Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Resonant osmotic diodes for voltage-induced water filtration across composite membranes

Abstract

Nanofluidics have led to the discovery of unconventional properties for water and ion transport at the nanoscale, but key challenges remain in their large-scale implementation. Here we report an osmotic resonance across macroscopic composite membranes made by the assembly of microporous and mesoporous layers, taking root from the rectified osmotic transport in nanopores. This osmotic diode induces ionic sieving and continuous fast macroscopic electro-osmotic transport. This is the basis for a versatile approach for water purification, by which fresh water is driven across a composite material under an a.c. electric field. Water flow is driven within the mesoporous layer, while selectivity is achieved within the microporous layer. The maximal rectified, diode-like water flow is found to be in the hertz range. Building on analytical predictions, we show that a conversion factor of up to ~15 equivalent bars per applied volt can be reached using appropriate materials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Principle of EO-induced filtration across composite membranes.
Fig. 2: Rectified d.c EO transport and flow conversion of osmotic diodes.
Fig. 3: The a.c. EO and resonant nanofluidic transport.
Fig. 4: Macroscale applications of EO filtration.

Similar content being viewed by others

Data availability

Source data are provided with this paper. These data are also available via Zenodo at https://doi.org/10.5281/zenodo.15277891 (ref. 44).

References

  1. Bocquet, L. Nanofluidics coming of age. Nat. Mater. 19, 254–256 (2020).

    CAS  PubMed  Google Scholar 

  2. Aluru, N. R. et al. Fluids and electrolytes under confinement in single-digit nanopores. Chem. Rev. 123, 2737–2831 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Deshmukh, A. et al. Membrane distillation at the water-energy nexus: limits, opportunities, and challenges. Energy Environ. Sci. 11, 1177–1196 (2018).

    CAS  Google Scholar 

  4. Li, Z., Siddiqi, A., Anadon, L. D. & Narayanamurti, V. Towards sustainability in water-energy nexus: ocean energy for seawater desalination. Renew. Sustain. Energy Rev. 82, 3833–3847 (2018).

    Google Scholar 

  5. Esfandiar, A. et al. Size effect in ion transport through angstrom-scale slits. Science 358, 511–513 (2017).

    CAS  PubMed  Google Scholar 

  6. Prakash, S., Pinti, M. & Bhushan, B. Theory, fabrication and applications of microfluidic and nanofluidic biosensors. Phil. Trans. R. Soc. A 370, 2269–2303 (2012).

    CAS  PubMed  Google Scholar 

  7. Piruska, A., Gong, M., Sweedler, J. V. & Bohn, P. W. Nanofluidics in chemical analysis. Chem. Soc. Rev. 39, 1060–1072 (2010).

    CAS  PubMed  Google Scholar 

  8. Ries, L. et al. Enhanced sieving from exfoliated MoS2 membranes via covalent functionalization. Nat. Mater. 18, 1112–1117 (2019).

    CAS  PubMed  Google Scholar 

  9. Li, X. et al. Nature gives the best solution for desalination: aquaporin-based hollow fiber composite membrane with superior performance. J. Membr. Sci. 494, 68–77 (2015).

    CAS  Google Scholar 

  10. Törnroth-Horsefield, S. et al. Structural mechanism of plant aquaporin gating. Nature 439, 688–694 (2006).

    PubMed  Google Scholar 

  11. Emmerich, T. et al. Enhanced nanofluidic transport in activated carbon nanoconduits. Nat. Mater. 21, 696–702 (2022).

    CAS  PubMed  Google Scholar 

  12. Robin, P. et al. Long-term memory and synapse-like dynamics in two-dimensional nanofluidic channels. Science 379, 161–167 (2023).

    CAS  PubMed  Google Scholar 

  13. Xu, Y. Nanofluidics: a new arena for materials science. Adv. Mater. 30, 1702419 (2018).

    Google Scholar 

  14. Herman, A., Ager, J. W., Ardo, S. & Segev, G. Ratchet-based ion pumps for selective ion separations. PRX Energy 2, 023001 (2023).

    Google Scholar 

  15. Huang, X., Kong, X., Wen, L. & Jiang, L. Bioinspired ionic diodes: from unipolar to bipolar. Adv. Funct. Mater. 28, 1801079 (2018).

    Google Scholar 

  16. Karnik, R., Duan, C., Castelino, K., Daiguji, H. & Majumdar, A. Rectification of ionic current in a nanofluidic diode. Nano Lett. 7, 547–551 (2007).

    CAS  PubMed  Google Scholar 

  17. Cheng, L.-J. & Guo, L. J. Nanofluidic diodes. Chem. Soc. Rev. 39, 923–938 (2010).

    CAS  PubMed  Google Scholar 

  18. Poggioli, A. R., Siria, A. & Bocquet, L. Beyond the tradeoff: dynamic selectivity in ionic transport and current rectification. J. Phys. Chem. B 123, 1171–1185 (2019).

    CAS  PubMed  Google Scholar 

  19. Montes de Oca, J. M., Dhanasekaran, J., Córdoba, A., Darling, S. B. & de Pablo, J. J. Ionic transport in electrostatic Janus membranes. An explicit solvent molecular dynamic simulation. ACS Nano 16, 3768–3775 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Picallo, C. B., Gravelle, S., Joly, L., Charlaix, E. & Bocquet, L. Nanofluidic osmotic diodes: theory and molecular dynamics simulations. Phys. Rev. Lett. 111, 244501 (2013).

    PubMed  Google Scholar 

  21. Ratschow, A. D., Pandey, D., Liebchen, B., Bhattacharyya, S. & Hardt, S. Resonant nanopumps: ac gate voltages in conical nanopores induce directed electrolyte flow. Phys. Rev. Lett. 129, 264501 (2022).

    CAS  PubMed  Google Scholar 

  22. Laohakunakorn, N. et al. A Landau–Squire nanojet. Nano Lett. 13, 5141–5146 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Wu, X., Ramiah Rajasekaran, P. & Martin, C. R. An alternating current electroosmotic pump based on conical nanopore membranes. ACS Nano 10, 4637–4643 (2016).

    CAS  PubMed  Google Scholar 

  24. Alizadeh, A., Hsu, W., Wang, M. & Daiguji, H. Electroosmotic flow: from microfluidics to nanofluidics. Electrophoresis 42, 834–868 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Wen, Q. et al. Electric‐field‐induced ionic sieving at planar graphene oxide heterojunctions for miniaturized water desalination. Adv. Mater. 32, 1903954 (2020).

    CAS  Google Scholar 

  26. Joshi, R. K. et al. Precise and ultrafast molecular sieving through graphene oxide membranes. Science 343, 752–754 (2014).

    CAS  PubMed  Google Scholar 

  27. Mi, B. Scaling up nanoporous graphene membranes. Science 364, 1033–1034 (2019).

    CAS  PubMed  Google Scholar 

  28. Lee, B., Wang, L., Wang, Z., Cooper, N. J. & Elimelech, M. Directing the research agenda on water and energy technologies with process and economic analysis. Energy Environ. Sci. 16, 714–722 (2023).

    Google Scholar 

  29. Marbach, S. & Bocquet, L. Osmosis, from molecular insights to large-scale applications. Chem. Soc. Rev. 48, 3102–3144 (2019).

    CAS  PubMed  Google Scholar 

  30. Devasenathipathy, S. & Santiago, J. G. in Microscale Diagnostic Techniques (ed. Breuer, K. S.) 113–154 (Springer, 2005); https://doi.org/10.1007/3-540-26449-3_3

  31. Huisman, I. Electroviscous effects, streaming potential, and zeta potential in polycarbonate track-etched membranes. J. Membr. Sci. 178, 79–92 (2000).

    CAS  Google Scholar 

  32. Van Der Heyden, F. H. J., Stein, D. & Dekker, C. Streaming currents in a single nanofluidic channel. Phys. Rev. Lett. 95, 116104 (2005).

    PubMed  Google Scholar 

  33. Jia, F. et al. Advances in graphene oxide membranes for water treatment. Nano Res. 15, 6636–6654 (2022).

    CAS  Google Scholar 

  34. Yang, Q. et al. Ultrathin graphene-based membrane with precise molecular sieving and ultrafast solvent permeation. Nat. Mater. 16, 1198–1202 (2017).

    CAS  PubMed  Google Scholar 

  35. Béguin, F., Presser, V., Balducci, A. & Frackowiak, E. Carbons and electrolytes for advanced supercapacitors. Adv. Mater. 26, 2219–2251 (2014).

    PubMed  Google Scholar 

  36. Suss, M. E. & Presser, V. Water desalination with energy storage electrode materials. Joule 2, 10–15 (2018).

    Google Scholar 

  37. Park, H. B., Kamcev, J., Robeson, L. M., Elimelech, M. & Freeman, B. D. Maximizing the right stuff: the trade-off between membrane permeability and selectivity. Science 356, eaab0530 (2017).

    PubMed  Google Scholar 

  38. Geise, G. M., Park, H. B., Sagle, A. C., Freeman, B. D. & McGrath, J. E. Water permeability and water/salt selectivity tradeoff in polymers for desalination. J. Membr. Sci. 369, 130–138 (2011).

    CAS  Google Scholar 

  39. Ober, P. et al. Liquid flow reversibly creates a macroscopic surface charge gradient. Nat. Commun. 12, 4102 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Werkhoven, B. L., Everts, J. C., Samin, S. & van Roij, R. Flow-induced surface charge heterogeneity in electrokinetics due to Stern-layer conductance coupled to reaction kinetics. Phys. Rev. Lett. 120, 264502 (2018).

    CAS  PubMed  Google Scholar 

  41. Biesheuvel, P. M., Porada, S., Elimelech, M. & Dykstra, J. E. Tutorial review of reverse osmosis and electrodialysis. J. Membr. Sci. 647, 120221 (2022).

    CAS  Google Scholar 

  42. Wang, L. et al. Water transport in reverse osmosis membranes is governed by pore flow, not a solution-diffusion mechanism. Sci. Adv. 9, eadf8488 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Biesheuvel, P. M., Rutten, S. B., Ryzhkov, I. I., Porada, S. & Elimelech, M. Theory for salt transport in charged reverse osmosis membranes: novel analytical equations for desalination performance and experimental validation. Desalination 557, 116580 (2023).

    CAS  Google Scholar 

  44. Abdelghani-Idrissi, S. Dataset for the manuscript entitled ‘Resonant osmotic diodes for voltage-induced water filtration across composite membranes’. Zenodo https://doi.org/10.5281/ZENODO.15277891 (2025).

Download references

Acknowledgements

We thank V. Pichon, P. Simon and P.-L. Tabernat for fruitful discussions of water analysis techniques and capacitive electrode behaviours; B. Bresson for technical assistance regarding SEM imaging of membranes; B. Cinquin and the technological platform of the Institut Pierre-Gilles de Gennes (IPGG) for the availability of UV–visible absorbance equipment; and A. Grimaud for the availability of XRD equipment. L.B. acknowledges funding from the EU Horizon 2020 Framework Programme and European Research Council (ERC) Synergy Grant, agreement no. 101071937-n-AQUA. J.P.-C. acknowledges funding from Community of Madrid programme no. 2020-T2/IND-20074.

Author information

Authors and Affiliations

Authors

Contributions

L.B. conceived the project. L.R., Z.P., P.S. and J.P.-C. developed the membranes, and S.A.-I. developed the experimental set-ups with input from L.B. and A.S. and S.A.-I. performed the experiments with inputs from Z.P. and P.S. G.M. performed the numerical simulations. L.B. developed the theoretical description with input from S.A.-I., and S.A.-I. and L.B. wrote the paper, with input from all authors.

Corresponding author

Correspondence to Lydéric Bocquet.

Ethics declarations

Competing interests

CNRS has filed patent applications on the technologies described in this manuscript with some co-authors listed as inventors (WO2021156393A1, EP4410407A1). Based on these patents, the start-up Ilion Water Technologies was founded in February 2025, with L.R., Z.P., P.S. and L.B. as cofounders.

Peer review

Peer review information

Nature Materials thanks the anonymous reviewers for their contribution to the peer review of this work

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–19, Tables 1–5, captions for Videos 1–4, text and refs. 44–47.

Supplementary Video 1

Typical a.c. EO filtration of a rhodamine 6G solution using a PC + MoS2 membrane. The experiment is performed with a 10 V amplitude at resonant frequency. The speed is ×64. The initial rhodamine concentration of the feed syringe is 0.055 mM, and the final measured concentration in the feed side of the cell is ~10 times the initial feed concentration, as expected by the mass balance. On the permeate side, we do not report any increase of rhodamine concentration.

Supplementary Video 2

Typical a.c. EO experiment at 10 V amplitude and a low frequency (2.5 mHz) using a PC (100 nm) + GO membrane. The asymmetry of the EO flow rate is clearly visible. The speed is ×64.

Supplementary Video 3

Typical a.c. EO experiment at 10 V amplitude and a low frequency (2.5 mHz) using a pristine PC (100 nm) membrane. The EO flow rate is clearly symmetric and not rectified in this situation. The speed is ×64.

Supplementary Video 4

Typical a.c. EO filtration of a rhodamine 6G solution using a PC (200 nm) + GO membrane. The experiment is performed with a 5 V amplitude at 0.1 Hz. The filtered volume is 10 ml. The speed is ×480. The initial rhodamine concentration of the feed syringe is 0.05 mM in a 10 ml water volume with 10−3 M NaCl. On the permeate side, we do not report any increase of rhodamine concentration.

Source data

Source Data Fig. 2

Source data for results in Fig. 2.

Source Data Fig. 3

Source data for results in Fig. 3.

Source Data Fig. 4

Source data for results in Fig. 4.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdelghani-Idrissi, S., Ries, L., Monet, G. et al. Resonant osmotic diodes for voltage-induced water filtration across composite membranes. Nat. Mater. 24, 1109–1115 (2025). https://doi.org/10.1038/s41563-025-02257-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41563-025-02257-z

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing