Abstract
Spin or valley degrees of freedom hold promise for next-generation spintronics. Nonetheless, the macroscopic coherent spin current formations are still hindered by rapid dephasing due to electron scattering, specifically at room temperature. Exciton polaritons offer excellent platforms for spin-optronic devices via the optical spin Hall effect. However, this effect could neither be unequivocally observed at room temperature nor be exploited for practical spintronic devices due to the presence of strong thermal fluctuations or large linear spin splitting. Here we report the observation of room-temperature optical spin Hall effect of exciton polaritons, with the spin current flow over 60 μm in a formamidinium lead bromide perovskite microcavity. We provide direct evidence of long-range coherence in the flow of polaritons and the spin current carried by them. Leveraging the spin Hall transport of polaritons, we further demonstrate two polaritonic devices, namely, a NOT gate and a spin-polarized beamsplitter, advancing the frontier of room-temperature polaritonics in perovskite microcavities.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to the full article PDF.
USD 39.95
Prices may be subject to local taxes which are calculated during checkout





Similar content being viewed by others
Data availability
All data needed to evaluate the conclusions in this paper are available in the Article or its Supplementary Information. Data supporting the findings in this Article are available from the corresponding authors upon reasonable request.
Code availability
The codes used in this study are available from the corresponding authors upon reasonable request.
References
Dyakonov, M. I. & Perel, V. I. Current-induced spin orientation of electrons in semiconductors. Phys. Lett. A 35, 459–460 (1971).
Hirsch, J. E. Spin Hall effect. Phys. Rev. Lett. 83, 1834–1837 (1999).
Kato, Y. K., Myers, R. C., Gossard, A. C. & Awschalom, D. D. Observation of the spin Hall effect in semiconductors. Science 306, 1910–1913 (2004).
Vishnevsky, D. V. et al. Skyrmion formation and optical spin-Hall effect in an expanding coherent cloud of indirect excitons. Phys. Rev. Lett. 110, 246404 (2013).
Mak, K. F., McGill, K. L., Park, J. & McEuen, P. L. The valley Hall effect in MoS2 transistors. Science 344, 1489–1492 (2014).
Lundt, N. et al. Optical valley Hall effect for highly valley-coherent exciton-polaritons in an atomically thin semiconductor. Nat. Nanotechnol. 14, 770–775 (2019).
Li, L. et al. Room-temperature valleytronic transistor. Nat. Nanotechnol. 15, 743–749 (2020).
Jungwirth, T., Wunderlich, J. & Olejnik, K. Spin Hall effect devices. Nat. Mater. 11, 382–390 (2012).
Schaibley, J. R. et al. Valleytronics in 2D materials. Nat. Rev. Mater. 1, 16055 (2016).
Dieny, B. et al. Opportunities and challenges for spintronics in the microelectronics industry. Nat. Electron. 3, 446–459 (2020).
Kavokin, A. et al. Polariton condensates for classical and quantum computing. Nat. Rev. Phys. 4, 435–451 (2022).
Wang, G. et al. Gate control of the electron spin-diffusion length in semiconductor quantum wells. Nat. Commun. 4, 2372 (2013).
Choi, G. M., Min, B. C., Lee, K. J. & Cahill, D. G. Spin current generated by thermally driven ultrafast demagnetization. Nat. Commun. 5, 4334 (2014).
Stephen, G. M. et al. Room-temperature spin transport in Cd3As2. ACS Nano 15, 5459–5466 (2021).
Shelykh, I. et al. Semiconductor microcavity as a spin-dependent optoelectronic device. Phys. Rev. B 70, 035320 (2004).
Amo, A. et al. Exciton–polariton spin switches. Nat. Photon. 4, 361–366 (2010).
Hopfield, J. J. Theory of the contribution of excitons to the complex dielectric constant of crystals. Phys. Rev. Lett. 1, 427–428 (1958).
Weisbuch, C., Nishioka, M., Ishikawa, A. & Arakawa, Y. Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity. Phys. Rev. Lett. 69, 3314–3317 (1992).
Ghosh, S. et al. Microcavity exciton polaritons at room temperature. Photon. Insights 1, R04 (2022).
Kavokin, K. V., Shelykh, I. A., Kavokin, A. V., Malpuech, G. & Bigenwald, P. Quantum theory of spin dynamics of exciton-polaritons in microcavities. Phys. Rev. Lett. 92, 017401 (2004).
Freixanet, T., Sermage, B., Tiberj, A. & Planel, R. In-plane propagation of excitonic cavity polaritons. Phys. Rev. B 61, 7233–7236 (2000).
Maialle, M. Z., de Andrada e Silva, E. A. & Sham, L. J. Exciton spin dynamics in quantum wells. Phys. Rev. B 47, 15776–15788 (1993).
Bliokh, K. Y., Rodríguez-Fortuño, F. J., Nori, F. & Zayats, A. V. Spin–orbit interactions of light. Nat. Photon. 9, 796–808 (2015).
Rozas, E. et al. Effects of the linear polarization of polariton condensates in their propagation in codirectional couplers. ACS Photonics 8, 2489–2497 (2021).
Li, Y. et al. Manipulating polariton condensates by Rashba-Dresselhaus coupling at room temperature. Nat. Commun. 13, 3785 (2022).
Kavokin, A., Malpuech, G. & Glazov, M. Optical spin Hall effect. Phys. Rev. Lett. 95, 136601 (2005).
Leyder, C. et al. Observation of the optical spin Hall effect. Nat. Phys. 3, 628–631 (2007).
Kammann, E. et al. Nonlinear optical spin Hall effect and long-range spin transport in polariton lasers. Phys. Rev. Lett. 109, 036404 (2012).
Kamra, A. et al. Spin Hall noise. Phys. Rev. B 90, 214419 (2014).
Amo, A. et al. Superfluidity of polaritons in semiconductor microcavities. Nat. Phys. 5, 805–810 (2009).
Sanvitto, D. et al. Persistent currents and quantized vortices in a polariton superfluid. Nat. Phys. 6, 527–533 (2010).
Su, R. et al. Room-temperature polariton lasing in all-inorganic perovskite nanoplatelets. Nano Lett. 17, 3982–3988 (2017).
Su, R. et al. Perovskite semiconductors for room-temperature exciton-polaritonics. Nat. Mater. 20, 1315–1324 (2021).
Peng, K. et al. Room-temperature polariton quantum fluids in halide perovskites. Nat. Commun. 13, 7388 (2022).
Amo, A. et al. Anisotropic optical spin Hall effect in semiconductor microcavities. Phys. Rev. B 80, 165325 (2009).
Su, R. et al. Direct measurement of a non-Hermitian topological invariant in a hybrid light-matter system. Sci. Adv. 7, eabj8905 (2021).
Spencer, M. S. et al. Spin-orbit-coupled exciton-polariton condensates in lead halide perovskites. Sci. Adv. 7, eabj7667 (2021).
Manchon, A., Koo, H. C., Nitta, J., Frolov, S. M. & Duine, R. A. New perspectives for Rashba spin–orbit coupling. Nat. Mater. 14, 871–882 (2015).
Rechcinska, K. et al. Engineering spin-orbit synthetic Hamiltonians in liquid-crystal optical cavities. Science 366, 727–730 (2019).
Wang, H., Wu, T. X., Zhu, X. & Wu, S.-T. Correlations between liquid crystal director reorientation and optical response time of a homeotropic cell. J. Appl. Phys. 95, 5502–5508 (2004).
Lekenta, K. et al. Tunable optical spin Hall effect in a liquid crystal microcavity. Light: Sci. Appl. 7, 74 (2018).
Chen, Y. et al. Unraveling the ultrafast coherent dynamics of exciton polariton propagation at room temperature. Nano Lett. 23, 8704–8711 (2023).
Su, R. et al. Room temperature long-range coherent exciton polariton condensate flow in lead halide perovskites. Sci. Adv. 4, eaau0244 (2018).
Su, R., Ghosh, S., Liew, T. C. H. & Xiong, Q. Optical switching of topological phase in a perovskite polariton lattice. Sci. Adv. 7, eabf8049 (2021).
Li, W. et al. Chemically diverse and multifunctional hybrid organic–inorganic perovskites. Nat. Rev. Mater. 2, 16099 (2017).
Ding, R. et al. A general wet transferring approach for diffusion-facilitated space-confined grown perovskite single-crystalline optoelectronic thin films. Nano Lett. 20, 2747–2755 (2020).
Langbein, W. et al. Polarization beats in ballistic propagation of exciton-polaritons in microcavities. Phys. Rev. B 75, 075323 (2007).
Schmidt, D. et al. Dynamics of the optical spin Hall effect. Phys. Rev. B 96, 075309 (2017).
Savona, V. & Langbein, W. Realistic heterointerface model for excitonic states in growth-interrupted GaAs quantum wells. Phys. Rev. B 74, 075311 (2006).
Su, R. et al. Observation of exciton polariton condensation in a perovskite lattice at room temperature. Nat. Phys. 16, 301–306 (2020).
Sanvitto, D. & Kena-Cohen, S. The road towards polaritonic devices. Nat. Mater. 15, 1061–1073 (2016).
Espinosa-Ortega, T. & Liew, T. C. H. Complete architecture of integrated photonic circuits based on AND and NOT logic gates of exciton polaritons in semiconductor microcavities. Phys. Rev. B 87, 195305 (2013).
Solnyshkov, D. D., Bleu, O. & Malpuech, G. All optical controlled-NOT gate based on an exciton–polariton circuit. Superlattices Microstruct. 83, 466–475 (2015).
Ballarini, D. et al. All-optical polariton transistor. Nat. Commun. 4, 1778 (2013).
Zasedatelev, A. V. et al. A room-temperature organic polariton transistor. Nat. Photon. 13, 378–383 (2019).
Liew, T. C., Kavokin, A. V. & Shelykh, I. A. Optical circuits based on polariton neurons in semiconductor microcavities. Phys. Rev. Lett. 101, 016402 (2008).
Acknowledgements
Q.X. gratefully acknowledges funding support from the National Natural Science Foundation of China (grant nos. 12020101003 and 92250301) and strong support from the State Key Laboratory of Low-Dimensional Quantum Physics at Tsinghua University. S.G. gratefully acknowledges funding support from the Excellent Young Scientists Fund Program (Overseas) of China, the National Natural Science Foundation of China (grant no. 12274034) and a start-up grant from the Beijing Academy of Quantum Information Sciences. Y.S. thanks Dr. Quanbin Guo for his help during the optical experiments.
Author information
Authors and Affiliations
Contributions
Q.X. and S.G. conceived the idea. Y.S. prepared the samples and conducted all the optical spectroscopy measurements. Y.G. performed the theoretical calculations. Y.C. and Y.W. provided help on the measurements. Y.S. wrote the manuscript with input from Y.G., S.G. and Q.X. A.K. provided input in theoretical understanding. All authors participated in analysing the results and preparing the manuscript and agreed with the conclusion. Q.X. and S.G. supervised the whole project.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Materials thanks the anonymous reviewers for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary information
Supplementary Sections I–VII and Figs. 1–15.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Shi, Y., Gan, Y., Chen, Y. et al. Coherent optical spin Hall transport for polaritonics at room temperature. Nat. Mater. 24, 56–62 (2025). https://doi.org/10.1038/s41563-024-02028-2
Received:
Accepted:
Published:
Version of record:
Issue date:
DOI: https://doi.org/10.1038/s41563-024-02028-2
This article is cited by
-
Exciton-polariton photodiodes
Nature Communications (2026)
-
Ultrafast neuromorphic computing driven by polariton nonlinearities
eLight (2025)
-
Perovskite microcavities spin the light
Nature Materials (2025)
-
Polariton spin Hall effect in a Rashba–Dresselhaus regime at room temperature
Nature Photonics (2024)


