Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Sub-2-nm-droplet-driven growth of amorphous metal chalcogenides approaching the single-layer limit

Abstract

Atom-thin amorphous materials (for example, amorphous monolayer carbon) offer a designable material platform for fundamental studies of the disorder system, as well as the development of various applications. However, their growth at a single layer remains challenging since their thermodynamically favourable grains are neither two dimensional nor layered. Here we demonstrate the growth of 1-nm-thick, amorphous metal chalcogenides at a wafer scale using a nanodroplet-driven nanoribbon-to-film strategy. Metal clusters are initially liquified into 1–2 nm droplets at 120 °C, and they then orchestrate the growth of amorphous single-layer nanoribbons, which eventually merge into a continuous centimetre-scale film. Phase-field simulations, combined with our characterizations, suggest a non-equilibrium kinetic growth mechanism, which can be applicable to various films, for example, PtSex, IrSex, PdSex and RhSex. The synthesized films exhibit a range of unique properties, including tunable conductivity through disorder modulation, high work functions and remarkable catalytic activity, making them promising candidates for hole-injection contacts in p-type transistors and hydrogen production applications. This work opens a pathway for the synthesis of non-layered materials approaching the single-layer limit.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Proof-of-concept experiments probing the nanodroplet-driven growth of amorphous and crystalline PtSex at a single layer.
Fig. 2: Single-layer growth of an amorphous PtSex film at a wafer scale.
Fig. 3: Growth mechanism.
Fig. 4: Various amorphous films grown on MoS2.
Fig. 5: Electronic and electrocatalytic properties of amorphous films.

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available within this Article and its Supplementary Information. Additional data are available from the corresponding authors upon reasonable request. Source data are provided with this paper.

Code availability

The codes for obtaining the radial distribution function and phase-field simulations are available in the Supplementary Data Files 17 or via GitHub at https://github.com/qw0521/NM_code.

References

  1. Liu, Y. et al. Promises and prospects of two-dimensional transistors. Nature 591, 43–53 (2021).

    Article  CAS  PubMed  Google Scholar 

  2. Meng, Z., Stolz, R. M., Mendecki, L. & Mirica, K. A. Electrically-transduced chemical sensors based on two-dimensional nanomaterials. Chem. Rev. 119, 478–598 (2019).

    Article  CAS  PubMed  Google Scholar 

  3. Pomerantseva, E. & Gogotsi, Y. Two-dimensional heterostructures for energy storage. Nat. Energy 2, 17089 (2017).

    Article  CAS  Google Scholar 

  4. Chia, X. & Pumera, M. Characteristics and performance of two-dimensional materials for electrocatalysis. Nat. Catal. 1, 909–921 (2018).

    Article  CAS  Google Scholar 

  5. Zhang, H. & Han, Y. Compression-induced polycrystal-glass transition in binary crystals. Phys. Rev. X 8, 041023 (2018).

    CAS  Google Scholar 

  6. Cocke, D. L. Heterogeneous catalysis by amorphous materials. JOM 38, 70–75 (1986).

    Article  CAS  Google Scholar 

  7. Yang, Z., Hao, J. & Lau, S. P. Synthesis, properties, and applications of 2D amorphous inorganic materials. J. Appl. Phys. 127, 220901 (2020).

  8. He, Y. et al. Amorphizing noble metal chalcogenide catalysts at the single-layer limit towards hydrogen production. Nat. Catal. 5, 212–221 (2022).

    Article  CAS  Google Scholar 

  9. Toh, C. T. et al. Synthesis and properties of free-standing monolayer amorphous carbon. Nature 577, 199–203 (2020).

    Article  CAS  PubMed  Google Scholar 

  10. Tian, H. et al. Disorder-tuned conductivity in amorphous monolayer carbon. Nature 615, 56–61 (2023).

    Article  CAS  PubMed  Google Scholar 

  11. Hong, S. et al. Ultralow-dielectric-constant amorphous boron nitride. Nature 582, 511–514 (2020).

    Article  CAS  PubMed  Google Scholar 

  12. Zhang, T., Wang, J., Wu, P., Lu, A.-Y. & Kong, J. Vapour-phase deposition of two-dimensional layered chalcogenides. Nat. Rev. Mater. 8, 799–821 (2023).

    Article  CAS  Google Scholar 

  13. Sun, L. et al. Chemical vapour deposition. Nat. Rev. Methods Primers 1, 5 (2021).

    Article  CAS  Google Scholar 

  14. Xu, M. et al. Reconfiguring nucleation for CVD growth of twisted bilayer MoS2 with a wide range of twist angles. Nat. Commun. 15, 562 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Greene, J. E. in Handbook of Deposition Technologies for Films and Coatings (Third Edition) (ed. Martin, P. M.) 554–620 (William Andrew Publishing, 2010).

  16. Li, S. et al. Vapour–liquid–solid growth of monolayer MoS2 nanoribbons. Nat. Mater. 17, 535–542 (2018).

    Article  CAS  PubMed  Google Scholar 

  17. Suzuki, H. et al. Wafer-scale fabrication and growth dynamics of suspended graphene nanoribbon arrays. Nat. Commun. 7, 11797 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Nanda, K. K., Sahu, S. N. & Behera, S. N. Liquid-drop model for the size-dependent melting of low-dimensional systems. Phys. Rev. A 66, 013208 (2002).

    Article  Google Scholar 

  19. Li, K., Wang, T., Wang, W. & Gao, X. Lattice vibration properties of MoS2/PtSe2 heterostructures. J. Alloy. Compd. 820, 153192 (2020).

    Article  CAS  Google Scholar 

  20. Zhou, J. et al. Epitaxial synthesis of monolayer PtSe2 single crystal on MoSe2 with strong interlayer coupling. ACS Nano 13, 10929–10938 (2019).

    Article  CAS  PubMed  Google Scholar 

  21. Hu, D. et al. Unveiling the layer-dependent catalytic activity of PtSe2 atomic crystals for the hydrogen evolution reaction. Angew. Chem. Int. Ed. 58, 6977–6981 (2019).

    Article  CAS  Google Scholar 

  22. Huang, L. et al. Catalyzed kinetic growth in two-dimensional MoS2. J. Am. Chem. Soc. 142, 13130–13135 (2020).

    Article  CAS  PubMed  Google Scholar 

  23. Jiang, Q. et al. High chemical potential driven amorphization of Pd-based nanoalloys. Small Methods 7, 2201513 (2023).

    Article  CAS  Google Scholar 

  24. Yuan, Q., Xu, Z., Yakobson, B. I. & Ding, F. Efficient defect healing in catalytic carbon nanotube growth. Phys. Rev. Lett. 108, 245505 (2012).

    Article  PubMed  Google Scholar 

  25. Li, X. et al. Advances in heterogeneous single-cluster catalysis. Nat. Rev. Chem. 7, 754–767 (2023).

    Article  CAS  PubMed  Google Scholar 

  26. Wang, X. et al. Single-atom engineering to ignite 2D transition metal dichalcogenide based catalysis: fundamentals, progress, and beyond. Chem. Rev. 122, 1273–1348 (2022).

    Article  CAS  PubMed  Google Scholar 

  27. Liu, D.-Q. et al. Tailoring interfacial charge transfer of epitaxially grown IR clusters for boosting hydrogen oxidation reaction. Adv. Energy Mater. 13, 2202913 (2023).

    Article  CAS  Google Scholar 

  28. Shi, Y. et al. Site-specific electrodeposition enables self-terminating growth of atomically dispersed metal catalysts. Nat. Commun. 11, 4558 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lou, Y. et al. Pocketlike active site of Rh1/MoS2 single-atom catalyst for selective crotonaldehyde hydrogenation. J. Am. Chem. Soc. 141, 19289–19295 (2019).

    Article  CAS  PubMed  Google Scholar 

  30. Luo, Z. et al. Chemically activating MoS2 via spontaneous atomic palladium interfacial doping towards efficient hydrogen evolution. Nat. Commun. 9, 2120 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Kim, K. S. et al. Growth-based monolithic 3D integration of single-crystal 2D semiconductors. Nature 636, 615–621 (2024).

    Article  CAS  PubMed  Google Scholar 

  32. Zhang, K. et al. Epitaxial substitution of metal iodides for low-temperature growth of two-dimensional metal chalcogenides. Nat. Nanotechnol. 18, 448–455 (2023).

    Article  CAS  PubMed  Google Scholar 

  33. Qin, B. et al. General low-temperature growth of two-dimensional nanosheets from layered and nonlayered materials. Nat. Commun. 14, 304 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Xia, H. et al. The practice of reaction window in an electrocatalytic on-chip microcell. Nat. Commun. 14, 6838 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    Article  CAS  Google Scholar 

  36. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  CAS  Google Scholar 

  37. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article  Google Scholar 

  38. Perdew, J. P. & Wang, Y. Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B 45, 13244–13249 (1992).

    Article  CAS  Google Scholar 

  39. Perdew, J. P. et al. Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 46, 6671–6687 (1992).

    Article  CAS  Google Scholar 

  40. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  PubMed  Google Scholar 

  41. Grimme, S., Ehrlich, S. & Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 32, 1456–1465 (2011).

    Article  CAS  PubMed  Google Scholar 

  42. Wang, V., Xu, N., Liu, J.-C., Tang, G. & Geng, W.-T. VASPKIT: a user-friendly interface facilitating high-throughput computing and analysis using VASP code. Comput. Phys. Commun. 267, 108033 (2021).

    Article  CAS  Google Scholar 

  43. Borcia, R., Borcia, I. D. & Bestehorn, M. Static and dynamic contact angles—a phase field modelling. Eur. Phys. J. 166, 127–131 (2009).

    Google Scholar 

  44. He, Y. et al. Engineering grain boundaries at the 2D limit for the hydrogen evolution reaction. Nat. Commun. 11, 57 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Karma, A. & Plapp, M. Spiral surface growth without desorption. Phys. Rev. Lett. 81, 4444–4447 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key R&D Program of China (2021YFA1500902 (Y.H.) and 2024YFA1409600 (Z.Z.)), the Open Research Fund of Songshan Lake Materials Laboratory (2023SLABFN08 (Y.H.)), the National Natural Science Foundation of China (52203354 (Y.H.), 22272048 (Y.H.), 12261160367 (Z.Z.), 12225205 (Z.Z.) and U2441272 (Z.Z.)), the National Natural Science Fund for Excellent Young Scientists Fund Program (Overseas (Y.H.)), the Fundamental Research Funds for the Central Universities (531119200209 (Y.H.)), the Natural Science Foundation of Hunan Province of China (2023JJ10004 (Y.H.)), the Hunan Natural Science Foundation (2024JJ4009 (C.G.)), the Science and Technology Innovation Program of Hunan Province (2024RC3081 (C.G.)), Guangdong Basic and Applied Basic Research Foundation (2023A1515012648 (Y.H.)), Natural Science Foundation of Jiangsu Province (BK20243044 (Z.Z.)) and Hundred Talents Program (B) of the Chinese Academy of Sciences (E2XBRD1 (P.T.)).

Author information

Authors and Affiliations

Authors

Contributions

Y.H. conceived the idea and initiated the project. Y.H., Z.L. and Z.Z. supervised the project and led the collaboration efforts. Z. Shi synthesized the materials; analysed the STEM, XPS and Raman data; and performed the electronic and microelectrochemical measurements. W.Q. and C.Y.Z. carried out the DFT calculations and phase-field simulation. Z.H. proposed the growth theory and prepared the phase-field code. M.M., W.S. and X.S. grew the materials. H.L. calculated the atomic information in STEM. Z. Shu and C.L. carved the reaction windows through electron beam lithography. Y.J. fabricated the devices and performed the electronic measurements. H.X. performed the microelectrochemical measurements. C. Guo conducted the Raman and AFM measurements. Y. Li performed the KPFM measurements. Y. Liu, E.X., H.D., P.T., F.L., C. Gao, S.L., H.W. and C. Gong assisted with the material characterizations and device fabrication. L.T. contributed to the AFM measurements and data analysis. Y.H., Z. Shi, W.Q. and Z.H. wrote the paper. All authors discussed the results and commented on the paper.

Corresponding authors

Correspondence to Zhuhua Zhang, Zheng Liu or Yongmin He.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks Suyeon Cho, Hyeon Suk Shin and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–38, Notes 1–5 and Tables 1–8.

Supplementary Video 1

Simulation of a small Pt droplet staying at the step.

Supplementary Video 2

Simulation of a large Pt droplet climbing over the step.

Supplementary Video 3

Simulation of the U-turn behaviour when one droplet encounters another droplet's trajectory.

Supplementary Video 4

Simulation of one droplet encircled by other droplets' trajectories.

Supplementary Video 5

The self-healing behaviour and the complete film growth.

Supplementary Data Files 1–7

Source data

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, Z., Qin, W., Hu, Z. et al. Sub-2-nm-droplet-driven growth of amorphous metal chalcogenides approaching the single-layer limit. Nat. Mater. 24, 1186–1194 (2025). https://doi.org/10.1038/s41563-025-02273-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41563-025-02273-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing