Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Defect repairing in lead bromide perovskite single crystals with biasing and bromine for X-ray photon-counting detectors

Abstract

The benign defect nature of iodide perovskites has gained strong momentum in understanding and application in perovskite devices; however, the understanding of defects in bromide perovskites remains elusive. Here we demonstrate that the biasing of lead bromide perovskite crystals, which has been broadly deemed as detrimental to device performance, can efficiently repair bulk point defects in them. The biasing results in a significant bromide-vacancy reduction, starting from the cathode side and progressing to the anode side across the whole crystal. The vacancies can diffuse back after several weeks of storage. By introducing bromine in crystal growth, we permanently reduce the bromide-vacancy concentration by ~1,000 times, enhancing charge transport and stability in formamidinium lead bromide crystals. The optimized formamidinium lead bromide detector exhibited a very high detection performance including an energy resolution of 0.7% under 137Cs 662-keV γ-rays measured under room-temperature, high-performance iodine K-edge X-ray detection at low agent concentrations and dramatically improved radiation hardness.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Biasing-induced FAPbBr3 spectroscopic detector performance change.
Fig. 2: Identification of the type of defect drifting under an electric field.
Fig. 3: Br2 treatment to improve crystal quality and prevent the preconditioning process.
Fig. 4: Iodine K-edge X-ray spectra of FAPbBr3 detector.
Fig. 5: Radiation hardness evaluation of FAPbBr3 crystals.

Similar content being viewed by others

Data availability

The main data supporting the findings of this study are available within the Article and the Supplementary Information. Source data are provided with this paper.

References

  1. Chouhan, L., Ghimire, S., Subrahmanyam, C., Miyasaka, T. & Biju, V. Synthesis, optoelectronic properties and applications of halide perovskites. Chem. Soc. Rev. 49, 2869–2885 (2020).

    Article  CAS  PubMed  Google Scholar 

  2. Manser, J. S., Christians, J. A. & Kamat, P. V. Intriguing optoelectronic properties of metal halide perovskites. Chem. Rev. 116, 12956–13008 (2016).

    Article  CAS  PubMed  Google Scholar 

  3. Wang, H. & Kim, D. H. Perovskite-based photodetectors: materials and devices. Chem. Soc. Rev. 46, 5204–5236 (2017).

    Article  CAS  PubMed  Google Scholar 

  4. He, Y., Hadar, I. & Kanatzidis, M. G. Detecting ionizing radiation using halide perovskite semiconductors processed through solution and alternative methods. Nat. Photon. 16, 14–26 (2022).

    Article  CAS  Google Scholar 

  5. Wei, H. & Huang, J. Halide lead perovskites for ionizing radiation detection. Nat. Commun. 10, 1066 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  6. He, X. et al. Recent development of halide perovskite materials and devices for ionizing radiation detection. Chem. Rev. 123, 1207–1261 (2023).

    Article  CAS  Google Scholar 

  7. Shi, D. et al. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science 347, 519–522 (2015).

    Article  CAS  PubMed  Google Scholar 

  8. Dong, Q. et al. Electron-hole diffusion lengths >175 μm in solution-grown CH3NH3PbI3 single crystals. Science 347, 967–970 (2015).

    Article  CAS  PubMed  Google Scholar 

  9. Ni, Z. et al. Resolving spatial and energetic distributions of trap states in metal halide perovskite solar cells. Science 367, 1352–1358 (2020).

    Article  CAS  PubMed  Google Scholar 

  10. Yakunin, S. et al. Detection of gamma photons using solution-grown single crystals of hybrid lead halide perovskites. Nat. Photon. 10, 585–589 (2016).

    Article  CAS  Google Scholar 

  11. Wei, H. et al. Dopant compensation in alloyed CH3NH3PbBr3−xClx perovskite single crystals for gamma-ray spectroscopy. Nat. Mater. 16, 826–833 (2017).

    Article  CAS  PubMed  Google Scholar 

  12. He, Y. et al. High spectral resolution of gamma-rays at room temperature by perovskite CsPbBr3 single crystals. Nat. Commun. 9, 1609 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  13. He, Y. et al. CsPbBr3 perovskite detectors with 1.4% energy resolution for high-energy γ-rays. Nat. Photon. 15, 36–42 (2021).

    Article  CAS  Google Scholar 

  14. Zhao, L. et al. High-yield growth of FACsPbBr3 single crystals with low defect density from mixed solvents for gamma-ray spectroscopy. Nat. Photon. 17, 315–323 (2023).

    CAS  Google Scholar 

  15. Zhao, L. et al. Surface-defect-passivation-enabled near-unity charge collection efficiency in bromide-based perovskite gamma-ray spectrum devices. Nat. Photon. 18, 250–257 (2024).

    Article  CAS  Google Scholar 

  16. Alam, M. D., Nasim, S. S. & Hasan, S. Recent progress in CdZnTe based room temperature detectors for nuclear radiation monitoring. Prog. Nucl. Energy 140, 103918 (2021).

    Article  CAS  Google Scholar 

  17. Chen, H. et al. Development of large-volume high-performance monolithic CZT radiation detector. In Proc. Hard X-Ray, Gamma-Ray, and Neutron Detector Physics XX Vol. 10762 107620N (SPIE, 2018).

  18. Chen, B., Rudd, P. N., Yang, S., Yuan, Y. & Huang, J. Imperfections and their passivation in halide perovskite solar cells. Chem. Soc. Rev. 48, 3842–3867 (2019).

    Article  CAS  PubMed  Google Scholar 

  19. Huang, J., Yuan, Y., Shao, Y. & Yan, Y. Understanding the physical properties of hybrid perovskites for photovoltaic applications. Nat. Rev. Mater. 2, 17042 (2017).

    Article  CAS  Google Scholar 

  20. Liu, Y., Yang, Z. & Liu, S. (Frank) Recent progress in single‐crystalline perovskite research including crystal preparation, property evaluation, and applications. Adv. Sci. 5, 1700471 (2018).

    Article  Google Scholar 

  21. Ni, Z. et al. Identification and suppression of point defects in bromide perovskite single crystals enabling gamma‐ray spectroscopy. Adv. Mater. 36, 2406193 (2024).

    Article  CAS  Google Scholar 

  22. Hua, Y. et al. Suppressed ion migration for high-performance X-ray detectors based on atmosphere-controlled EFG-grown perovskite CsPbBr3 single crystals. Nat. Photon. 18, 870–877 (2024).

    Article  CAS  Google Scholar 

  23. Bennett, S. H. et al. Charge transport comparison of FA, MA and Cs lead halide perovskite single crystals for radiation detection. Front. Detect. Sci. Technol. 1, 1249892 (2023).

    Article  Google Scholar 

  24. Jiang, J. et al. Synergistic strain engineering of perovskite single crystals for highly stable and sensitive X-ray detectors with low-bias imaging and monitoring. Nat. Photon. 16, 575–581 (2022).

    Article  CAS  Google Scholar 

  25. Pan, L. et al. Ultra-high flux X-ray detection by solution-grown perovskite CsPbBr3 single crystal semiconductor detector. Adv. Mater. 35, 2211840 (2023).

    Article  CAS  Google Scholar 

  26. Pan, L. et al. Study of perovskite CsPbBr3 detector polarization and its mitigation with ultrahigh X-ray flux. J. Appl. Phys. 133, 194502 (2023).

    Article  CAS  Google Scholar 

  27. Yao, M. et al. High-temperature stable FAPbBr3 single crystals for sensitive X-ray and visible light detection toward space. Nano Lett. 21, 3947–3955 (2021).

    Article  CAS  PubMed  Google Scholar 

  28. Liu, X. et al. Improved crystallization quality of FAPbBr3 single crystals by a seeded solution method. ACS Appl. Mater. Interfaces 14, 51130–51136 (2022).

    Article  CAS  PubMed  Google Scholar 

  29. Liu, X. et al. Solution-grown formamidinium hybrid perovskite (FAPbBr3) single crystals for α-particle and γ-ray detection at room temperature. ACS Appl. Mater. Interfaces 13, 15383–15390 (2021).

    Article  CAS  PubMed  Google Scholar 

  30. Lin, C. et al. Electrode engineering in halide perovskite electronics: plenty of room at the interfaces. Adv. Mater. 34, 2108616 (2022).

    Article  CAS  Google Scholar 

  31. Yu, Y., Hoang, M. T., Yang, Y. & Wang, H. Critical assessment of carbon pastes for carbon electrode-based perovskite solar cells. Carbon 205, 270–293 (2023).

    Article  CAS  Google Scholar 

  32. He, Y. et al. Resolving the energy of γ-ray photons with MAPbI3 single crystals. ACS Photonics 5, 4132–4138 (2018).

    Article  CAS  Google Scholar 

  33. Barrett, H. H., Eskin, J. D. & Barber, H. B. Charge transport in arrays of semiconductor gamma-ray detectors. Phys. Rev. Lett. 75, 156–159 (1995).

    Article  CAS  PubMed  Google Scholar 

  34. Motti, S. G. et al. Defect activity in lead halide perovskites. Adv. Mater. 31, 1901183 (2019).

    Article  CAS  Google Scholar 

  35. Yin, W.-J., Shi, T. & Yan, Y. Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber. Appl. Phys. Lett. 104, 063903 (2014).

    Article  Google Scholar 

  36. Xiong, W. et al. Controllable p- and n-type behaviours in emissive perovskite semiconductors. Nature 633, 344–350 (2024).

    Article  CAS  PubMed  Google Scholar 

  37. Elcock, E. W. Vacancy diffusion in ordered alloys. Proc. Phys. Soc. 73, 250–264 (1959).

    Article  CAS  Google Scholar 

  38. Ji, Q., Bi, L., Zhang, J., Cao, H. & Zhao, X. S. The role of oxygen vacancies of ABO3 perovskite oxides in the oxygen reduction reaction. Energy Environ. Sci. 13, 1408–1428 (2020).

    Article  CAS  Google Scholar 

  39. Chen, D., Chen, C., Baiyee, Z. M., Shao, Z. & Ciucci, F. Nonstoichiometric oxides as low-cost and highly-efficient oxygen reduction/evolution catalysts for low-temperature electrochemical devices. Chem. Rev. 115, 9869–9921 (2015).

    Article  CAS  PubMed  Google Scholar 

  40. Drouilly, C. et al. ZnO oxygen vacancies formation and filling followed by in situ photoluminescence and in situ EPR. J. Phys. Chem. C 116, 21297–21307 (2012).

    Article  CAS  Google Scholar 

  41. Thomlinson, W., Elleaume, H., Porra, L. & Suortti, P. K-edge subtraction synchrotron X-ray imaging in bio-medical research. Phys. Med. 49, 58–76 (2018).

    Article  CAS  PubMed  Google Scholar 

  42. Chandarana, H. et al. Iodine quantification with dual-energy CT: phantom study and preliminary experience with renal masses. Am. J. Roentgenol. 196, W693–W700 (2011).

    Article  Google Scholar 

  43. Faggioni, L. & Gabelloni, M. Iodine concentration and optimization in computed tomography angiography: current issues. Invest. Radiol. 51, 816–822 (2016).

    Article  CAS  PubMed  Google Scholar 

  44. Muenzel, D. et al. Spectral photon-counting CT: initial experience with dual–contrast agent K-edge colonography. Radiology 283, 723–728 (2017).

    Article  PubMed  Google Scholar 

  45. Taguchi, K. & Iwanczyk, J. S. Vision 20/20: single photon counting X‐ray detectors in medical imaging. Med. Phys. 40, 100901 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Jones, L. T. & Woollam, P. B. Resolution improvement in CdTe gamma detectors using pulse-shape discrimination. Nucl. Instrum. Methods 124, 591–595 (1975).

    Article  CAS  Google Scholar 

  47. Hazlett, T. et al. Large, high resolution CdTe gamma ray sensors. IEEE Trans. Nucl. Sci. 33, 332–335 (1986).

    Article  Google Scholar 

  48. Luke, P. N., Amman, M., Lee, J. S., Ludewigt, B. A. & Yaver, H. A CdZnTe coplanar-grid detector array for environmental remediation. Nucl. Instrum. Methods Phys. Res. A 458, 319–324 (2001).

    Article  CAS  Google Scholar 

  49. Zhu, Y. & He, Z. Performance of a 2-keV digitizer ASIC for 3-D position-sensitive pixellated semiconductor detectors. In Proc. IEEE Nuclear Science Symposium and Medical Imaging Conference Record 4109–4112 (IEEE, 2012).

  50. Prokesch, M., Soldner, S. A. & Sundaram, A. G. CdZnTe detectors for gamma spectroscopy and X-ray photon counting at 250 × 106 photons/(mm2 s). J. Appl. Phys. 124, 044503 (2018).

    Article  Google Scholar 

  51. Richter, M. & Siffert, P. High resolution gamma ray spectroscopy with CdTe detector systems. Nucl. Instrum. Methods Phys. Res. A 322, 529–537 (1992).

    Article  Google Scholar 

  52. Pan, L., Feng, Y., Huang, J. & Cao, L. R. Comparison of Zr, Bi, Ti, and Ga as metal contacts in inorganic perovskite CsPbBr3 gamma-ray detector. IEEE Trans. Nucl. Sci. 67, 2255–2262 (2020).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Institute of Biomedical Imaging and Bioengineering of the National Institutes of Health (NIH) under award number R01EB033439 and Defense Threat Reduction Agency (DTRA) under award no. HDTRA1-20-2-0002. SEM and XPS measurements were performed in part at the Chapel Hill Analytical and Nanofabrication Laboratory (CHANL), a member of the North Carolina Research Triangle Nanotechnology Network (RTNN), which is supported by the National Science Foundation, grant number ECCS-2025064, as part of the National Nanotechnology Coordinated Infrastructure (NNCI). We thank Y. Yan at the University of Toledo and J. Li at MIT for fruitful discussions on the preconditioning mechanisms. The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH or DTRA.

Author information

Authors and Affiliations

Authors

Contributions

J.H. conceived the idea. M.L. and J.H. designed the experiments. M.L. synthesized the crystals, fabricated the devices and measured them. S.W. and A.W. conducted the mobility measurement and provided helpful suggestions about the preconditioning mechanism. Z.S. measured the transient photoluminescence mapping. J.D.Y., S.P.S., J.C.A. and D.E.W. helped with the radiation hardness test. J.W. contributed to the K-edge X-ray spectra measurement. Z.L. contributed to the crystal growth part. M.L. and J.H. wrote the paper.

Corresponding author

Correspondence to Jinsong Huang.

Ethics declarations

Competing interests

The authors declare no competing interests. One provisional patent was filed based on the materials reported here. Patent application number 63/773,974; country, USA.

Peer review

Peer review information

Nature Materials thanks Leonardo Abbene and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–34 and Tables 1 and 2.

Source data

Source Data Fig. 1

Unprocessed source data for Fig. 1c,e,f.

Source Data Fig. 2

Unprocessed source data for Fig. 2b–g.

Source Data Fig. 3

Unprocessed source data for Fig. 3a,c–e,g–i.

Source Data Fig. 4

Unprocessed source data for Fig. 4b–d.

Source Data Fig. 5

Unprocessed source data for Fig. 5b,c,e,f.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Wang, S., Wood, A. et al. Defect repairing in lead bromide perovskite single crystals with biasing and bromine for X-ray photon-counting detectors. Nat. Mater. 24, 1993–2000 (2025). https://doi.org/10.1038/s41563-025-02310-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41563-025-02310-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing