Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Terahertz emission from giant optical rectification in a van der Waals material

Abstract

The exfoliation and stacking of two-dimensional van der Waals crystals have created unprecedented opportunities in the discovery of quantum phases. A major obstacle to the advancement of this field is the limited spectroscopic access due to a mismatch in the sample sizes (10−6–10−5 m) and the wavelengths (10−4–10−3 m) of electromagnetic radiation relevant to their low-energy excitations. Here we introduce ferroelectric semiconductor NbOI2 as a two-dimensional van der Waals material capable of operating as a van der Waals terahertz emitter. We demonstrate intense and broadband terahertz generation from NbOI2 with an optical rectification efficiency that is more than one order of magnitude higher than that of ZnTe, the current standard terahertz emitter. Moreover, this NbOI2 terahertz emitter can be integrated into van der Waals heterostructures to enable on-chip near-field terahertz spectroscopy of a target van der Waals material and device. Our approach provides a general spectroscopic tool for two-dimensional van der Waals materials and quantum matter.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Near-field THz spectroscopy exploiting efficient THz emission of 2D vdW ferroelectric NbOI2.
Fig. 2: Thickness dependence of THz emission.
Fig. 3: In situ and near-field THz-TDS in a vdW structure.

Similar content being viewed by others

Data availability

The data that support the findings of this study are presented in the article and its Supplementary Information. Further data are available from the corresponding author upon reasonable request.

References

  1. Andrei, E. Y. et al. The marvels of moiré materials. Nat. Rev. Mater. 6, 201–206 (2021).

    Article  CAS  Google Scholar 

  2. Cao, Y. et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 556, 80–84 (2018).

    Article  CAS  Google Scholar 

  3. Tang, Y. et al. Simulation of Hubbard model physics in WSe2/WS2 moiré superlattices. Nature 579, 353–358 (2020).

    Article  CAS  Google Scholar 

  4. Regan, E. C. et al. Mott and generalized Wigner crystal states in WSe2/WS2 moiré superlattices. Nature 579, 359–363 (2020).

    Article  CAS  Google Scholar 

  5. Wang, L. et al. Correlated electronic phases in twisted bilayer transition metal dichalcogenides. Nat. Mater. 19, 861–866 (2020).

    Article  CAS  Google Scholar 

  6. Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).

    Article  CAS  Google Scholar 

  7. Lu, X. et al. Superconductors, orbital magnets and correlated states in magic-angle bilayer graphene. Nature 574, 653–657 (2019).

    Article  CAS  Google Scholar 

  8. Cai, J. et al. Signatures of fractional quantum anomalous Hall states in twisted MoTe2. Nature 622, 63–68 (2023).

    Article  CAS  Google Scholar 

  9. Park, H. et al. Observation of fractionally quantized anomalous Hall effect. Nature 622, 74–79 (2023).

    Article  CAS  Google Scholar 

  10. Zeng, Y. et al. Thermodynamic evidence of fractional Chern insulator in moiré MoTe2. Nature 622, 69–73 (2023).

    Article  CAS  Google Scholar 

  11. Lu, Z. et al. Fractional quantum anomalous Hall effect in multilayer graphene. Nature 626, 759–764 (2024).

    Article  CAS  Google Scholar 

  12. Xu, F. et al. Observation of integer and fractional quantum anomalous Hall effects in twisted bilayer MoTe2. Phys. Rev. X 13, 031037 (2023).

    CAS  Google Scholar 

  13. Bistritzer, R. & MacDonald, A. H. Moiré bands in twisted double-layer graphene. Proc. Natl Acad. Sci. USA 108, 12233–12237 (2011).

    Article  CAS  Google Scholar 

  14. Zhang, Y., Yuan, N. F. Q. & Fu, L. Moiré quantum chemistry: charge transfer in transition metal dichalcogenide superlattices. Phys. Rev. B 102, 201115 (2020).

    Article  CAS  Google Scholar 

  15. Wu, F., Lovorn, T., Tutuc, E., Martin, I. & MacDonald, A. H. Topological insulators in twisted transition metal dichalcogenide homobilayers. Phys. Rev. Lett. 122, 086402 (2019).

    Article  CAS  Google Scholar 

  16. Wang, C. et al. Fractional Chern insulator in twisted bilayer MoTe2. Phys. Rev. Lett. 132, 036501 (2024).

    Article  CAS  Google Scholar 

  17. Li, H. et al. Mapping charge excitations in generalized Wigner crystals. Nat. Nanotechnol. 19, 618–623 (2024).

    Article  CAS  Google Scholar 

  18. Kerelsky, A. et al. Maximized electron interactions at the magic angle in twisted bilayer graphene. Nature 572, 95–100 (2019).

    Article  CAS  Google Scholar 

  19. Xie, Y. et al. Spectroscopic signatures of many-body correlations in magic-angle twisted bilayer graphene. Nature 572, 101–105 (2019).

    Article  CAS  Google Scholar 

  20. Choi, Y. et al. Electronic correlations in twisted bilayer graphene near the magic angle. Nat. Phys. 15, 1174–1180 (2019).

    Article  CAS  Google Scholar 

  21. Yang, J. et al. Spectroscopy signatures of electron correlations in a trilayer graphene/hBN moiré superlattice. Science 375, 1295–1299 (2022).

    Article  CAS  Google Scholar 

  22. Stinson, H. T. et al. Imaging the nanoscale phase separation in vanadium dioxide thin films at terahertz frequencies. Nat. Commun. 9, 3604 (2018).

    Article  CAS  Google Scholar 

  23. Gallagher, P. et al. Quantum-critical conductivity of the Dirac fluid in graphene. Science 364, 158–162 (2019).

    Article  CAS  Google Scholar 

  24. Zhao, W. et al. Observation of hydrodynamic plasmons and energy waves in graphene. Nature 614, 688–693 (2023).

    Article  CAS  Google Scholar 

  25. Potts, A. M. et al. On-chip time-domain terahertz spectroscopy of superconducting films below the diffraction limit. Nano. Lett. 23, 3835–3841 (2023).

    Article  CAS  Google Scholar 

  26. Kipp, G. et al. Cavity electrodynamics of van der Waals heterostructures. Preprint at https://doi.org/10.48550/arXiv.2403.19745 (2024).

  27. Nahata, A., Weling, A. S. & Heinz, T. F. A wideband coherent terahertz spectroscopy system using optical rectification and electro‐optic sampling. Appl. Phys. Lett. 69, 2321–2323 (1996).

    Article  CAS  Google Scholar 

  28. Blanchard, F. et al. Generation of 1.5 μJ single-cycle terahertz pulses by optical rectification from a large aperture ZnTe crystal. Opt. Express 15, 13212–13220 (2007).

    Article  CAS  Google Scholar 

  29. Kaindl, R. A., Hägele, D., Carnahan, M. A. & Chemla, D. S. Transient terahertz spectroscopy of excitons and unbound carriers in quasi-two-dimensional electron-hole gases. Phys. Rev. B 79, 045320 (2009).

    Article  Google Scholar 

  30. Bilbro, L. S. et al. Temporal correlations of superconductivity above the transition temperature in La2−xSrxCuO4 probed by terahertz spectroscopy. Nat. Phys. 7, 298–302 (2011).

    Article  CAS  Google Scholar 

  31. Ulbricht, R., Hendry, E., Shan, J., Heinz, T. F. & Bonn, M. Carrier dynamics in semiconductors studied with time-resolved terahertz spectroscopy. Rev. Mod. Phys. 83, 543–586 (2011).

    Article  CAS  Google Scholar 

  32. Adam, A. J. L. Review of near-field terahertz measurement methods and their applications. J. Infrared Millim. Terahertz Waves 32, 976–1019 (2011).

    Article  Google Scholar 

  33. Rijnsdorp, J. & Jellinek, F. The crystal structure of niobium oxide diiodide NbOI2. J. Less Common Met. 61, 79–82 (1978).

    Article  CAS  Google Scholar 

  34. Abdelwahab, I. et al. Giant second-harmonic generation in ferroelectric NbOI2. Nat. Photon. 16, 644–650 (2022).

    Article  CAS  Google Scholar 

  35. Jia, Y., Zhao, M., Gou, G., Zeng, X. C. & Li, J. Niobium oxide dihalides NbOX2: a new family of two-dimensional van der Waals layered materials with intrinsic ferroelectricity and antiferroelectricity. Nanoscale Horiz. 4, 1113–1123 (2019).

    Article  CAS  Google Scholar 

  36. Boyd, R. W. Nonlinear Optics (Academic Press, 2008).

  37. Bao, Y. et al. Gate-tunable in-plane ferroelectricity in few-layer SnS. Nano Lett. 19, 5109–5117 (2019).

    Article  CAS  Google Scholar 

  38. Li, Y. et al. Probing symmetry properties of few-layer MoS2 and h-BN by optical second-harmonic generation. Nano Lett. 13, 3329–3333 (2013).

    Article  CAS  Google Scholar 

  39. Huang, C.-Y. et al. Coupling of electronic transition to ferroelectric order in a 2D semiconductor. Nat. Commun. 16, 1896 (2025).

    Article  CAS  Google Scholar 

  40. Ma, E. Y. et al. Recording interfacial currents on the subnanometer length and femtosecond time scale by terahertz emission. Sci. Adv. 5, eaau0073 (2019).

    Article  CAS  Google Scholar 

  41. Tong, M. et al. Ultraefficient terahertz emission mediated by shift-current photovoltaic effect in layered gallium telluride. ACS Nano 15, 17565–17572 (2021).

    Article  CAS  Google Scholar 

  42. Pettine, J. et al. Light-driven nanoscale vectorial currents. Nature 626, 984–989 (2024).

    Article  CAS  Google Scholar 

  43. Seifert, T. et al. Efficient metallic spintronic emitters of ultrabroadband terahertz radiation. Nat. Photon. 10, 483–488 (2016).

    Article  CAS  Google Scholar 

  44. Vaitsi, A. et al. Rotating spintronic terahertz emitter optimized for microjoule pump-pulse energies and megahertz repetition rates. Appl. Phys. Lett. 125, 071107 (2024).

    Article  CAS  Google Scholar 

  45. Löffler, T., Hahn, T., Thomson, M., Jacob, F. & Roskos, H. G. Large-area electro-optic ZnTe terahertz emitters. Opt. Express 13, 5353–5362 (2005).

    Article  Google Scholar 

  46. Kampfrath, T. et al. Terahertz spin current pulses controlled by magnetic heterostructures. Nat. Nanotechnol. 8, 256–260 (2013).

    Article  CAS  Google Scholar 

  47. Li, Y. et al. Coherent modulation of two-dimensional moiré states with on-chip THz waves. Nano Lett. 24, 12156–12162 (2024).

    Article  CAS  Google Scholar 

  48. Yoon, Y. et al. Terahertz phonon engineering with van der Waals heterostructures. Nature 631, 771–776 (2024).

    Article  CAS  Google Scholar 

  49. Dawlaty, J. M. et al. Measurement of the optical absorption spectra of epitaxial graphene from terahertz to visible. Appl. Phys. Lett. 93, 131905 (2008).

  50. Soule, D. Magnetic field dependence of the Hall effect and magnetoresistance in graphite single crystals. Phys. Rev. 112, 698–707 (1958).

    Article  CAS  Google Scholar 

  51. Barzola‐Quiquia, J., Yao, J., Rödiger, P., Schindler, K. & Esquinazi, P. Sample size effects on the transport characteristics of mesoscopic graphite samples. Phys. Status Solidi A 205, 2924–2933 (2008).

    Article  Google Scholar 

  52. Zhang, Y., Small, J. P., Pontius, W. V. & Kim, P. Fabrication and electric-field-dependent transport measurements of mesoscopic graphite devices. Appl. Phys. Lett. 86, 073104 (2005).

  53. Arsenault, E. A. et al. Two-dimensional moiré polaronic electron crystals. Phys. Rev. Lett. 132, 126501 (2024).

    Article  CAS  Google Scholar 

  54. Arsenault, E. A. et al. Time-domain signatures of distinct correlated insulators in a moiré superlattice. Nat. Commun. 16, 549 (2025).

    Article  CAS  Google Scholar 

  55. Handa, T. et al. Spontaneous exciton dissociation in transition metal dichalcogenide monolayers. Sci. Adv. 10, eadj4060 (2024).

    Article  CAS  Google Scholar 

  56. Ding, Y. M., Yan, L., Wu, Y. & Zhou, L. Exciton-driven and layer-independent linear and nonlinear optical properties in NbOCl2. J. Phys. Chem. Lett. 15, 7191–7198 (2024).

    Article  CAS  Google Scholar 

  57. Planken, P. C. M., Nienhuys, H.-K., Bakker, H. J. & Wenckebach, T. Measurement and calculation of the orientation dependence of terahertz pulse detection in ZnTe. J. Opt. Soc. Am. B 18, 313–317 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Experiments on the discovery of THz emission (Fig. 1) and implementation in near-field microscopy and spectroscopy (Fig. 3), as well as sample synthesis and characterization, were supported by the Materials Science and Engineering Research Center (MRSEC) through National Science Foundation (NSF) grant DMR-2011738. Experiments on thickness dependence and THz emission mechanisms (Fig. 2) were supported by the US Army Research Office, grant number W911NF-23-1-0056. J.W.M. acknowledges support by Programmable Quantum Materials, an Energy Frontier Research Center funded by the US Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES), under award DE-SC0019443. X.Z. acknowledges support by the Max Planck – New York City Center for Non-Equilibrium Quantum Phenomena for fruitful collaborations, interactions and discussions with the Max Planck Institutes (MPIs), particularly M. Bonn of MPI-Mainz, and M. Fechner and H. M. Bretscher of MPI-Hamburg. T.H. acknowledges support by the Japan Society for the Promotion of Science (JSPS) Overseas Postdoctoral Research Fellowship programme. C.-Y.H. acknowledges support from the Taiwan–Columbia scholarship funded by the Ministry of Education of Taiwan and Columbia University.

Author information

Authors and Affiliations

Authors

Contributions

T.H. and X.Z. conceived this work. T.H. and C.-Y.H. carried out the optical measurements. C.-Y.H., N.O. and F.S. prepared the exfoliated samples under the supervision of X.Z. and J.W.M.; Y.L. and D.D.X. fabricated the vdW heterostructures. D.G.C. synthesized the crystals under the supervision of X.R.; X.Z. supervised the project. The paper was prepared by T.H. and X.Z. in consultation with all other authors. All authors read and commented on the paper.

Corresponding author

Correspondence to Xiaoyang Zhu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks Su-Yang Xu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–15, Notes 1–10 and References.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Handa, T., Huang, CY., Li, Y. et al. Terahertz emission from giant optical rectification in a van der Waals material. Nat. Mater. 24, 1203–1208 (2025). https://doi.org/10.1038/s41563-025-02201-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41563-025-02201-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing