Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Interleaved bond frustration in a triangular lattice antiferromagnet

Abstract

Frustration of long-range order via lattice geometry amplifies fluctuations and generates ground states that are highly sensitive to perturbations. Traditionally, geometric frustration is used to engineer unconventional magnetic states; however, the charge degree of freedom and bond order can be similarly frustrated. Finding materials that host both frustrated magnetic and bond networks holds promise for engineering structural and magnetic states with the potential of coupling to one another via either magnetic or strain fields. Here we identify an unusual instance of this coexistence in the triangular lattice antiferromagnets LnCd3P3 (Ln = lanthanides). These compounds feature two-dimensional planes of unique trigonal planar CdP3 units with an underlying bond instability that is frustrated via emergent kagome ice correlations. This bond instability is interleaved in between layers of frustrated magnetic moments. Our results establish LnCd3P3 as a rare materials class in which frustrated magnetism is embedded within a dopable semiconductor with a frustrated bond order instability.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Structure and bond instability in LnCd3P3.
Fig. 2: Synchrotron powder X-ray diffraction and PDF analysis.
Fig. 3: Single-crystal diffuse X-ray scattering data and analysis.
Fig. 4: Monte Carlo modelling of short-range bond order, diffuse scattering and ΔPDF.

Similar content being viewed by others

Data availability

Data underlying the figures and conclusions of this work are publicly available via Zenodo (https://doi.org/10.5281/zenodo.14613498)89.

References

  1. Broholm, C. et al. Quantum spin liquids. Science 367, eaay0668 (2020).

    Article  PubMed  Google Scholar 

  2. Chamorro, J. R., McQueen, T. M. & Tran, T. T. Chemistry of quantum spin liquids. Chem. Rev. 121, 2898–2934 (2021).

    Article  PubMed  Google Scholar 

  3. Bordelon, M. M. et al. Field-tunable quantum disordered ground state in the triangular-lattice antiferromagnet NaYbO2. Nat. Phys. 15, 1058–1064 (2019).

    Article  Google Scholar 

  4. Li, Y. et al. Rare-earth triangular lattice spin liquid: a single-crystal study of YbMgGaO4. Phys. Rev. Lett. 115, 167203 (2015).

    Article  PubMed  Google Scholar 

  5. Li, Y. et al. Gapless quantum spin liquid ground state in the two-dimensional spin-1/2 triangular antiferromagnet YbMgGaO4. Sci. Rep. 5, 16419 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Paddison, J. A. M. et al. Continuous excitations of the triangular-lattice quantum spin liquid YbMgGaO4. Nat. Phys. 13, 117–122 (2017).

    Article  Google Scholar 

  7. Li, N. et al. Ising-type quantum spin liquid state in PrMgAl11O19. Phys. Rev. B 110, 134401 (2024).

    Article  Google Scholar 

  8. Cao, Y. et al. Synthesis, disorder and Ising anisotropy in a new spin liquid candidate PrMgAl11O19. Mater. Futures 3, 035201 (2024).

    Article  Google Scholar 

  9. Ma, Z. et al. Possible gapless quantum spin liquid behavior in the triangular-lattice Ising antiferromagnet PrMgAl11O19. Phys. Rev. B 109, 165143 (2024).

    Article  Google Scholar 

  10. Bu, H. et al. Gapless triangular-lattice spin-liquid candidate PrZnAl11O19. Phys. Rev. B 106, 134428 (2022).

    Article  Google Scholar 

  11. Gao, B. et al. Spin excitation continuum in the exactly solvable triangular-lattice spin liquid CeMgAl11O19. Preprint at https://arxiv.org/abs/2408.15957 (2024).

  12. Ortiz, B. R. et al. Quantum disordered ground state in the triangular-lattice magnet NaRuO2. Nat. Phys. 19, 943–949 (2023).

    Article  Google Scholar 

  13. Normand, B. & Oleś, A. M. Frustration and entanglement in the t2g spin-orbital model on a triangular lattice: valence-bond and generalized liquid states. Phys. Rev. B 78, 094427 (2008).

  14. Kitaoka, Y. et al. Orbital frustration and resonating valence bond state in the spin-1/2 triangular lattice LiNiO2. J. Phys. Soc. Jpn 67, 3703–3706 (1998).

    Article  Google Scholar 

  15. Pen, H. F., van den Brink, J., Khomskii, D. I. & Sawatzky, G. A. Orbital ordering in a two-dimensional triangular lattice. Phys. Rev. Lett. 78, 1323–1326 (1997).

    Article  Google Scholar 

  16. Anderson, P. W. Ordering and antiferromagnetism in ferrites. Phys. Rev. 102, 1008–1013 (1956).

    Article  Google Scholar 

  17. Seshadri, R. Lone pairs in insulating pyrochlores: ice rules and high–k behavior. Solid State Sci. 8, 259–266 (2006).

    Article  Google Scholar 

  18. Melot, B. C. et al. Large low-temperature specific heat in pyrochlore Bi2Ti2O7. Phys. Rev. B 79, 224111 (2009).

    Article  Google Scholar 

  19. Anderson, P. W. The resonating valence bond state in La2CuO4 and superconductivity. Science 235, 1196–1198 (1987).

    Article  PubMed  Google Scholar 

  20. Moon, E. G. & Sachdev, S. Underdoped cuprates as fractionalized Fermi liquids: transition to superconductivity. Phys. Rev. B 83, 224508 (2011).

    Article  Google Scholar 

  21. Senthil, T., Sachdev, S. & Vojta, M. Fractionalized Fermi Liquids. Phys. Rev. Lett. 90, 216403 (2003).

    Article  PubMed  Google Scholar 

  22. Senthil, T., Vojta, M. & Sachdev, S. Weak magnetism and non-Fermi liquids near heavy-fermion critical points. Phys. Rev. B 69, 035111 (2004).

    Article  Google Scholar 

  23. Senthil, T. & Lee, P. A. Cuprates as doped U(1) spin liquids. Phys. Rev. B 71, 174515 (2005).

  24. Custers, J. et al. Evidence for a non-Fermi-liquid phase in Ge-substituted YbRh2Si2. Phys. Rev. Lett. 104, 186402 (2010).

    Article  PubMed  Google Scholar 

  25. Tokiwa, Y., Ishikawa, J. J., Nakatsuji, S. & Gegenwart, P. Quantum criticality in a metallic spin liquid. Nat. Mater. 13, 356–359 (2014).

    Article  PubMed  Google Scholar 

  26. Si, Q. Global magnetic phase diagram and local quantum criticality in heavy fermion metals. Phys. B Condens. Matter 378–380, 23–27 (2006).

    Article  Google Scholar 

  27. Clarke, S., Fowkes, A., Harrison, A., Ibberson, R. & Rosseinsky, M. Synthesis, structure, and magnetic properties of NaTiO2. Chem. Mater. 10, 372–384 (1998).

    Article  Google Scholar 

  28. McQueen, T. et al. Successive orbital ordering transitions in NaVO2. Phys. Rev. Lett. 101, 166402 (2008).

    Article  PubMed  Google Scholar 

  29. Chen, T. et al. Phase diagram and spectroscopic signatures of supersolids in quantum Ising magnet K2Co(SeO3)2. Preprint at https://arxiv.org/abs/2402.15869 (2024).

  30. Ding, L. et al. Gapless spin-liquid state in the structurally disorder-free triangular antiferromagnet NaYbO2. Phys. Rev. B 100, 144432 (2019).

  31. Baenitz, M. et al. NaYbS2: a planar spin-1/2 triangular-lattice magnet and putative spin liquid. Phys. Rev. B 98, 220409(R) (2018).

  32. Sarkar, R. et al. Quantum spin liquid ground state in the disorder-free triangular lattice NaYbS2 Phys. Rev. B 100, 241116(R) (2019).

  33. Scheie, A. O. et al. Proximate spin liquid and fractionalization in the triangular antiferromagnet KYbSe2. Nat. Phys. 20, 74–81 (2024).

    Article  Google Scholar 

  34. Xie, T. et al. Complete field-induced spectral response of the spin-1/2 triangular-lattice antiferromagnet CsYbSe2. npj Quantum Mater. 8, 48 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Dai, P.-L. et al. Spinon Fermi surface spin liquid in a triangular lattice antiferromagnet NaYbSe2. Phys. Rev. X 11, 021044 (2021).

    Google Scholar 

  36. Ranjith, K. M. et al. Anisotropic field-induced ordering in the triangular-lattice quantum spin liquid NaYbSe2. Phys. Rev. B 100, 224417 (2019).

    Article  Google Scholar 

  37. Ranjith, K. M. et al. Field-induced instability of the quantum spin liquid ground state in the Jeff = 1/2 triangular-lattice compound NaYbO2. Phys. Rev. B 99, 180401 (2019).

    Article  Google Scholar 

  38. Nientiedt, A. T. & Jeitschko, W. The series of rare earth zinc phosphides RZn3P3 (R=Y, La–Nd, Sm, Gd–Er) and the corresponding cadmium compound PrCd3P3. J. Solid State Chem. 146, 478–483 (1999).

    Article  Google Scholar 

  39. Higuchi, S., Noshima, Y., Shirakawa, N., Tsubota, M. & Kitagawa, J. Optical, transport and magnetic properties of new compound CeCd3P3. Mater. Res. Express 3, 056101 (2016).

    Article  Google Scholar 

  40. Kabeya, N. et al. Competing exchange interactions in lanthanide triangular lattice compounds LnZn3P3 (Ln = La–Nd, Sm, Gd). J. Phys. Soc. Jpn 89, 074707 (2020).

  41. Chamorro, J. R., Jackson, A. R., Watkins, A. K., Seshadri, R. & Wilson, S. D. Magnetic order in the Seff = 1/2 triangular-lattice compound NdCd3P3. Phys. Rev. Mater. 7, 094402 (2023).

    Article  Google Scholar 

  42. Lee, J., Rabus, A., Lee-Hone, N. R., Broun, D. M. & Mun, E. The two-dimensional metallic triangular lattice antiferromagnet CeCd3P3. Phys. Rev. B 99, 245159 (2019).

    Article  Google Scholar 

  43. Hu, W.-J., Gong, S.-S., Zhu, W. & Sheng, D. N. Competing spin-liquid states in the spin-1/2 Heisenberg model on the triangular lattice. Phys. Rev. B 92, 140403 (2015).

    Article  Google Scholar 

  44. Feng, S. et al. Structural, electronic, and optical properties and bond stiffness of ScAl3C3-type LaCd3P3 phases: ab initio calculations. J. Phys. Chem. Solids 134, 115–120 (2019).

    Article  Google Scholar 

  45. Yamada, A. et al. Effect of pressure on the electrical resistivity of CeZn3P3. J. Phys. Conf. Ser. 215, 012031 (2010).

    Article  Google Scholar 

  46. Kitagawa, J. Possible phase transition and band gap closing in photoexcited semiconductor CeZn3P3. J. Phys. Soc. Jpn 82, 125001 (2013).

    Article  Google Scholar 

  47. Kitagawa, J., Kitajima, D., Shimokawa, K. & Takaki, H. Photoinduced Kondo effect in CeZn3P3. Phys. Rev. B 93, 035122 (2016).

    Article  Google Scholar 

  48. Ren, Y., Feng, S., Yuan, C., Cheng, X. & Li, Z. First-principle study on ScAl3C3-type LaCd3P3 phases under high pressure. Mod. Phys. Lett. B 34, 2050347 (2020).

    Article  Google Scholar 

  49. Dunsiger, S. R., Lee, J., Sonier, J. E. & Mun, E. D. Long-range magnetic order in the anisotropic triangular lattice system CeCd3As3. Phys. Rev. B 102, 064405 (2020).

    Article  Google Scholar 

  50. Ochiai, A. et al. Field-induced anomalous magnetic state beyond the magnetically ordered state in the slightly distorted triangular S=1/2 rare-earth antiferromagnet CeZn3P3. Phys. Rev. B 104, 144420 (2021).

    Article  Google Scholar 

  51. Uzoh, O. P., Kim, S. & Mun, E. Influence of crystalline electric field on the magnetic properties of CeCd3X3 (X = P, As). Phys. Rev. Mater. 7, 013402 (2023).

  52. Li, Y.-D., Wang, X. & Chen, G. Anisotropic spin model of strong spin-orbit-coupled triangular antiferromagnets. Phys. Rev. B 94, 035107 (2016).

    Article  Google Scholar 

  53. Saravanan, J. et al. Magnetic properties of layered rare-earth zinc phosphide HoZn3P3 prepared under high pressure. J. Phys. Soc. Jpn 90, 094701 (2021).

    Article  Google Scholar 

  54. Ochiai, A. et al. Quantum spin system in f-electron compounds -YbAl3C3 and its related compounds-. J. Phys. Conf. Ser. 200, 022040 (2010).

    Article  Google Scholar 

  55. Avers, K. E. et al. Fingerprinting triangular-lattice antiferromagnet by excitation gaps. Phys. Rev. B 103, L180406 (2021).

    Article  Google Scholar 

  56. Stoyko, S. S. & Mar, A. Ternary rare-earth arsenides REZn3As3 (RE = La–Nd, Sm) and RECd3As3 (RE = La–Pr). Inorg. Chem. 50, 11152–11161 (2011).

    Article  PubMed  Google Scholar 

  57. Moessner, R. & Sondhi, S. L. Ising models of quantum frustration. Phys. Rev. B 63, 224401 (2001).

    Article  Google Scholar 

  58. Schlittler, T. M., Mosseri, R. & Barthel, T. Phase diagram of the hexagonal lattice quantum dimer model: order parameters, ground-state energy, and gaps. Phys. Rev. B 96, 195142 (2017).

    Article  Google Scholar 

  59. Moessner, R., Sondhi, S. L. & Chandra, P. Phase diagram of the hexagonal lattice quantum dimer model. Phys. Rev. B 64, 144416 (2001).

    Article  Google Scholar 

  60. Savelsberg, G. Ternäre pnictide und chalkogenide von alkalimetallen und IB-bzw. IIB-elementen/On ternary pnictides and chalkogenides of alkaline metals and IB-resp. II B-elements. Z. Naturforsch. B 33, 370–373 (1978).

    Article  Google Scholar 

  61. Vogel, R. & Schuster, H.-U. KHgAs (Sb) und KZnAs-Ternäre Verbindungen mit modifizierter Ni2In-Struktur/KHgAs (Sb) and KZnAs-Ternary compounds in a modified Ni2In-structure. Z. Naturforsch. 35, 114–116 (1980).

    Article  Google Scholar 

  62. Nygren, K. E., Pagan, D. C., Ruff, J. P. C., Arenholz, E. & Brock, J. D. ‘Cartography’ in 7-dimensions at CHESS: mapping of structure in real space, reciprocal space, and time using high-energy X-rays. Synchrotron Radiat. News 33, 11–16 (2020).

    Article  Google Scholar 

  63. Weber, T. & Simonov, A. The three-dimensional pair distribution function analysis of disordered single crystals: basic concepts. Z. Kristallogr. Cryst. Mater. 227, 238–247 (2012).

    Article  Google Scholar 

  64. Kobas, M., Weber, T. & Steurer, W. Structural disorder in the decagonal Al-Co-Ni. I. Patterson analysis of diffuse X-ray scattering data. Phys. Rev. B 71, 224205 (2005).

  65. Griffitt, S. et al. Local inversion-symmetry breaking in a bismuthate high-Tc superconductor. Nat. Commun. 14, 845 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Smerald, A., Korshunov, S. & Mila, F. Topological aspects of symmetry breaking in triangular-lattice ising antiferromagnets. Phys. Rev. Lett. 116, 197201 (2016).

    Article  PubMed  Google Scholar 

  67. Miura, Y., Yasui, Y., Sato, M., Igawa, N. & Kakurai, K. New-type phase transition of Li2RuO3 with honeycomb structure. J. Phys. Soc. Jpn 76, 033705 (2007).

    Article  Google Scholar 

  68. Jackeli, G. & Khomskii, D. I. Classical dimers and dimerized superstructure in an orbitally degenerate honeycomb antiferromagnet. Phys. Rev. Lett. 100, 147203 (2008).

    Article  PubMed  Google Scholar 

  69. Pokharel, G. et al. Frustrated charge order and cooperative distortions in ScV6Sn6. Phys. Rev. Mater. 7, 104201 (2023).

    Article  Google Scholar 

  70. Alvarado, S. J. G. et al. Frustrated Ising charge correlations in the kagome metal ScV6⁢Sn6. Phys. Rev. B 110, L140304 (2024).

    Article  Google Scholar 

  71. Miao, H. et al. Signature of spin-phonon coupling driven charge density wave in a kagome magnet. Nat. Commun. 14, 6183 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Korshunov, A. et al. Cascade of pressure-induced competing charge density waves in the kagome metal FeGe. Phys. Rev. B 11, 155101 (2025).

    Article  Google Scholar 

  73. Subires, D. et al. Frustrated charge density wave and quasi-long-range bond-orientational order in the magnetic kagome FeGe. Nat. Commun. 16, 4091 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Tuniz, M. et al. Strain-induced enhancement of the charge density wave in the kagome metal S⁢c⁢V6⁢Sn6. Phys. Rev. Lett. 134, 066501 (2025).

    Article  PubMed  Google Scholar 

  75. DeStefano, J. M. et al. Pseudogap behavior in charge density wave kagome material ScV6Sn6 revealed by magnetotransport measurements. npj Quantum Mater. 8, 65 (2023).

    Article  Google Scholar 

  76. Cheng, S. et al. Nanoscale visualization and spectral fingerprints of the charge order in ScV6Sn6 distinct from other kagome metals. npj Quantum Mater. 9, 14 (2024).

    Article  Google Scholar 

  77. Wu, S. et al. Symmetry breaking and ascending in the magnetic kagome metal FeGe. Phys. Rev. X 14, 011043 (2024).

    Google Scholar 

  78. Guo, J. et al. Interplay of short-range bond order and A-type antiferromagnetic order in metallic triangular lattice GdZn3P3. Preprint at https://doi.org/10.48550/arXiv.2507.11468 (2025).

  79. Xiang, J. et al. Giant magnetocaloric effect in spin supersolid candidate Na2BaCo(PO4)2. Nature 625, 270–275 (2024).

    Article  PubMed  Google Scholar 

  80. Liu, J., Gottschall, T., Skokov, K. P., Moore, J. D. & Gutfleisch, O. Giant magnetocaloric effect driven by structural transitions. Nat. Mater. 11, 620–626 (2012).

    Article  PubMed  Google Scholar 

  81. Jiang, H.-C. & Kivelson, S. A. High temperature superconductivity in a lightly doped quantum spin liquid. Phys. Rev. Lett. 127, 097002 (2021).

    Article  PubMed  Google Scholar 

  82. Lee, P. A. From high temperature superconductivity to quantum spin liquid: progress in strong correlation physics. Rep. Prog. Phys. 71, 012501 (2007).

    Article  Google Scholar 

  83. Coelho, A. A. TOPAS and TOPAS-Academic: an optimization program integrating computer algebra and crystallographic objects written in C++. J. Appl. Crystallogr. 51, 210–218 (2018).

    Article  Google Scholar 

  84. Stokes, H. T., Hatch, D. M. & Campbell, B. J. ISODISTORT, ISOTROPY software suite. (2023).

  85. Osborn, R. et al. NeXpy: v2.0.0. GitHub https://github.com/nexpy/nexpy (2025).

  86. Bear, S. & Gomez Alvarado, S. stevenjgomez/nxs_analysis_tools: v0.1.9. Zenodo https://doi.org/10.5281/ZENODO.15186359 (2025).

  87. Scheie, A. PyCrystalField: software for calculation, analysis and fitting of crystal electric field Hamiltonians. J. Appl. Crystallogr. 54, 356–362 (2021).

    Article  Google Scholar 

  88. Lin, J. Y. Y. et al. MCViNE—an object oriented Monte Carlo neutron ray tracing simulation package. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 810, 86–99 (2016).

    Article  Google Scholar 

  89. Gomez Alvarado, S. J. et al. Data for manuscript: Interleaved bond and magnetic frustration in a triangular lattice antiferromagnet. Zenodo https://doi.org/10.5281/zenodo.14613498 (2025).

Download references

Acknowledgements

S.D.W. acknowledges helpful discussions with L. Balents and J. Ruff. We acknowledge various forms of support from G. Wu, M. Krogstad, J. Paddison, J. Marquez and C. G. Alvarado. This work was supported by the US Department of Energy (DOE), Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, under grant number DE-SC0017752. S.J.G.A. acknowledges additional financial support from the National Science Foundation Graduate Research Fellowship under grant number 1650114. J.R.C. acknowledges support through the NSF MPS-Ascend Postdoctoral Fellowship (DMR-2137580). This research made use of the shared facilities of the NSF Materials Research Science and Engineering Center at UC Santa Barbara (DMR-2308708). We used computational facilities purchased with funds from the National Science Foundation (CNS-1725797) and administered by the Center for Scientific Computing (CSC). The CSC is supported by the California NanoSystems Institute and the Materials Research Science and Engineering Center (MRSEC; NSF DMR-2308708) at UC Santa Barbara. G.P., B.R.O. and L.K. acknowledge support from the National Science Foundation (NSF) through Enabling Quantum Leap: Convergent Accelerated Discovery Foundries for Quantum Materials Science, Engineering and Information (Q-AMASE-i): Quantum Foundry at UC Santa Barbara (DMR-1906325). J.H. acknowledges financial support from the Bavarian Californian Technology Center (BaCaTeC). This research used resources of the Advanced Photon Source, a US DOE, Office of Science User Facility, operated for the DOE, Office of Science, by Argonne National Laboratory under contract number DE-AC02-06CH11357. Research conducted at the Center for High-Energy X-ray Sciences (CHEXS) is supported by the National Science Foundation (BIO, ENG and MPS Directorates) under award number DMR-2342336.

Author information

Authors and Affiliations

Authors

Contributions

J.R.C., A.R.J., D.R., C.B. and J.H. contributed to the sample synthesis. J.R.C. and L.C.G. performed the synchrotron powder X-ray diffraction data collection. S.J.G.A., J.R.C., R.S. and S.D.W. contributed to the PDF analysis. S.J.G.A., G.P., R.G., B.R.O., S. Sarker and L.K. contributed to single-crystal X-ray diffraction data collection and processing. S. Schwarz, S.D.W. and D.R. analysed the neutron scattering data. S.J.G.A. performed the single-crystal diffuse X-ray scattering analysis and ∆PDF analysis. D.R. and J.H. performed the bulk property measurements. D.R., M.B.S. and V.O.G. performed the neutron scattering measurements. S.J.G.A., J.R.C. and S.D.W. prepared the manuscript and analysed the data, with input from all other co-authors.

Corresponding author

Correspondence to Stephen D. Wilson.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–13, Tables 1–4 and discussion.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gomez Alvarado, S.J., Chamorro, J.R., Rout, D. et al. Interleaved bond frustration in a triangular lattice antiferromagnet. Nat. Mater. 25, 65–72 (2026). https://doi.org/10.1038/s41563-025-02380-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41563-025-02380-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing