a source of brainstorming and information. Moreover, we thank J. Hancock, R. Ratan and P. Rosedale for helpful discussions and feedback on early drafts.

Author information

Authors and Affiliations

Authors

Contributions

Authorship is alphabetical by last name. All authors contributed to conceptualization, original draft writing, visualization and editing. All authors read and agreed to the final version of this manuscript.

Corresponding author

Correspondence to Jeremy N. Bailenson.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Human Behaviour thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bailenson, J.N., DeVeaux, C., Han, E. et al. Five canonical findings from 30 years of psychological experimentation in virtual reality. Nat Hum Behav 9, 1328–1338 (2025). https://doi.org/10.1038/s41562-025-02216-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41562-025-02216-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing