Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Fracture-driven power amplification in a hydrogel launcher

Abstract

Robotic tasks that require robust propulsion abilities such as jumping, ejecting or catapulting require power-amplification strategies where kinetic energy is generated from pre-stored energy. Here we report an engineered accumulated strain energy-fracture power-amplification method that is inspired by the pressurized fluidic squirting mechanism of Ecballium elaterium (squirting cucumber plants). We realize a light-driven hydrogel launcher that harnesses fast liquid vapourization triggered by the photothermal response of an embedded graphene suspension. This vapourization leads to appreciable elastic energy storage within the surrounding hydrogel network, followed by rapid elastic energy release within 0.3 ms. These soft hydrogel robots achieve controlled launching at high velocity with a predictable trajectory. The accumulated strain energy-fracture method was used to create an artificial squirting cucumber that disperses artificial seeds over metres, which can further achieve smart seeding through an integrated radio-frequency identification chip. This power-amplification strategy provides a basis for propulsive motion to advance the capabilities of miniaturized soft robotic systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: ASEF-based power amplification.
Fig. 2: Factors influencing the driving force for G-hydrogel launchers.
Fig. 3: Structure design and launching trajectory control of hydrogel robot.
Fig. 4: E. elaterium-inspired seed dispersal and smart seed robot.

Similar content being viewed by others

Data availability

All data are available in the Article or its Supplementary Information. Source data are provided with this paper.

References

  1. El-Atab, N. et al. Soft actuators for soft robotic applications: a review. Adv. Intell. Syst. 2, 2000039 (2020).

    Google Scholar 

  2. Dong, Y. et al. Untethered small-scale magnetic soft robot with programmable magnetization and integrated multifunctional modules. Sci. Adv. 8, eabn8932 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Song, X. et al. Puffball-inspired microrobotic systems with robust payload, strong protection, and targeted locomotion for on-demand drug delivery. Adv. Mater. 34, e2204791 (2022).

    PubMed  Google Scholar 

  4. Sridhar, V. et al. Light-driven carbon nitride microswimmers with propulsion in biological and ionic media and responsive on-demand drug delivery. Sci. Robot. 7, eabm1421 (2022).

    PubMed  PubMed Central  Google Scholar 

  5. Li, M. T. et al. Miniature coiled artificial muscle for wireless soft medical devices. Sci. Adv. 8, eabm5616 (2022).

    PubMed  PubMed Central  Google Scholar 

  6. Wu, Y. D., Dong, X. G., Kim, J. K., Wang, C. X. & Sitti, M. Wireless soft millirobots for climbing three-dimensional surfaces in confined spaces. Sci. Adv. 8, eabn3431 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Hu, W. Q., Lum, G. Z., Mastrangeli, M. & Sitti, M. Small-scale soft-bodied robot with multimodal locomotion. Nature 554, 81–85 (2018).

    CAS  PubMed  Google Scholar 

  8. Ze, Q. et al. Spinning-enabled wireless amphibious origami millirobot. Nat. Commun. 13, 3118 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Xia, N. et al. Decoupling and reprogramming the wiggling motion of midge larvae using a soft robotic platform. Adv. Mater. 34, 2109126 (2022).

    CAS  Google Scholar 

  10. Goudu, S. R. et al. Biodegradable untethered magnetic hydrogel milli-grippers. Adv. Funct. Mater. 30, 2004975 (2020).

    CAS  Google Scholar 

  11. Byun, J. et al. Underwater maneuvering of robotic sheets through buoyancy-mediated active flutter. Sci. Robot. 6, eabe0637 (2021).

    PubMed  Google Scholar 

  12. Tang, Y. C. et al. Leveraging elastic instabilities for amplified performance: spine-inspired high-speed and high-force soft robots. Sci. Adv. 6, eaaz6912 (2020).

    PubMed  PubMed Central  Google Scholar 

  13. Hu, Y. et al. Electrically and sunlight-driven actuator with versatile biomimetic motions based on rolled carbon nanotube bilayer composite. Adv. Funct. Mater. 27, 1704388 (2017).

    Google Scholar 

  14. Guo, H. S., Priimagi, A. & Zeng, H. Optically controlled latching and launching in soft actuators. Adv. Funct. Mater. 32, 2108919 (2022).

    CAS  Google Scholar 

  15. Lee, H., Xia, C. & Fang, N. X. First jump of microgel; actuation speed enhancement by elastic instability. Soft Matter 6, 4342 (2010).

    CAS  Google Scholar 

  16. Chi, Y. et al. Bistable and multistable actuators for soft robots: structures, materials, and functionalities. Adv. Mater. 34, e2110384 (2022).

    PubMed  Google Scholar 

  17. Bartlett, N. W. et al. A 3D-printed, functionally graded soft robot powered by combustion. Science 349, 161–165 (2015).

    CAS  PubMed  Google Scholar 

  18. Kovac, M., Fuchs, M., Guignard, A., Zufferey, J. C. & Floreano, D. A miniature 7g jumping robot. IEEE Intl Conf. Robot. Autom. 373–378 (2008).

  19. Yu, K. Q. et al. Robust jumping actuator with a shrimp-shell architecture. Adv. Mater. 33, 2104558 (2021).

    CAS  Google Scholar 

  20. Hawkes, E. W. et al. Engineered jumpers overcome biological limits via work multiplication. Nature 604, 657–661 (2022).

    CAS  PubMed  Google Scholar 

  21. Koh, J. S. et al. Jumping on water: surface tension-dominated jumping of water striders and robotic insects. Science 349, 517–521 (2015).

    CAS  PubMed  Google Scholar 

  22. Koh, J. S., Jung, S. P., Wood, R. J. & Cho, K. J. A jumping robotic insect based on a torque reversal catapult mechanism. In Proc. 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems 3796–3801 (IEEE, 2013).

  23. Zhang, C., Zou, W., Ma, L. P. & Wang, Z. Q. Biologically inspired jumping robots: a comprehensive review. Rob. Auton. Syst. 124, 103362 (2020).

    Google Scholar 

  24. Longo, S. J. et al. Beyond power amplification: latch-mediated spring actuation is an emerging framework for the study of diverse elastic systems. J. Exp. Biol. 222, jeb197889 (2019).

    PubMed  Google Scholar 

  25. Trail, F. Fungal cannons: explosive spore discharge in the Ascomycota. FEMS Microbiol Lett. 276, 12–18 (2007).

    CAS  PubMed  Google Scholar 

  26. Kim, Y., van den Berg, J. & Crosby, A. J. Autonomous snapping and jumping polymer gels. Nat. Mater. 20, 1695–1701 (2021).

    CAS  PubMed  Google Scholar 

  27. Jeon, J. et al. Continuous and programmable photomechanical jumping of polymer monoliths. Mater. Today 49, 97–106 (2021).

    CAS  Google Scholar 

  28. Sakes, A. et al. Shooting mechanisms in nature: a systematic review. PLoS ONE 11, e0158277 (2016).

    PubMed  PubMed Central  Google Scholar 

  29. Galstyan, A. & Hay, A. Snap, crack and pop of explosive fruit. Curr. Opin. Genet. Dev. 51, 31–36 (2018).

    CAS  PubMed  Google Scholar 

  30. Hofhuis, H. et al. Morphomechanical innovation drives explosive seed dispersal. Cell 166, 222–233 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Hayashi, M., Feilich, K. L. & Ellerby, D. J. The mechanics of explosive seed dispersal in orange jewelweed (Impatiens capensis). J. Exp. Bot. 60, 2045–2053 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Deegan, R. D. Finessing the fracture energy barrier in ballistic seed dispersal. Proc. Natl Acad. Sci. USA 109, 5166–5169 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Wang, J., Zhao, T. H., Fan, Y. Y., Wu, H. M. & Lv, J. A. Leveraging bioinspired structural constraints for tunable and programmable snapping dynamics in high-speed soft actuators. Adv. Funct. Mater. 33, 2209798 (2022).

    Google Scholar 

  34. Ortega-Jimenez, V. et al. Directional takeoff, aerial righting, and adhesion landing of semiaquatic springtails. Proc. Natl Acad. Sci. USA 119, e2211283119 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Hong, C. et al. Magnetically actuated gearbox for the wireless control of millimeter-scale robots. Sci. Robot. 7, eabo4401 (2022).

    PubMed  PubMed Central  Google Scholar 

  36. Tang, Y. C. et al. Wireless miniature magnetic phase-change soft actuators. Adv. Mater. 34, e2204185 (2022).

    PubMed  PubMed Central  Google Scholar 

  37. Li, M. T., Wang, X., Dong, B. & Sitti, M. In-air fast response and high speed jumping and rolling of a light-driven hydrogel actuator. Nat. Commun. 11, 3988 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Li, C. et al. Fast and programmable locomotion of hydrogel-metal hybrids under light and magnetic fields. Sci. Robot. 5, eabb9822 (2020).

    PubMed  Google Scholar 

  39. Xiang, Y. Y. et al. Toward a multifunctional light-driven biomimetic mudskipper-like robot for various application scenarios. ACS Appl. Mater. Interfaces 14, 20291–20302 (2022).

    CAS  PubMed  Google Scholar 

  40. Arazoe, H. et al. An autonomous actuator driven by fluctuations in ambient humidity. Nat. Mater. 15, 1084–1089 (2016).

    CAS  PubMed  Google Scholar 

  41. Xu, L. L. et al. An insect larvae inspired MXene-based jumping actuator with controllable motion powered by light. Nano Energy 103, 107848 (2022).

    CAS  Google Scholar 

  42. Chen, R. et al. Legless soft robots capable of rapid, continuous, and steered jumping. Nat. Commun. 12, 7028 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Kelly, P. Solid mechanics part II: engineering solid mechanics small strain. The University of Auckland (2013).

  44. Sun, Y., Han, Z. Y., Du, Z. M., Li, Z. Y. & Cong, X. M. Preparation and performance of environmental friendly sulphur-free propellant for fireworks. Appl. Therm. Eng. 126, 987–996 (2017).

    CAS  Google Scholar 

  45. Glaeser, G. & Nachtigall, W. Signaling, swimming, flying, exploding. The Evolution and Function of Biological Macrostructures 103 (2019).

  46. Evangelista, D., Hotton, S. & Dumais, J. The mechanics of explosive dispersal and self-burial in the seeds of the filaree, Erodium cicutarium (Geraniaceae). J. Exp. Biol. 214, 521–529 (2011).

    PubMed  Google Scholar 

  47. Poppinga, S. et al. A seed flying like a bullet: ballistic seed dispersal in Chinese witch-hazel (Hamamelis mollis OLIV., Hamamelidaceae). J. R. Soc. Interface 16, 20190327 (2019).

    PubMed  PubMed Central  Google Scholar 

  48. Sutton, G. P., Doroshenko, M., Cullen, D. A. & Burrows, M. Take-off speed in jumping mantises depends on body size and a power-limited mechanism. J. Exp. Biol. 219, 2127–2136 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Wan, C. & Gorb, S. N. Body-catapult mechanism of the sandhopper jump and its biomimetic implications. Acta Biomater. 124, 282–290 (2021).

    CAS  PubMed  Google Scholar 

  50. Burrows, M. Jumping performance of froghopper insects. J. Exp. Biol. 209, 4607–4621 (2006).

    PubMed  Google Scholar 

  51. Sutton, G. P. & Burrows, M. Biomechanics of jumping in the flea. J. Exp. Biol. 214, 836–847 (2011).

    PubMed  Google Scholar 

  52. Burrows, M. Jumping mechanisms in dictyopharid planthoppers (Hemiptera, Dicytyopharidae). J. Exp. Biol. 217, 402–413 (2014).

    PubMed  Google Scholar 

  53. Li, H. & Wang, J. F. Ultrafast yet controllable dual-responsive all-carbon actuators for implementing unusual mechanical movements. ACS Appl. Mater. Interfaces 11, 10218–10225 (2019).

    CAS  PubMed  Google Scholar 

  54. Ahn, C. Y., Liang, X. D. & Cai, S. Q. Bioinspired design of light-powered crawling, squeezing, and jumping untethered soft robot. Adv. Mater. Technol. 4, 1900185 (2019).

    CAS  Google Scholar 

  55. Zhang, B. et al. Highly stretchable hydrogels for UV curing based high-resolution multimaterial 3D printing. J. Mater. Chem. B 6, 3246–3253 (2018).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Hong Kong Research Grants Council (RGC) with project nos. R4015-21, C1134-20GF and RFS2122-4S03 (L.Z.); the Croucher Foundation Grant with ref. no. CAS20403; and the CUHK internal grants (L.Z.). We also thank the SIAT-CUHK Joint Laboratory of Robotics and Intelligent Systems and the Multi-scale Medical Robotics Centre (MRC), InnoHK, at the Hong Kong Science Park.

Author information

Authors and Affiliations

Authors

Contributions

X.W., C.P. and L.Z. proposed and designed the research. X.W. and C.P. performed the experiments and analysed the data. X.W., C.P. and N.X. conduced the model analysis. C.Z., B.H. and J.Z created the experimental setup. D.J., L.S. and N.X. gave suggestions in designing the experiment and data analysis. L.Z., C.M. and C.P. supervised the research. All authors discussed the results and wrote the manuscript.

Corresponding authors

Correspondence to Chengfeng Pan, Carmel Majidi or Li Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks Jie Yin, Teng Zhang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–8, Figs. 1–45, Tables 1 and 2, captions for Videos 1–11 and references.

Supplementary Video 1

Take-off process on glass of the NIR-light-driven G-hydrogel launcher.

Supplementary Video 2

Visualization of the phase transition process in silicon oil.

Supplementary Video 3

Launching height of the G-hydrogel launcher.

Supplementary Video 4

Self-launching behaviour of G-hydrogel launcher in different terrains.

Supplementary Video 5

Self-launching behaviour of G-hydrogel launcher driven by focused sunlight.

Supplementary Video 6

Controllable multidirectional launching behaviour of G-hydrogel launcher.

Supplementary Video 7

Hydrogel robot with different deviations of the centroid ratio launch to the stairs.

Supplementary Video 8

Hydrogel robot launch through the holes with different heights.

Supplementary Video 9

Performance of self-launching and catapult motions.

Supplementary Video 10

Bio-mimic seed dispersal motion of E. elaterium.

Supplementary Video 11

Smart seed hydrogel robot for automatic seeding.

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Pan, C., Xia, N. et al. Fracture-driven power amplification in a hydrogel launcher. Nat. Mater. 23, 1428–1435 (2024). https://doi.org/10.1038/s41563-024-01955-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41563-024-01955-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing