Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Coherent optical spin Hall transport for polaritonics at room temperature

Abstract

Spin or valley degrees of freedom hold promise for next-generation spintronics. Nonetheless, the macroscopic coherent spin current formations are still hindered by rapid dephasing due to electron scattering, specifically at room temperature. Exciton polaritons offer excellent platforms for spin-optronic devices via the optical spin Hall effect. However, this effect could neither be unequivocally observed at room temperature nor be exploited for practical spintronic devices due to the presence of strong thermal fluctuations or large linear spin splitting. Here we report the observation of room-temperature optical spin Hall effect of exciton polaritons, with the spin current flow over 60 μm in a formamidinium lead bromide perovskite microcavity. We provide direct evidence of long-range coherence in the flow of polaritons and the spin current carried by them. Leveraging the spin Hall transport of polaritons, we further demonstrate two polaritonic devices, namely, a NOT gate and a spin-polarized beamsplitter, advancing the frontier of room-temperature polaritonics in perovskite microcavities.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic and mechanism of OSHE and polaritonic devices using FAPbBr3 perovskite microcavity.
Fig. 2: Observation of OSHE in momentum space.
Fig. 3: Exciton-polariton spin currents in real space and comparison with theory.
Fig. 4: Characterization of exciton-polariton long-range coherence.
Fig. 5: Realizing polariton spintronic devices by harnessing optical spin Hall transport.

Similar content being viewed by others

Data availability

All data needed to evaluate the conclusions in this paper are available in the Article or its Supplementary Information. Data supporting the findings in this Article are available from the corresponding authors upon reasonable request.

Code availability

The codes used in this study are available from the corresponding authors upon reasonable request.

References

  1. Dyakonov, M. I. & Perel, V. I. Current-induced spin orientation of electrons in semiconductors. Phys. Lett. A 35, 459–460 (1971).

    Article  Google Scholar 

  2. Hirsch, J. E. Spin Hall effect. Phys. Rev. Lett. 83, 1834–1837 (1999).

    Article  CAS  Google Scholar 

  3. Kato, Y. K., Myers, R. C., Gossard, A. C. & Awschalom, D. D. Observation of the spin Hall effect in semiconductors. Science 306, 1910–1913 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. Vishnevsky, D. V. et al. Skyrmion formation and optical spin-Hall effect in an expanding coherent cloud of indirect excitons. Phys. Rev. Lett. 110, 246404 (2013).

    Article  CAS  PubMed  Google Scholar 

  5. Mak, K. F., McGill, K. L., Park, J. & McEuen, P. L. The valley Hall effect in MoS2 transistors. Science 344, 1489–1492 (2014).

    Article  CAS  PubMed  Google Scholar 

  6. Lundt, N. et al. Optical valley Hall effect for highly valley-coherent exciton-polaritons in an atomically thin semiconductor. Nat. Nanotechnol. 14, 770–775 (2019).

    Article  CAS  PubMed  Google Scholar 

  7. Li, L. et al. Room-temperature valleytronic transistor. Nat. Nanotechnol. 15, 743–749 (2020).

    Article  CAS  PubMed  Google Scholar 

  8. Jungwirth, T., Wunderlich, J. & Olejnik, K. Spin Hall effect devices. Nat. Mater. 11, 382–390 (2012).

    Article  CAS  PubMed  Google Scholar 

  9. Schaibley, J. R. et al. Valleytronics in 2D materials. Nat. Rev. Mater. 1, 16055 (2016).

    Article  CAS  Google Scholar 

  10. Dieny, B. et al. Opportunities and challenges for spintronics in the microelectronics industry. Nat. Electron. 3, 446–459 (2020).

    Article  Google Scholar 

  11. Kavokin, A. et al. Polariton condensates for classical and quantum computing. Nat. Rev. Phys. 4, 435–451 (2022).

    Article  Google Scholar 

  12. Wang, G. et al. Gate control of the electron spin-diffusion length in semiconductor quantum wells. Nat. Commun. 4, 2372 (2013).

    Article  CAS  PubMed  Google Scholar 

  13. Choi, G. M., Min, B. C., Lee, K. J. & Cahill, D. G. Spin current generated by thermally driven ultrafast demagnetization. Nat. Commun. 5, 4334 (2014).

    Article  CAS  PubMed  Google Scholar 

  14. Stephen, G. M. et al. Room-temperature spin transport in Cd3As2. ACS Nano 15, 5459–5466 (2021).

    Article  CAS  PubMed  Google Scholar 

  15. Shelykh, I. et al. Semiconductor microcavity as a spin-dependent optoelectronic device. Phys. Rev. B 70, 035320 (2004).

    Article  Google Scholar 

  16. Amo, A. et al. Exciton–polariton spin switches. Nat. Photon. 4, 361–366 (2010).

    Article  CAS  Google Scholar 

  17. Hopfield, J. J. Theory of the contribution of excitons to the complex dielectric constant of crystals. Phys. Rev. Lett. 1, 427–428 (1958).

    Google Scholar 

  18. Weisbuch, C., Nishioka, M., Ishikawa, A. & Arakawa, Y. Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity. Phys. Rev. Lett. 69, 3314–3317 (1992).

    Article  CAS  PubMed  Google Scholar 

  19. Ghosh, S. et al. Microcavity exciton polaritons at room temperature. Photon. Insights 1, R04 (2022).

    Article  Google Scholar 

  20. Kavokin, K. V., Shelykh, I. A., Kavokin, A. V., Malpuech, G. & Bigenwald, P. Quantum theory of spin dynamics of exciton-polaritons in microcavities. Phys. Rev. Lett. 92, 017401 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. Freixanet, T., Sermage, B., Tiberj, A. & Planel, R. In-plane propagation of excitonic cavity polaritons. Phys. Rev. B 61, 7233–7236 (2000).

    Article  CAS  Google Scholar 

  22. Maialle, M. Z., de Andrada e Silva, E. A. & Sham, L. J. Exciton spin dynamics in quantum wells. Phys. Rev. B 47, 15776–15788 (1993).

    Article  CAS  Google Scholar 

  23. Bliokh, K. Y., Rodríguez-Fortuño, F. J., Nori, F. & Zayats, A. V. Spin–orbit interactions of light. Nat. Photon. 9, 796–808 (2015).

    Article  CAS  Google Scholar 

  24. Rozas, E. et al. Effects of the linear polarization of polariton condensates in their propagation in codirectional couplers. ACS Photonics 8, 2489–2497 (2021).

    Article  CAS  Google Scholar 

  25. Li, Y. et al. Manipulating polariton condensates by Rashba-Dresselhaus coupling at room temperature. Nat. Commun. 13, 3785 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kavokin, A., Malpuech, G. & Glazov, M. Optical spin Hall effect. Phys. Rev. Lett. 95, 136601 (2005).

    Article  PubMed  Google Scholar 

  27. Leyder, C. et al. Observation of the optical spin Hall effect. Nat. Phys. 3, 628–631 (2007).

    Article  CAS  Google Scholar 

  28. Kammann, E. et al. Nonlinear optical spin Hall effect and long-range spin transport in polariton lasers. Phys. Rev. Lett. 109, 036404 (2012).

    Article  CAS  PubMed  Google Scholar 

  29. Kamra, A. et al. Spin Hall noise. Phys. Rev. B 90, 214419 (2014).

    Article  Google Scholar 

  30. Amo, A. et al. Superfluidity of polaritons in semiconductor microcavities. Nat. Phys. 5, 805–810 (2009).

    Article  CAS  Google Scholar 

  31. Sanvitto, D. et al. Persistent currents and quantized vortices in a polariton superfluid. Nat. Phys. 6, 527–533 (2010).

    Article  CAS  Google Scholar 

  32. Su, R. et al. Room-temperature polariton lasing in all-inorganic perovskite nanoplatelets. Nano Lett. 17, 3982–3988 (2017).

    Article  CAS  PubMed  Google Scholar 

  33. Su, R. et al. Perovskite semiconductors for room-temperature exciton-polaritonics. Nat. Mater. 20, 1315–1324 (2021).

    Article  CAS  PubMed  Google Scholar 

  34. Peng, K. et al. Room-temperature polariton quantum fluids in halide perovskites. Nat. Commun. 13, 7388 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Amo, A. et al. Anisotropic optical spin Hall effect in semiconductor microcavities. Phys. Rev. B 80, 165325 (2009).

    Article  Google Scholar 

  36. Su, R. et al. Direct measurement of a non-Hermitian topological invariant in a hybrid light-matter system. Sci. Adv. 7, eabj8905 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Spencer, M. S. et al. Spin-orbit-coupled exciton-polariton condensates in lead halide perovskites. Sci. Adv. 7, eabj7667 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Manchon, A., Koo, H. C., Nitta, J., Frolov, S. M. & Duine, R. A. New perspectives for Rashba spin–orbit coupling. Nat. Mater. 14, 871–882 (2015).

    Article  CAS  PubMed  Google Scholar 

  39. Rechcinska, K. et al. Engineering spin-orbit synthetic Hamiltonians in liquid-crystal optical cavities. Science 366, 727–730 (2019).

    Article  CAS  PubMed  Google Scholar 

  40. Wang, H., Wu, T. X., Zhu, X. & Wu, S.-T. Correlations between liquid crystal director reorientation and optical response time of a homeotropic cell. J. Appl. Phys. 95, 5502–5508 (2004).

    Article  CAS  Google Scholar 

  41. Lekenta, K. et al. Tunable optical spin Hall effect in a liquid crystal microcavity. Light: Sci. Appl. 7, 74 (2018).

    Article  PubMed  Google Scholar 

  42. Chen, Y. et al. Unraveling the ultrafast coherent dynamics of exciton polariton propagation at room temperature. Nano Lett. 23, 8704–8711 (2023).

    Article  CAS  PubMed  Google Scholar 

  43. Su, R. et al. Room temperature long-range coherent exciton polariton condensate flow in lead halide perovskites. Sci. Adv. 4, eaau0244 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Su, R., Ghosh, S., Liew, T. C. H. & Xiong, Q. Optical switching of topological phase in a perovskite polariton lattice. Sci. Adv. 7, eabf8049 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Li, W. et al. Chemically diverse and multifunctional hybrid organic–inorganic perovskites. Nat. Rev. Mater. 2, 16099 (2017).

    Article  Google Scholar 

  46. Ding, R. et al. A general wet transferring approach for diffusion-facilitated space-confined grown perovskite single-crystalline optoelectronic thin films. Nano Lett. 20, 2747–2755 (2020).

    Article  CAS  PubMed  Google Scholar 

  47. Langbein, W. et al. Polarization beats in ballistic propagation of exciton-polaritons in microcavities. Phys. Rev. B 75, 075323 (2007).

    Article  Google Scholar 

  48. Schmidt, D. et al. Dynamics of the optical spin Hall effect. Phys. Rev. B 96, 075309 (2017).

    Article  Google Scholar 

  49. Savona, V. & Langbein, W. Realistic heterointerface model for excitonic states in growth-interrupted GaAs quantum wells. Phys. Rev. B 74, 075311 (2006).

    Article  Google Scholar 

  50. Su, R. et al. Observation of exciton polariton condensation in a perovskite lattice at room temperature. Nat. Phys. 16, 301–306 (2020).

    Article  CAS  Google Scholar 

  51. Sanvitto, D. & Kena-Cohen, S. The road towards polaritonic devices. Nat. Mater. 15, 1061–1073 (2016).

    Article  CAS  PubMed  Google Scholar 

  52. Espinosa-Ortega, T. & Liew, T. C. H. Complete architecture of integrated photonic circuits based on AND and NOT logic gates of exciton polaritons in semiconductor microcavities. Phys. Rev. B 87, 195305 (2013).

    Article  Google Scholar 

  53. Solnyshkov, D. D., Bleu, O. & Malpuech, G. All optical controlled-NOT gate based on an exciton–polariton circuit. Superlattices Microstruct. 83, 466–475 (2015).

    Article  CAS  Google Scholar 

  54. Ballarini, D. et al. All-optical polariton transistor. Nat. Commun. 4, 1778 (2013).

    Article  CAS  PubMed  Google Scholar 

  55. Zasedatelev, A. V. et al. A room-temperature organic polariton transistor. Nat. Photon. 13, 378–383 (2019).

    Article  CAS  Google Scholar 

  56. Liew, T. C., Kavokin, A. V. & Shelykh, I. A. Optical circuits based on polariton neurons in semiconductor microcavities. Phys. Rev. Lett. 101, 016402 (2008).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Q.X. gratefully acknowledges funding support from the National Natural Science Foundation of China (grant nos. 12020101003 and 92250301) and strong support from the State Key Laboratory of Low-Dimensional Quantum Physics at Tsinghua University. S.G. gratefully acknowledges funding support from the Excellent Young Scientists Fund Program (Overseas) of China, the National Natural Science Foundation of China (grant no. 12274034) and a start-up grant from the Beijing Academy of Quantum Information Sciences. Y.S. thanks Dr. Quanbin Guo for his help during the optical experiments.

Author information

Authors and Affiliations

Authors

Contributions

Q.X. and S.G. conceived the idea. Y.S. prepared the samples and conducted all the optical spectroscopy measurements. Y.G. performed the theoretical calculations. Y.C. and Y.W. provided help on the measurements. Y.S. wrote the manuscript with input from Y.G., S.G. and Q.X. A.K. provided input in theoretical understanding. All authors participated in analysing the results and preparing the manuscript and agreed with the conclusion. Q.X. and S.G. supervised the whole project.

Corresponding authors

Correspondence to Sanjib Ghosh, Alexey Kavokin or Qihua Xiong.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary information

Supplementary Sections I–VII and Figs. 1–15.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, Y., Gan, Y., Chen, Y. et al. Coherent optical spin Hall transport for polaritonics at room temperature. Nat. Mater. 24, 56–62 (2025). https://doi.org/10.1038/s41563-024-02028-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41563-024-02028-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing