Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Rapid self-strengthening in double-network hydrogels triggered by bond scission

Abstract

The scission of chemical bonds in materials can lead to catastrophic failure, with weak bonds typically undermining the materials’ strength. Here we demonstrate how weak bonds can be leveraged to achieve self-strengthening in polymer network materials. These weak sacrificial bonds trigger mechanochemical reactions, forming new networks rapidly enough to reinforce the material during deformation and significantly improve crack resistance. This rapid strengthening exhibits strong rate dependence, dictated by the interplay between bond breaking and the kinetics of force-induced network formation. As the network formation is generally applicable to diverse monomers and crosslinkers with different kinetics, a wide range of mechanical properties can be obtained. These findings may inspire the design of tough polymer materials with on-demand, rate-dependent mechanical behaviours through mechanochemistry, broadening their applications across various fields.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Conceptual scheme of strengthening via bond scission-triggered rapid network formation in DN hydrogels.
Fig. 2: Self-strengthening of DN-DAC hydrogels in tensile test.
Fig. 3: Rate-dependent crack reinforcement of DN-DAC hydrogels in single-edge notched test.
Fig. 4: Crack propagation behaviour of DN-DAC gels in pure shear test and trouser tear test.

Similar content being viewed by others

Data availability

Data supporting this study are provided as Source data or included in Supplementary Information. Source data are provided with this paper.

References

  1. Caruso, M. M. et al. Mechanically-induced chemical changes in polymeric materials. Chem. Rev. 109, 5755–5798 (2009).

    Article  CAS  PubMed  Google Scholar 

  2. Hu, Y., Lin, Y. & Craig, S. L. Mechanically triggered polymer deconstruction through mechanoacid generation and catalytic enol ether hydrolysis. J. Am. Chem. Soc. 146, 2876–2881 (2024).

    Article  CAS  PubMed  Google Scholar 

  3. Wang, Z. et al. Toughening hydrogels through force-triggered chemical reactions that lengthen polymer strands. Science 374, 193–196 (2021).

    Article  CAS  PubMed  Google Scholar 

  4. Wang, S. et al. Facile mechanochemical cycloreversion of polymer cross-linkers enhances tear resistance. Science 380, 1248–1252 (2023).

    Article  CAS  PubMed  Google Scholar 

  5. Song, X. et al. Intrinsic healable mechanochromic materials via incorporation of spiropyran mechanophore into polymer main chain. Polymer 250, 124878 (2022).

    Article  CAS  Google Scholar 

  6. Ramirez, A. L. B. et al. Mechanochemical strengthening of a synthetic polymer in response to typically destructive shear forces. Nat. Chem. 5, 757–761 (2013).

    Article  CAS  PubMed  Google Scholar 

  7. Wang, Z. et al. Bio-inspired mechanically adaptive materials through vibration-induced crosslinking. Nat. Mater. 20, 869–874 (2021).

    Article  CAS  PubMed  Google Scholar 

  8. Matsuda, T., Kawakami, R., Namba, R., Nakajima, T. & Gong, J. P. Mechanoresponsive self-growing hydrogels inspired by muscle training. Science 363, 504–508 (2019).

    Article  CAS  PubMed  Google Scholar 

  9. Seshimo, K. et al. Segmented polyurethane elastomers with mechanochromic and self-strengthening functions. Angew. Chem. Int. Ed. 60, 8406–8409 (2021).

    Article  Google Scholar 

  10. Sperling, L. H. Introduction to Physical Polymer Science (Wiley, 2012).

  11. Kim, J., Zhang, G., Shi, M. & Suo, Z. Fracture, fatigue, and friction of polymers in which entanglements greatly outnumber cross-links. Science 374, 212–216 (2021).

    Article  CAS  PubMed  Google Scholar 

  12. Liu, C. et al. Tough hydrogels with rapid self-reinforcement. Science 372, 1078–1081 (2021).

    Article  CAS  PubMed  Google Scholar 

  13. Bruning, K., Schneider, K., Roth, S. V. & Heinrich, G. Kinetics of strain-induced crystallization in natural rubber studied by WAXD: dynamic and impact tensile experiments. Macromolecules 45, 7914–7919 (2012).

    Article  Google Scholar 

  14. Hua, M. et al. Strong tough hydrogels via the synergy of freeze-casting and salting out. Nature 590, 594–599 (2021).

    Article  CAS  PubMed  Google Scholar 

  15. Mredha, M. T. I. et al. A facile method to fabricate anisotropic hydrogels with perfectly aligned hierarchical fibrous structures. Adv. Mater. 30, 1704937 (2018).

    Article  Google Scholar 

  16. Paturej, J., Milchev, A., Rostiashvili, V. G. & Vilgis, T. A. Polymer chain scission at constant tension—an example of force-induced collective behaviour. Europhys. Lett. 94, 48003 (2011).

    Article  Google Scholar 

  17. Akbulatov, S. et al. Experimentally realized mechanochemistry distinct from force-accelerated scission of loaded bonds. Science 357, 299–303 (2017).

    Article  CAS  PubMed  Google Scholar 

  18. O’Neill, R. T. & Boulatov, R. The many flavours of mechanochemistry and its plausible conceptual underpinnings. Nat. Rev. Chem. 5, 148–167 (2021).

    Article  PubMed  Google Scholar 

  19. Chen, C., Wang, Z. & Suo, Z. Flaw sensitivity of highly stretchable materials. Extreme Mech. Lett. 10, 50–57 (2017).

    Article  Google Scholar 

  20. Gong, J. P., Katsuyama, Y., Kurokawa, T. & Osada, Y. Double network hydrogels with extremely high mechanical strength. Adv. Mater. 15, 1155–1158 (2003).

    Article  CAS  Google Scholar 

  21. Nakajima, T., Kurokawa, T., Ahmed, S., Wu, W. & Gong, J. P. Characterization of internal fracture process of double network hydrogels under uniaxial elongation. Soft Matter 9, 1955–1966 (2013).

    Article  CAS  Google Scholar 

  22. Fitch, K. R. & Goodwin, A. P. Mechanochemical reaction cascade for sensitive detection of covalent bond breakage in hydrogels. Chem. Mater. 26, 6771–6776 (2014).

    Article  CAS  Google Scholar 

  23. Zapp, C. et al. Mechanoradicals in tensed tendon collagen as a source of oxidative stress. Nat. Commun. 11, 2315 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ducrot, E., Chen, Y., Bulters, M., Sijbesma, R. P. & Creton, C. Toughening elastomers with sacrificial bonds and watching them break. Science 344, 186–189 (2014).

    Article  CAS  PubMed  Google Scholar 

  25. Matsuda, T., Kawakami, R., Nakajima, T. & Gong, J. P. Crack tip field of a double-network gel: visualization of covalent bond scission through mechanoradical polymerization. Macromolecules 53, 8787–8795 (2020).

    Article  CAS  Google Scholar 

  26. Wang, Z. J. et al. Azo-crosslinked double network hydrogels enabling highly efficient mechanoradical generation. J. Am. Chem. Soc. 144, 3154–3161 (2022).

    Article  CAS  PubMed  Google Scholar 

  27. Wang, Z. J. et al. Effect of the activation force of mechanophore on its activation selectivity and efficiency in polymer networks. J. Am. Chem. Soc. 146, 13336–13346 (2024).

    Article  CAS  PubMed  Google Scholar 

  28. Zheng, Y. et al. How chain dynamics affects crack initiation in double-network gels. Proc. Natl Acad. Sci. USA 118, e2111880118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Na, Y. H. et al. Necking phenomenon of double-network gels. Macromolecules 39, 4641–4645 (2006).

    Article  CAS  Google Scholar 

  30. Furukawa, H. et al. Tear velocity dependence of high-strength double network gels in comparison with fast and slow relaxation modes observed by scanning microscopic light scattering. Macromolecules 41, 7173–7178 (2008).

    Article  CAS  Google Scholar 

  31. Kıvanç, M. R., Ozay, O., Ozay, H. & Ilgin, P. Removal of anionic dyes from aqueous media by using a novel high positively charged hydrogel with high capacity. J. Dispersion Sci. Technol. 43, 1000–1015 (2022).

    Article  Google Scholar 

  32. Okay, O. Kinetics of gelation in free radical crosslinking copolymerization. Polymer 35, 2613–2618 (1994).

    Article  CAS  Google Scholar 

  33. Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995).

    Article  CAS  Google Scholar 

  34. Brown, H. R. A model of the fracture of double network gels. Macromolecules 40, 3815–3818 (2007).

    Article  CAS  Google Scholar 

  35. Long, R., Hui, C., Gong, J. P. & Bouchbinder, E. The fracture of highly deformable soft materials: a tale of two length scales. Annu. Rev. Condens. Matter Phys. 12, 71–94 (2021).

    Article  Google Scholar 

  36. Long, R. & Hui, C. Fracture toughness of hydrogels: measurement and interpretation. Soft Matter 12, 8069–8086 (2016).

    Article  CAS  PubMed  Google Scholar 

  37. Creton, C. 50th anniversary perspective: networks and gels: soft but dynamic and tough. Macromolecules 50, 8297–8316 (2017).

    Article  CAS  Google Scholar 

  38. Kolvin, I., Kolinski, J. M., Gong, J. P. & Fineberg, J. How supertough gels break. Phys. Rev. Lett. 121, 135501 (2018).

    Article  PubMed  Google Scholar 

  39. Zhang, Y. et al. Unique crack propagation of double network hydrogels under high stretch. Extreme Mech. Lett. 51, 101588 (2022).

    Article  Google Scholar 

  40. Zheng, S. Y. et al. Metal-coordination complexes mediated physical hydrogels with high toughness, stick–slip tearing behavior, and good processability. Macromolecules 49, 9637–9646 (2016).

    Article  CAS  Google Scholar 

  41. Liang, S., Hu, J., Wu, Z. L., Kurokawa, T. & Gong, J. P. Toughness enhancement and stick–slip tearing of double-network hydrogels in poly(ethylene glycol) solution. Macromolecules 45, 4758–4763 (2012).

    Article  CAS  Google Scholar 

  42. Lu, Y., Sugita, H., Mikami, K., Aoki, D. & Otsuka, H. A rational design strategy of radical-type mechanophores with thermal tolerance. Chem. Sci. 14, 8792–8797 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lloyd, E. M., Vakil, J. R., Yao, Y., Sottos, N. R. & Craig, S. L. Covalent mechanochemistry and contemporary polymer network chemistry: a marriage in the making. J. Am. Chem. Soc. 145, 751–768 (2023).

    Article  CAS  PubMed  Google Scholar 

  44. Wang, C. et al. The molecular mechanism of constructive remodeling of a mechanically-loaded polymer. Nat. Commun. 13, 3154 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

J.P.G. and T.N. acknowledge the funding support from JSPS KAKENHI (grant nos. JP22H04968, JP22K21342 and JP24H00848), JST FOREST (grant no. JPMJFR221X) and JST PRESTO (grant no. JPMJPR2098), Japan. M.R. acknowledges financial support of the NSF Center for the Chemistry of Molecularly Optimized Networks (MONET), CHE-2116298.

Author information

Authors and Affiliations

Authors

Contributions

Z.J.W. and J.P.G. conceived the study, and Z.J.W. performed all of the experiments. X.L. helped in the experiments. W.L. and M.R. performed the simulations. All authors contributed to the discussion. T.N. and J.P.G. supervised the study. Z.J.W., W.L. and J.P.G. wrote the paper with input from all authors.

Corresponding authors

Correspondence to Michael Rubinstein or Jian Ping Gong.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks Ximin He and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–28, Tables 1 and 2, and discussion.

Supplementary Video 1

Uniaxial tensile test of DN-H2O and DN-DAC.

Supplementary Video 2

Single-edge notched test of DN-H2O and DN-DAC.

Supplementary Video 3

Pure shear test of DN-H2O and DN-DAC.

Supplementary Video 4

Trouser tear test of DN-H2O and DN-DAC.

Source data

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z.J., Li, W., Li, X. et al. Rapid self-strengthening in double-network hydrogels triggered by bond scission. Nat. Mater. 24, 607–614 (2025). https://doi.org/10.1038/s41563-025-02137-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41563-025-02137-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing