Abstract
Frustration of long-range order via lattice geometry amplifies fluctuations and generates ground states that are highly sensitive to perturbations. Traditionally, geometric frustration is used to engineer unconventional magnetic states; however, the charge degree of freedom and bond order can be similarly frustrated. Finding materials that host both frustrated magnetic and bond networks holds promise for engineering structural and magnetic states with the potential of coupling to one another via either magnetic or strain fields. Here we identify an unusual instance of this coexistence in the triangular lattice antiferromagnets LnCd3P3 (Ln = lanthanides). These compounds feature two-dimensional planes of unique trigonal planar CdP3 units with an underlying bond instability that is frustrated via emergent kagome ice correlations. This bond instability is interleaved in between layers of frustrated magnetic moments. Our results establish LnCd3P3 as a rare materials class in which frustrated magnetism is embedded within a dopable semiconductor with a frustrated bond order instability.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to the full article PDF.
USD 39.95
Prices may be subject to local taxes which are calculated during checkout




Similar content being viewed by others
Data availability
Data underlying the figures and conclusions of this work are publicly available via Zenodo (https://doi.org/10.5281/zenodo.14613498)89.
References
Broholm, C. et al. Quantum spin liquids. Science 367, eaay0668 (2020).
Chamorro, J. R., McQueen, T. M. & Tran, T. T. Chemistry of quantum spin liquids. Chem. Rev. 121, 2898–2934 (2021).
Bordelon, M. M. et al. Field-tunable quantum disordered ground state in the triangular-lattice antiferromagnet NaYbO2. Nat. Phys. 15, 1058–1064 (2019).
Li, Y. et al. Rare-earth triangular lattice spin liquid: a single-crystal study of YbMgGaO4. Phys. Rev. Lett. 115, 167203 (2015).
Li, Y. et al. Gapless quantum spin liquid ground state in the two-dimensional spin-1/2 triangular antiferromagnet YbMgGaO4. Sci. Rep. 5, 16419 (2015).
Paddison, J. A. M. et al. Continuous excitations of the triangular-lattice quantum spin liquid YbMgGaO4. Nat. Phys. 13, 117–122 (2017).
Li, N. et al. Ising-type quantum spin liquid state in PrMgAl11O19. Phys. Rev. B 110, 134401 (2024).
Cao, Y. et al. Synthesis, disorder and Ising anisotropy in a new spin liquid candidate PrMgAl11O19. Mater. Futures 3, 035201 (2024).
Ma, Z. et al. Possible gapless quantum spin liquid behavior in the triangular-lattice Ising antiferromagnet PrMgAl11O19. Phys. Rev. B 109, 165143 (2024).
Bu, H. et al. Gapless triangular-lattice spin-liquid candidate PrZnAl11O19. Phys. Rev. B 106, 134428 (2022).
Gao, B. et al. Spin excitation continuum in the exactly solvable triangular-lattice spin liquid CeMgAl11O19. Preprint at https://arxiv.org/abs/2408.15957 (2024).
Ortiz, B. R. et al. Quantum disordered ground state in the triangular-lattice magnet NaRuO2. Nat. Phys. 19, 943–949 (2023).
Normand, B. & Oleś, A. M. Frustration and entanglement in the t2g spin-orbital model on a triangular lattice: valence-bond and generalized liquid states. Phys. Rev. B 78, 094427 (2008).
Kitaoka, Y. et al. Orbital frustration and resonating valence bond state in the spin-1/2 triangular lattice LiNiO2. J. Phys. Soc. Jpn 67, 3703–3706 (1998).
Pen, H. F., van den Brink, J., Khomskii, D. I. & Sawatzky, G. A. Orbital ordering in a two-dimensional triangular lattice. Phys. Rev. Lett. 78, 1323–1326 (1997).
Anderson, P. W. Ordering and antiferromagnetism in ferrites. Phys. Rev. 102, 1008–1013 (1956).
Seshadri, R. Lone pairs in insulating pyrochlores: ice rules and high–k behavior. Solid State Sci. 8, 259–266 (2006).
Melot, B. C. et al. Large low-temperature specific heat in pyrochlore Bi2Ti2O7. Phys. Rev. B 79, 224111 (2009).
Anderson, P. W. The resonating valence bond state in La2CuO4 and superconductivity. Science 235, 1196–1198 (1987).
Moon, E. G. & Sachdev, S. Underdoped cuprates as fractionalized Fermi liquids: transition to superconductivity. Phys. Rev. B 83, 224508 (2011).
Senthil, T., Sachdev, S. & Vojta, M. Fractionalized Fermi Liquids. Phys. Rev. Lett. 90, 216403 (2003).
Senthil, T., Vojta, M. & Sachdev, S. Weak magnetism and non-Fermi liquids near heavy-fermion critical points. Phys. Rev. B 69, 035111 (2004).
Senthil, T. & Lee, P. A. Cuprates as doped U(1) spin liquids. Phys. Rev. B 71, 174515 (2005).
Custers, J. et al. Evidence for a non-Fermi-liquid phase in Ge-substituted YbRh2Si2. Phys. Rev. Lett. 104, 186402 (2010).
Tokiwa, Y., Ishikawa, J. J., Nakatsuji, S. & Gegenwart, P. Quantum criticality in a metallic spin liquid. Nat. Mater. 13, 356–359 (2014).
Si, Q. Global magnetic phase diagram and local quantum criticality in heavy fermion metals. Phys. B Condens. Matter 378–380, 23–27 (2006).
Clarke, S., Fowkes, A., Harrison, A., Ibberson, R. & Rosseinsky, M. Synthesis, structure, and magnetic properties of NaTiO2. Chem. Mater. 10, 372–384 (1998).
McQueen, T. et al. Successive orbital ordering transitions in NaVO2. Phys. Rev. Lett. 101, 166402 (2008).
Chen, T. et al. Phase diagram and spectroscopic signatures of supersolids in quantum Ising magnet K2Co(SeO3)2. Preprint at https://arxiv.org/abs/2402.15869 (2024).
Ding, L. et al. Gapless spin-liquid state in the structurally disorder-free triangular antiferromagnet NaYbO2. Phys. Rev. B 100, 144432 (2019).
Baenitz, M. et al. NaYbS2: a planar spin-1/2 triangular-lattice magnet and putative spin liquid. Phys. Rev. B 98, 220409(R) (2018).
Sarkar, R. et al. Quantum spin liquid ground state in the disorder-free triangular lattice NaYbS2 Phys. Rev. B 100, 241116(R) (2019).
Scheie, A. O. et al. Proximate spin liquid and fractionalization in the triangular antiferromagnet KYbSe2. Nat. Phys. 20, 74–81 (2024).
Xie, T. et al. Complete field-induced spectral response of the spin-1/2 triangular-lattice antiferromagnet CsYbSe2. npj Quantum Mater. 8, 48 (2023).
Dai, P.-L. et al. Spinon Fermi surface spin liquid in a triangular lattice antiferromagnet NaYbSe2. Phys. Rev. X 11, 021044 (2021).
Ranjith, K. M. et al. Anisotropic field-induced ordering in the triangular-lattice quantum spin liquid NaYbSe2. Phys. Rev. B 100, 224417 (2019).
Ranjith, K. M. et al. Field-induced instability of the quantum spin liquid ground state in the Jeff = 1/2 triangular-lattice compound NaYbO2. Phys. Rev. B 99, 180401 (2019).
Nientiedt, A. T. & Jeitschko, W. The series of rare earth zinc phosphides RZn3P3 (R=Y, La–Nd, Sm, Gd–Er) and the corresponding cadmium compound PrCd3P3. J. Solid State Chem. 146, 478–483 (1999).
Higuchi, S., Noshima, Y., Shirakawa, N., Tsubota, M. & Kitagawa, J. Optical, transport and magnetic properties of new compound CeCd3P3. Mater. Res. Express 3, 056101 (2016).
Kabeya, N. et al. Competing exchange interactions in lanthanide triangular lattice compounds LnZn3P3 (Ln = La–Nd, Sm, Gd). J. Phys. Soc. Jpn 89, 074707 (2020).
Chamorro, J. R., Jackson, A. R., Watkins, A. K., Seshadri, R. & Wilson, S. D. Magnetic order in the Seff = 1/2 triangular-lattice compound NdCd3P3. Phys. Rev. Mater. 7, 094402 (2023).
Lee, J., Rabus, A., Lee-Hone, N. R., Broun, D. M. & Mun, E. The two-dimensional metallic triangular lattice antiferromagnet CeCd3P3. Phys. Rev. B 99, 245159 (2019).
Hu, W.-J., Gong, S.-S., Zhu, W. & Sheng, D. N. Competing spin-liquid states in the spin-1/2 Heisenberg model on the triangular lattice. Phys. Rev. B 92, 140403 (2015).
Feng, S. et al. Structural, electronic, and optical properties and bond stiffness of ScAl3C3-type LaCd3P3 phases: ab initio calculations. J. Phys. Chem. Solids 134, 115–120 (2019).
Yamada, A. et al. Effect of pressure on the electrical resistivity of CeZn3P3. J. Phys. Conf. Ser. 215, 012031 (2010).
Kitagawa, J. Possible phase transition and band gap closing in photoexcited semiconductor CeZn3P3. J. Phys. Soc. Jpn 82, 125001 (2013).
Kitagawa, J., Kitajima, D., Shimokawa, K. & Takaki, H. Photoinduced Kondo effect in CeZn3P3. Phys. Rev. B 93, 035122 (2016).
Ren, Y., Feng, S., Yuan, C., Cheng, X. & Li, Z. First-principle study on ScAl3C3-type LaCd3P3 phases under high pressure. Mod. Phys. Lett. B 34, 2050347 (2020).
Dunsiger, S. R., Lee, J., Sonier, J. E. & Mun, E. D. Long-range magnetic order in the anisotropic triangular lattice system CeCd3As3. Phys. Rev. B 102, 064405 (2020).
Ochiai, A. et al. Field-induced anomalous magnetic state beyond the magnetically ordered state in the slightly distorted triangular S=1/2 rare-earth antiferromagnet CeZn3P3. Phys. Rev. B 104, 144420 (2021).
Uzoh, O. P., Kim, S. & Mun, E. Influence of crystalline electric field on the magnetic properties of CeCd3X3 (X = P, As). Phys. Rev. Mater. 7, 013402 (2023).
Li, Y.-D., Wang, X. & Chen, G. Anisotropic spin model of strong spin-orbit-coupled triangular antiferromagnets. Phys. Rev. B 94, 035107 (2016).
Saravanan, J. et al. Magnetic properties of layered rare-earth zinc phosphide HoZn3P3 prepared under high pressure. J. Phys. Soc. Jpn 90, 094701 (2021).
Ochiai, A. et al. Quantum spin system in f-electron compounds -YbAl3C3 and its related compounds-. J. Phys. Conf. Ser. 200, 022040 (2010).
Avers, K. E. et al. Fingerprinting triangular-lattice antiferromagnet by excitation gaps. Phys. Rev. B 103, L180406 (2021).
Stoyko, S. S. & Mar, A. Ternary rare-earth arsenides REZn3As3 (RE = La–Nd, Sm) and RECd3As3 (RE = La–Pr). Inorg. Chem. 50, 11152–11161 (2011).
Moessner, R. & Sondhi, S. L. Ising models of quantum frustration. Phys. Rev. B 63, 224401 (2001).
Schlittler, T. M., Mosseri, R. & Barthel, T. Phase diagram of the hexagonal lattice quantum dimer model: order parameters, ground-state energy, and gaps. Phys. Rev. B 96, 195142 (2017).
Moessner, R., Sondhi, S. L. & Chandra, P. Phase diagram of the hexagonal lattice quantum dimer model. Phys. Rev. B 64, 144416 (2001).
Savelsberg, G. Ternäre pnictide und chalkogenide von alkalimetallen und IB-bzw. IIB-elementen/On ternary pnictides and chalkogenides of alkaline metals and IB-resp. II B-elements. Z. Naturforsch. B 33, 370–373 (1978).
Vogel, R. & Schuster, H.-U. KHgAs (Sb) und KZnAs-Ternäre Verbindungen mit modifizierter Ni2In-Struktur/KHgAs (Sb) and KZnAs-Ternary compounds in a modified Ni2In-structure. Z. Naturforsch. 35, 114–116 (1980).
Nygren, K. E., Pagan, D. C., Ruff, J. P. C., Arenholz, E. & Brock, J. D. ‘Cartography’ in 7-dimensions at CHESS: mapping of structure in real space, reciprocal space, and time using high-energy X-rays. Synchrotron Radiat. News 33, 11–16 (2020).
Weber, T. & Simonov, A. The three-dimensional pair distribution function analysis of disordered single crystals: basic concepts. Z. Kristallogr. Cryst. Mater. 227, 238–247 (2012).
Kobas, M., Weber, T. & Steurer, W. Structural disorder in the decagonal Al-Co-Ni. I. Patterson analysis of diffuse X-ray scattering data. Phys. Rev. B 71, 224205 (2005).
Griffitt, S. et al. Local inversion-symmetry breaking in a bismuthate high-Tc superconductor. Nat. Commun. 14, 845 (2023).
Smerald, A., Korshunov, S. & Mila, F. Topological aspects of symmetry breaking in triangular-lattice ising antiferromagnets. Phys. Rev. Lett. 116, 197201 (2016).
Miura, Y., Yasui, Y., Sato, M., Igawa, N. & Kakurai, K. New-type phase transition of Li2RuO3 with honeycomb structure. J. Phys. Soc. Jpn 76, 033705 (2007).
Jackeli, G. & Khomskii, D. I. Classical dimers and dimerized superstructure in an orbitally degenerate honeycomb antiferromagnet. Phys. Rev. Lett. 100, 147203 (2008).
Pokharel, G. et al. Frustrated charge order and cooperative distortions in ScV6Sn6. Phys. Rev. Mater. 7, 104201 (2023).
Alvarado, S. J. G. et al. Frustrated Ising charge correlations in the kagome metal ScV6Sn6. Phys. Rev. B 110, L140304 (2024).
Miao, H. et al. Signature of spin-phonon coupling driven charge density wave in a kagome magnet. Nat. Commun. 14, 6183 (2023).
Korshunov, A. et al. Cascade of pressure-induced competing charge density waves in the kagome metal FeGe. Phys. Rev. B 11, 155101 (2025).
Subires, D. et al. Frustrated charge density wave and quasi-long-range bond-orientational order in the magnetic kagome FeGe. Nat. Commun. 16, 4091 (2025).
Tuniz, M. et al. Strain-induced enhancement of the charge density wave in the kagome metal ScV6Sn6. Phys. Rev. Lett. 134, 066501 (2025).
DeStefano, J. M. et al. Pseudogap behavior in charge density wave kagome material ScV6Sn6 revealed by magnetotransport measurements. npj Quantum Mater. 8, 65 (2023).
Cheng, S. et al. Nanoscale visualization and spectral fingerprints of the charge order in ScV6Sn6 distinct from other kagome metals. npj Quantum Mater. 9, 14 (2024).
Wu, S. et al. Symmetry breaking and ascending in the magnetic kagome metal FeGe. Phys. Rev. X 14, 011043 (2024).
Guo, J. et al. Interplay of short-range bond order and A-type antiferromagnetic order in metallic triangular lattice GdZn3P3. Preprint at https://doi.org/10.48550/arXiv.2507.11468 (2025).
Xiang, J. et al. Giant magnetocaloric effect in spin supersolid candidate Na2BaCo(PO4)2. Nature 625, 270–275 (2024).
Liu, J., Gottschall, T., Skokov, K. P., Moore, J. D. & Gutfleisch, O. Giant magnetocaloric effect driven by structural transitions. Nat. Mater. 11, 620–626 (2012).
Jiang, H.-C. & Kivelson, S. A. High temperature superconductivity in a lightly doped quantum spin liquid. Phys. Rev. Lett. 127, 097002 (2021).
Lee, P. A. From high temperature superconductivity to quantum spin liquid: progress in strong correlation physics. Rep. Prog. Phys. 71, 012501 (2007).
Coelho, A. A. TOPAS and TOPAS-Academic: an optimization program integrating computer algebra and crystallographic objects written in C++. J. Appl. Crystallogr. 51, 210–218 (2018).
Stokes, H. T., Hatch, D. M. & Campbell, B. J. ISODISTORT, ISOTROPY software suite. (2023).
Osborn, R. et al. NeXpy: v2.0.0. GitHub https://github.com/nexpy/nexpy (2025).
Bear, S. & Gomez Alvarado, S. stevenjgomez/nxs_analysis_tools: v0.1.9. Zenodo https://doi.org/10.5281/ZENODO.15186359 (2025).
Scheie, A. PyCrystalField: software for calculation, analysis and fitting of crystal electric field Hamiltonians. J. Appl. Crystallogr. 54, 356–362 (2021).
Lin, J. Y. Y. et al. MCViNE—an object oriented Monte Carlo neutron ray tracing simulation package. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 810, 86–99 (2016).
Gomez Alvarado, S. J. et al. Data for manuscript: Interleaved bond and magnetic frustration in a triangular lattice antiferromagnet. Zenodo https://doi.org/10.5281/zenodo.14613498 (2025).
Acknowledgements
S.D.W. acknowledges helpful discussions with L. Balents and J. Ruff. We acknowledge various forms of support from G. Wu, M. Krogstad, J. Paddison, J. Marquez and C. G. Alvarado. This work was supported by the US Department of Energy (DOE), Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, under grant number DE-SC0017752. S.J.G.A. acknowledges additional financial support from the National Science Foundation Graduate Research Fellowship under grant number 1650114. J.R.C. acknowledges support through the NSF MPS-Ascend Postdoctoral Fellowship (DMR-2137580). This research made use of the shared facilities of the NSF Materials Research Science and Engineering Center at UC Santa Barbara (DMR-2308708). We used computational facilities purchased with funds from the National Science Foundation (CNS-1725797) and administered by the Center for Scientific Computing (CSC). The CSC is supported by the California NanoSystems Institute and the Materials Research Science and Engineering Center (MRSEC; NSF DMR-2308708) at UC Santa Barbara. G.P., B.R.O. and L.K. acknowledge support from the National Science Foundation (NSF) through Enabling Quantum Leap: Convergent Accelerated Discovery Foundries for Quantum Materials Science, Engineering and Information (Q-AMASE-i): Quantum Foundry at UC Santa Barbara (DMR-1906325). J.H. acknowledges financial support from the Bavarian Californian Technology Center (BaCaTeC). This research used resources of the Advanced Photon Source, a US DOE, Office of Science User Facility, operated for the DOE, Office of Science, by Argonne National Laboratory under contract number DE-AC02-06CH11357. Research conducted at the Center for High-Energy X-ray Sciences (CHEXS) is supported by the National Science Foundation (BIO, ENG and MPS Directorates) under award number DMR-2342336.
Author information
Authors and Affiliations
Contributions
J.R.C., A.R.J., D.R., C.B. and J.H. contributed to the sample synthesis. J.R.C. and L.C.G. performed the synchrotron powder X-ray diffraction data collection. S.J.G.A., J.R.C., R.S. and S.D.W. contributed to the PDF analysis. S.J.G.A., G.P., R.G., B.R.O., S. Sarker and L.K. contributed to single-crystal X-ray diffraction data collection and processing. S. Schwarz, S.D.W. and D.R. analysed the neutron scattering data. S.J.G.A. performed the single-crystal diffuse X-ray scattering analysis and ∆PDF analysis. D.R. and J.H. performed the bulk property measurements. D.R., M.B.S. and V.O.G. performed the neutron scattering measurements. S.J.G.A., J.R.C. and S.D.W. prepared the manuscript and analysed the data, with input from all other co-authors.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Materials thanks the anonymous reviewers for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Supplementary Figs. 1–13, Tables 1–4 and discussion.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Gomez Alvarado, S.J., Chamorro, J.R., Rout, D. et al. Interleaved bond frustration in a triangular lattice antiferromagnet. Nat. Mater. 25, 65–72 (2026). https://doi.org/10.1038/s41563-025-02380-x
Received:
Accepted:
Published:
Version of record:
Issue date:
DOI: https://doi.org/10.1038/s41563-025-02380-x
This article is cited by
-
Materials reach new levels of frustration
Nature Materials (2025)


