Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Electronic switching of topology in LaSbTe

Abstract

In the past two decades, various classes of topological materials have been discovered, yet the deliberate control of topology in a single material remains largely unexplored. Here we demonstrate full experimental control over the topological nodal loop in the square-net material LaSbxTe2−x by chemical substitution and electron doping. Using angle-resolved photoemission spectroscopy, we show that changing the antimony concentration x from 0.86 to 1.0 in the bulk opens a gap larger than 400 meV in the nodal loop. Symmetry analysis establishes that this effect originates from the breaking of n glide symmetry in the square-net layer. The same topological phase transition can also be driven reversibly on the surface of LaSbxTe2−x by in situ chemical gating via potassium deposition, enabling on-demand switching of topology. The control parameter for both the bulk and surface transition is the electron concentration, providing a pathway towards applications based on switching topology by electrostatic gating.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Gap opening of the square-net-derived nodal loop by symmetry lowering.
Fig. 2: Topological phase transition from a gapless to a gapped nodal loop in LaSbxTe2−x.
Fig. 3: Topological switching via the in situ control of crystalline symmetry.
Fig. 4: Doping-dependent breaking of n glide symmetry from DFT.
Fig. 5: Continuous tuning of n glide symmetry.

Similar content being viewed by others

Data availability

All data needed to evaluate the conclusions in this study are available in the article and its Supplementary Information. The raw ARPES data acquired in this study are available via Zenodo at https://doi.org/10.5281/zenodo.17059971 (ref. 44). All other data are available from the corresponding authors upon request.

References

  1. Zhang, H. et al. Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface. Nat. Phys. 5, 438–442 (2009).

    Article  CAS  Google Scholar 

  2. Hasan, M. Z. & Kane, C. L. Colloquium: Topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010).

    Article  CAS  Google Scholar 

  3. Ando, Y. & Fu, L. Topological crystalline insulators and topological superconductors: from concepts to materials. Annu. Rev. Condens. Matter Phys. 6, 361–381 (2015).

    Article  CAS  Google Scholar 

  4. Bernevig, B. A., Hughes, T. L. & Zhang, S.-C. Quantum spin Hall effect and topological phase transition in HgTe quantum wells. Science 314, 1757–1761 (2006).

    Article  CAS  PubMed  Google Scholar 

  5. König, M. et al. Quantum spin Hall insulator state in HgTe quantum wells. Science 318, 766–770 (2007).

    Article  PubMed  Google Scholar 

  6. Wu, S. et al. Observation of the quantum spin Hall effect up to 100 kelvin in a monolayer crystal. Science 359, 76–79 (2018).

    Article  CAS  PubMed  Google Scholar 

  7. Chang, C.-Z. et al. Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator. Science 340, 167–170 (2013).

    Article  CAS  PubMed  Google Scholar 

  8. Liang, T. et al. Ultrahigh mobility and giant magnetoresistance in the Dirac semimetal Cd3As2. Nat. Mater. 14, 280–284 (2014).

    Article  PubMed  Google Scholar 

  9. Chen, Y. L. et al. Massive Dirac fermion on the surface of a magnetically doped topological insulator. Science 329, 659–662 (2010).

    Article  CAS  PubMed  Google Scholar 

  10. Zhang, J. et al. Topology-driven magnetic quantum phase transition in topological insulators. Science 340, 1582–1586 (2013).

    Article  Google Scholar 

  11. Zeljkovic, I. et al. Dirac mass generation from crystal symmetry breaking on the surfaces of topological crystalline insulators. Nat. Mater. 14, 318–324 (2015).

    Article  CAS  PubMed  Google Scholar 

  12. Xu, S.-Y. et al. Topological phase transition and texture inversion in a tunable topological insulator. Science 332, 560–564 (2011).

    Article  CAS  PubMed  Google Scholar 

  13. Xu, S.-Y. et al. Observation of a topological crystalline insulator phase and topological phase transition in Pb1−xSnxTe. Nat. Commun. 3, 1192 (2012).

    Article  PubMed  Google Scholar 

  14. Wojek, B. M. et al. Direct observation and temperature control of the surface Dirac gap in a topological crystalline insulator. Nat. Commun. 6, 8463 (2015).

    Article  CAS  PubMed  Google Scholar 

  15. Collins, J. L. et al. Electric-field-tuned topological phase transition in ultrathin Na3Bi. Nature 564, 390–394 (2018).

    Article  CAS  PubMed  Google Scholar 

  16. Wang, Y. et al. Spectroscopic evidence for the realization of a genuine topological nodal-line semimetal in LaSbTe. Phys. Rev. B 103, 125131 (2021).

    Article  CAS  Google Scholar 

  17. Deng, J. et al. Twisted nodal wires and three-dimensional quantum spin Hall effect in distorted square-net compounds. Phys. Rev. B 105, 224103 (2022).

    Article  CAS  Google Scholar 

  18. Klemenz, S., Lei, S. & Schoop, L. M. Topological semimetals in square-net materials. Annu. Rev. Mater. Res. 49, 185–206 (2019).

    Article  CAS  Google Scholar 

  19. DiMasi, E., Foran, B., Aronson, M. C. & Lee, S. Stability of charge-density waves under continuous variation of band filling in LaTe2−xSbx (0 ≤ x ≤ 1). Phys. Rev. B 54, 13587–13596 (1996).

    Article  CAS  Google Scholar 

  20. Singha, R. et al. Evolving devil’s staircase magnetization from tunable charge density waves in nonsymmorphic Dirac semimetals. Adv. Mater. 33, 2103476 (2021).

    Article  CAS  Google Scholar 

  21. Lei, S. et al. Charge density waves and magnetism in topological semimetal candidates GdSbxTe2−xδ. Adv. Quantum Technol. 2, 1900045 (2019).

    Article  CAS  Google Scholar 

  22. Pandey, K., Basnet, R., Wang, J., Da, B. & Hu, J. Evolution of electronic and magnetic properties in the topological semimetal SmSbxTe2−x. Phys. Rev. B 105, 155139 (2022).

    Article  CAS  Google Scholar 

  23. Qian, Y. et al. Layer construction of topological crystalline insulator LaSbTe. Sci. China Phys. Mech. Astron. 63, 107011 (2020).

    Article  CAS  Google Scholar 

  24. Brouet, V. et al. Fermi surface reconstruction in the CDW state of CeTe3 observed by photoemission. Phys. Rev. Lett. 93, 126405 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. Brouet, V. et al. Angle-resolved photoemission study of the evolution of band structure and charge density wave properties in RTe3 (R = Y, La, Ce, Sm, Gd, Tb, and Dy). Phys. Rev. B 77, 235104 (2008).

    Article  Google Scholar 

  26. Leonhardt, A. et al. Symmetry-enforced topological band crossings in orthorhombic crystals: classification and materials discovery. Phys. Rev. Mater. 5, 124202 (2021).

    Article  CAS  Google Scholar 

  27. Hirschmann, M. M., Leonhardt, A., Kilic, B., Fabini, D. H. & Schnyder, A. P. Symmetry-enforced band crossings in tetragonal materials: Dirac and Weyl degeneracies on points, lines, and planes. Phys. Rev. Mater. 5, 054202 (2021).

    Article  CAS  Google Scholar 

  28. Shin, K. Y., Brouet, V., Ru, N., Shen, Z. X. & Fisher, I. R. Electronic structure and charge-density wave formation in LaTe1.95 and CeTe2.00. Phys. Rev. B 72, 085132 (2005).

    Article  Google Scholar 

  29. Malliakas, C. D. & Kanatzidis, M. G. Divergence in the behavior of the charge density wave in RETe3 (RE = rare-earth element) with temperature and RE element. J. Am. Chem. Soc. 128, 12612–12613 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Johannes, M. D. & Mazin, I. I. Fermi surface nesting and the origin of charge density waves in metals. Phys. Rev. B 77, 165135 (2008).

    Article  Google Scholar 

  31. Yan, J.-Q., Sales, B. C., Susner, M. A. & McGuire, M. A. Flux growth in a horizontal configuration: an analog to vapor transport growth. Phys. Rev. Mater. 1, 023402 (2017).

    Article  Google Scholar 

  32. Momma, K. & Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44, 1272–1276 (2011).

    Article  CAS  Google Scholar 

  33. Blaha, P. et al. WIEN2k: an APW+lo program for calculating the properties of solids. J. Chem. Phys. 152, 074101 (2020).

    Article  CAS  PubMed  Google Scholar 

  34. Blaha, P. et al. WIEN2k, An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties (Karlheinz Schwarz, Vienna University of Technology, 2021).

  35. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  PubMed  Google Scholar 

  36. Giannozzi, P. et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 21, 395502 (2009).

    Article  PubMed  Google Scholar 

  37. Giannozzi, P. et al. Advanced capabilities for materials modelling with QUANTUM ESPRESSO. J. Phys. Condens. Matter 29, 465901 (2017).

    Article  CAS  PubMed  Google Scholar 

  38. Pacilè, D. et al. Narrowing of d bands of FeCo layers intercalated under graphene. Appl. Phys. Lett. 118, 121602 (2021).

    Article  Google Scholar 

  39. Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    Article  CAS  Google Scholar 

  40. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  CAS  Google Scholar 

  41. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    Article  CAS  Google Scholar 

  42. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article  Google Scholar 

  43. Togo, A. First-principles phonon calculations with phonopy and phono3py. J. Phys. Soc. Jpn 92, 012001 (2023).

    Article  Google Scholar 

  44. Bannies, J. Datasets of the manuscript ‘Electronic switching of topology in LaSbTe’. Zenodo https://doi.org/10.5281/zenodo.17059971 (2025).

Download references

Acknowledgements

We thank A. von der Handt (UBC Earth Sciences) for assistance with the wavelength-dispersive X-ray spectroscopy measurements. This research was undertaken thanks in part to funding from the Max Planck-UBC-UTokyo Centre for Quantum Materials and the Canada First Research Excellence Fund, Quantum Materials and Future Technologies Program. This project is also funded by the Natural Sciences and Engineering Research Council of Canada (NSERC); the Canada Foundation for Innovation (CFI); the British Columbia Knowledge Development Fund (BCKDF); the Department of National Defence (DND); the Mitacs Accelerate Program; the Moore EPiQS Program (A.D.); the Canada Research Chairs Program (A.D.); and the CIFAR Quantum Materials Program (A.D.). This research is funded in part by a QuantEmX grant from ICAM and the Gordon and Betty Moore Foundation through Grant GBMF9616 to M.M. and H.-H.K. In addition, J.B. and H.-H.K. acknowledge the receipt of support from the CLSI Student Travel Support Program. J.W.S. was supported in part by a Provost’s Research Fellowship from Farmingdale State College. Use of the Canadian Light Source (QMSC), a national research facility of the University of Saskatchewan, is supported by CFI, the NSERC, the National Research Council, the Canadian Institutes of Health Research, the Government of Saskatchewan and the University of Saskatchewan.

Author information

Authors and Affiliations

Authors

Contributions

J.B. grew the single crystals and characterized them. J.W.S. performed the single-crystal XRD and solved the crystal structures. J.B., M.M. and H.-H.K. conducted the ARPES experiments with help from M.Z., S. Gorovikov and S.Z. The ARPES data were analysed by J.B. with input from M.M., H.-H.K. and A.D. The core-level spectra were analysed by S. Godin, and J.B. and I.S.E. performed the DFT calculations. J.B., M.M., H.-H.K., M.O., A.D. and M.C.A. discussed the results. J.B., M.M., H.-H.K., A.D. and M.C.A. wrote the paper, with contributions from all authors.

Corresponding authors

Correspondence to J. Bannies, A. Damascelli or M. C. Aronson.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Discussion, Figs. 1–7 and Tables 1 and 2.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bannies, J., Michiardi, M., Kung, HH. et al. Electronic switching of topology in LaSbTe. Nat. Mater. (2025). https://doi.org/10.1038/s41563-025-02396-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41563-025-02396-3

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing