Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Moiré periodic and quasiperiodic crystals in heterostructures of twisted bilayer graphene on hexagonal boron nitride

Abstract

Stacking two atomic crystals with a twist between their crystal axes produces moiré potentials that modify the electronic properties. Here we show that double-moiré potentials generated by superposing three atomic crystals create a unique class of tunable quasiperiodic structures that alter the symmetry and spatial distribution of the electronic wavefunctions. By using scanning tunnelling microscopy and scanning tunnelling spectroscopy to study twisted bilayer graphene on hexagonal boron nitride, we unveil a moiré phase diagram defined by the lattice constants of the two moiré lattices (graphene-on-graphene and graphene-on-hexagonal boron nitride), comprising both commensurate periodic and incommensurate quasiperiodic crystals. Remarkably, the 1:1 commensurate crystals, which should theoretically exist at only one point on this phase diagram, are observed over a wide range, demonstrating an unexpected self-alignment mechanism. The incommensurate crystals include quasicrystals, which are quasiperiodic and feature a Bravais-forbidden dodecagonal symmetry, and intercrystals, which are also quasiperiodic but lack forbidden symmetries. This rich variety of tunable double-moiré structures offers a synthetic platform for exploring the unique electronic properties of quasiperiodic crystals, which are rarely found in nature.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Imaging GG and GBN double-moiré patterns and the preferred local stacking order.
Fig. 2: Double-moiré patterns.
Fig. 3: Phase diagram of LGBN versus LGG.
Fig. 4: Mechanism of moiré self-alignment.
Fig. 5: Mapping the electronic states of moiré crystals, MICs and MQCs.

Similar content being viewed by others

Data availability

All data are available in the article and its Supplementary Information.

References

  1. Lopes dos Santos, J. M., Peres, N. M. R. & Castro Neto, A. H. Graphene bilayer with a twist: electronic structure. Phys. Rev. Lett. 99, 256802 (2007).

    CAS  PubMed  Google Scholar 

  2. Li, G. et al. Observation of Van Hove singularities in twisted graphene layers. Nat. Phys. 6, 109–113 (2010).

    Google Scholar 

  3. Suárez Morell, E., Vargas, P., Chico, L. & Brey, L. Charge redistribution and interlayer coupling in twisted bilayer graphene under electric fields. Phys. Rev. B 84, 195421 (2011).

    Google Scholar 

  4. Bistritzer, R. & MacDonald, A. H. Moiré bands in twisted double-layer graphene. Proc. Natl Acad. Sci. USA 108, 12233–12237 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. San–Jose, P., Gonz´alez, J. & Guinea, F. Non-Abelian gauge potentials in graphene bilayers. Phys. Rev. Lett. 108, 216802 (2012).

    PubMed  Google Scholar 

  6. Andrei, E. Y. & MacDonald, A. H. Graphene bilayers with a twist. Nat. Mater. 19, 1265–1275 (2020).

    CAS  PubMed  Google Scholar 

  7. Andrei, E. Y. et al. The marvels of moiré materials. Nat. Rev. Mater. 6, 201–206 (2021).

    CAS  Google Scholar 

  8. Cao, Y. et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 556, 80–84 (2018).

    CAS  PubMed  Google Scholar 

  9. Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).

    CAS  PubMed  Google Scholar 

  10. Zhu, Z. Y., Carr, S., Massatt, D., Luskin, M. & Kaxiras, E. Twisted trilayer graphene: a precisely tunable platform for correlated electrons. Phys. Rev. Lett. 125, 11640 (2020).

    Google Scholar 

  11. Li, Y. W. et al. Observation of coexisting Dirac bands and moiré flat bands in magic-angle twisted trilayer graphene. Adv. Mater. 34, 2205996 (2022).

    CAS  Google Scholar 

  12. Uri, A. et al. Superconductivity and strong interactions in a tunable moiré quasicrystal. Nature 620, 762–767 (2023).

  13. Christos, M., Sachdev, S. & Scheurer, M. S. Nodal band-off-diagonal superconductivity in twisted graphene superlattices. Nat. Commun. 14, 7134 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Chen-Yue Hao, Z. Z. et al. Robust flat bands in twisted trilayer graphene quasicrystals. Preprint at https://arxiv.org/abs/2401.09010 (2024).

  15. Sharpe, A. L. et al. Emergent ferromagnetism near three-quarters filling in twisted bilayer graphene. Science 365, 605–608 (2019).

    CAS  PubMed  Google Scholar 

  16. Serlin, M. et al. Intrinsic quantized anomalous Hall effect in a moiré heterostructure. Science 367, 900–903 (2020).

    CAS  PubMed  Google Scholar 

  17. Nuckolls, K. P. et al. Strongly correlated Chern insulators in magic-angle twisted bilayer graphene. Nature 588, 610–615 (2020).

    CAS  PubMed  Google Scholar 

  18. Xie, Y. et al. Fractional Chern insulators in magic-angle twisted bilayer graphene. Nature 600, 439–443 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Wu, S., Zhang, Z., Watanabe, K., Taniguchi, T. & Andrei, E. Y. Chern insulators, Van Hove singularities and topological flat bands in magic-angle twisted bilayer graphene. Nat. Mater. 20, 488–494 (2021).

    CAS  PubMed  Google Scholar 

  20. Das, I. et al. Symmetry-broken Chern insulators and Rashba-like Landau-level crossings in magic-angle bilayer graphene. Nat. Phys. 17, 710–714 (2021).

    CAS  Google Scholar 

  21. Saito, Y. et al. Hofstadter subband ferromagnetism and symmetry-broken Chern insulators in twisted bilayer graphene. Nat. Phys. 17, 478–481 (2021).

    CAS  Google Scholar 

  22. Cea, T., Pantaleon, P. A. & Guinea, F. Band structure of twisted bilayer graphene on hexagonal boron nitride. Phys. Rev. B 102, 155136 (2020).

    CAS  Google Scholar 

  23. Lin, X. Q. & Ni, J. Symmetry breaking in the double moiré superlattices of relaxed twisted bilayer graphene on hexagonal boron nitride. Phys. Rev. B 102, 035441 (2020).

    CAS  Google Scholar 

  24. Shi, J. T., Zhu, J. H. & MacDonald, A. H. Moiré commensurability and the quantum anomalous Hall effect in twisted bilayer graphene on hexagonal boron nitride. Phys. Rev. B 103, 075122 (2021).

    CAS  Google Scholar 

  25. Lin, X. Q., Su, K. L. & Ni, J. Misalignment instability in magic-angle twisted bilayer graphene on hexagonal boron nitride. 2D Mater. 8, 025025 (2021).

    CAS  Google Scholar 

  26. Kim, K. et al. van der Waals heterostructures with high accuracy rotational alignment. Nano Lett. 16, 1989–1995 (2016).

    CAS  PubMed  Google Scholar 

  27. Li, G. & Andrei, E. Y. Observation of Landau levels of Dirac fermions in graphite. Nat. Phys. 3, 623–627 (2007).

    CAS  Google Scholar 

  28. Li, G., Luican, A. & Andrei, E. Y. Self-navigation of a scanning tunneling microscope tip toward a micron-sized graphene sample. Rev. Sci. Instrum. 82, 073701 (2011).

    PubMed  Google Scholar 

  29. Shechtman, D., Blech, I., Gratias, D. & Cahn, J. W. Metallic phase with long-range orientational order and no translational symmetry. Phys. Rev. Lett. 53, 1951–1953 (1984).

    CAS  Google Scholar 

  30. Levine, D. & Steinhardt, P. J. Quasicrystals—a new class of ordered structures. Phys. Rev. Lett. 53, 2477–2480 (1984).

    CAS  Google Scholar 

  31. Levine, D. & Steinhardt, P. J. Quasi-crystals. I. Definition and structure. Phys. Rev. B 34, 596–616 (1986).

    CAS  Google Scholar 

  32. Janssen, T., Chapuis, G. & Boissieu, M. D. Aperiodic Crystals: From Modulated Phases to Quasicrystals (Oxford Univ. Press, 2007).

  33. Lifshitz, R., Schmid, S. & Withers, R. L. 286 Pages 144 Illustrations, 295 Illustrations in Color (Springer, 2013).

  34. Ahn, S. J. et al. Dirac electrons in a dodecagonal graphene quasicrystal. Science 361, 782–786 (2018).

    CAS  PubMed  Google Scholar 

  35. van Wijk, M. M., Schuring, A., Katsnelson, M. I. & Fasolino, A. Moiré patterns as a probe of interplanar interactions for graphene on h-BN. Phys. Rev. Lett. 113, 135504 (2014).

    PubMed  Google Scholar 

  36. Gargiulo, F. & Yazyev, O. V. Structural and electronic transformation in low-angle twisted bilayer graphene. 2D Mater. 5, 015019 (2018).

    Google Scholar 

  37. Li, H. Y. et al. Imaging moiré flat bands in three-dimensional reconstructed WSe/WS superlattices. Nat. Mater. 20, 945–950 (2021).

    CAS  PubMed  Google Scholar 

  38. Molino, L. et al. Influence of atomic relaxations on the moiré flat band wave functions in antiparallel twisted bilayer WS2. Nano Lett. 23, 11778–11784 (2023).

    CAS  PubMed  Google Scholar 

  39. Nakatsuji, N., Kawakami, T. & Koshino, M. Multiscale lattice relaxation in general twisted trilayer graphenes. Phys. Rev. X 13, 041007 (2023).

    CAS  Google Scholar 

  40. Kazmierczak, N. P. et al. Strain fields in twisted bilayer graphene. Nat. Mater. 20, 956 (2021).

    CAS  PubMed  Google Scholar 

  41. Jiang, Y. H. et al. Charge order and broken rotational symmetry in magic-angle twisted bilayer graphene. Nature 573, 91–95 (2019).

    PubMed  Google Scholar 

  42. Xie, Y. L. et al. Spectroscopic signatures of many-body correlations in magic-angle twisted bilayer graphene. Nature 572, 101–105 (2019).

    CAS  PubMed  Google Scholar 

  43. Devakul, T. & Huse, D. A. Anderson localization transitions with and without random potentials. Phys. Rev. B 96, 214201 (2017).

    Google Scholar 

  44. Fu, Y., Wilson, J. H. & Pixley, J. H. Flat topological bands and eigenstate criticality in a quasiperiodic insulator. Phys. Rev. B 104, L041106 (2021).

    CAS  Google Scholar 

  45. Mao, D. & Senthil, T. Quasiperiodicity, band topology, and moiré graphene. Phys. Rev. B 103, 115110 (2021).

    CAS  Google Scholar 

  46. Jagannathan, A. The Fibonacci quasicrystal: case study of hidden dimensions and multifractality. Rev. Mod. Phys. 93, 045001 (2021).

    Google Scholar 

  47. Morison, D., Murphy, N. B., Cherkaev, E. & Golden, K. M. Order to disorder in quasiperiodic composites. Commun. Phys. 5, 148 (2022).

    Google Scholar 

  48. Deguchi, K. et al. Quantum critical state in a magnetic quasicrystal. Nat. Mater. 11, 1013–1016 (2012).

    CAS  PubMed  Google Scholar 

  49. Agrawal, U., Gopalakrishnan, S. & Vasseur, R. Quantum criticality in the 2D quasiperiodic Potts model. Phys. Rev. Lett. 125, 265702 (2020).

    CAS  PubMed  Google Scholar 

  50. Wu, A.-K. et al. Aubry-André Anderson model: magnetic impurities coupled to a fractal spectrum. Phys. Rev. B 106, 165123 (2022).

    CAS  Google Scholar 

  51. Ticea, N. S., May-Mann, J., Xiao, J. W., Berg, E. & Devakul, T. Stability of quasiperiodic superconductors. Phys. Rev. B 110, L060501 (2024).

    CAS  Google Scholar 

  52. Lu, C.-P. et al. Local, global, and nonlinear screening in twisted double-layer graphene. Proc. Natl Acad. Sci. USA 113, 6623 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Li, B. W. et al. Fabricating ultra-sharp tungsten STM tips with high yield: double-electrolyte etching method and machine learning. SN Appl. Sci. 2, 1246 (2020).

    CAS  Google Scholar 

  54. Coe, A. M., Li, G. & Andrei, E. Y. Cryogen-free modular scanning tunneling microscope operating at 4-K in high magnetic field on a compact ultra-high vacuum platform. Rev. Sci. Instrum. 95, 083702 (2024).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank P. Steinhardt, E. Kaxiris and Z. Zhang for insightful discussions, E. Kim and K. Mallayya for help with machine learning tools, N. Tilak for help with the sample fabrication, D. Guerci and J. Wilson for collaborations on related topics and S. Fang for discussions at the early stages of this work. Funding for this project was provided by the Department of Energy grant no. DOE-FG02-99ER45742 (X.L., A.M.C. and E.Y.A.); Gordon and Betty Moore Foundation EPiQS initiative grant GBMF9453 (X.L., A.M.C. and E.Y.A.); Rutgers University, SAS (G.L.); NSF CAREER grant no. DMR-1941569 (J.H.P.) and Sloan Research Fellowship through the Alfred P. Sloan Foundation (J.H.P.); Aspen Center for Physics at which part of this work was performed, which is supported by the National Science Foundation grant no. PHY-1607611 (J.H.P.); and Kavli Institute of Theoretical Physics supported in part by NSF under Grants NSF PHY-1748958 and PHY-2309135 (J.H.P. and E.Y.A.).

Author information

Authors and Affiliations

Authors

Contributions

E.Y.A. conceived and supervised the project. X.L. fabricated, characterized the samples and performed the STM measurements with input from G.L., A.M.C. and E.Y.A. X.L., G.L., J.H.P. and E.Y.A. analysed and interpreted the results. T.T. and K.W. synthesized the hBN crystals. X.L., G.L. and E.Y.A. wrote the paper with input from all authors. All authors discussed the results.

Corresponding author

Correspondence to Eva Y. Andrei.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks Xiaohui Qiu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Classification of 2D moiré periodic and quasiperiodic crystals.

A representative FFT and the corresponding topography (insets) of moiré crystal, MIC and MQC is shown on the right of the table. The right panel schematically illustrates the different moiré structures in GG/GBN. The scale bars are 0.16 nm-1 for the FFTs and 16 nm for the topographies.

Supplementary information

Supplementary Information

Supplementary Figs. 1–21, Tables 1–3 and Discussion.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lai, X., Li, G., Coe, A.M. et al. Moiré periodic and quasiperiodic crystals in heterostructures of twisted bilayer graphene on hexagonal boron nitride. Nat. Mater. 24, 1019–1026 (2025). https://doi.org/10.1038/s41563-025-02222-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41563-025-02222-w

This article is cited by

Search

Quick links

Nature Briefing AI and Robotics

Sign up for the Nature Briefing: AI and Robotics newsletter — what matters in AI and robotics research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: AI and Robotics