Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cryogenically self-healing organic crystals

Abstract

Common self-healing mechanisms rely on the diffusion of chemical entities across a fissure to rebuild the interface. As diffusion is temperature-controlled, cryogenic conditions are prohibitive to self-healing. Here we report a molecular crystal that heals at ambient and high temperature (298 and 423 K) but that is also capable of autonomous recovery at 77 K. The efficiency of this process depends on dipole–dipole interactions as the dominant mechanism that reduces the separation between the interfaces. Comparative optical transmission measurements confirm that healed crystals are approximately 99% transparent relative to the same material before cracking. This cryogenic self-healing capability is used to design an autonomously reparative, all-organic, crystalline optical transmission system and enables substantial recovery of the optical losses due to the material’s ability to recover after damage. This and possibly other similar materials overcome the natural limitations of macromolecular self-healing media at cryogenic temperatures, opening opportunities for developing materials that can operate practically indefinitely under extreme conditions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Structure and self-healing of PBDPA crystals at different temperatures.
Fig. 2: Surface topography of crystals that self-healed at room temperature.
Fig. 3: Crystal structure and electronic properties of PBDPA.
Fig. 4: Sample preparation and KPFM surface potential mapping of fractured PBDPA crystals.
Fig. 5: Optical transmission and loss recovery in PBDPA crystals.

Similar content being viewed by others

Data availability

The crystallographic information for PBDPA has been deposited at the Cambridge Crystallographic Data Centre under deposition nos. 2414673 (298 K) and 2414674 (100 K). These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures/. Source data are provided with this paper.

References

  1. Al-Handawi, M. B. et al. Autonomous reconstitution of fractured hybrid perovskite single crystals. Adv. Mater. 34, 2109374 (2022).

    Article  CAS  Google Scholar 

  2. Commins, P., Al-Handawi, M. B., Karothu, D. P., Raj, G. & Naumov, P. Efficiently self-healing boronic ester crystals. Chem. Sci. 11, 2606–2613 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Mondal, S. et al. Autonomous self-healing organic crystals for nonlinear optics. Nat. Commun. 13, 6589 (2023).

    Article  Google Scholar 

  4. Kang, J., Tok, J. B. H. & Bao, Z. Self-healing soft electronics. Nat. Electron. 2, 144–150 (2019).

    Article  Google Scholar 

  5. Bhunia, S. et al. Autonomous self-repair in piezoelectric molecular crystals. Science 373, 321–327 (2021).

    Article  CAS  PubMed  Google Scholar 

  6. Ekeocha, J. et al. Challenges and opportunities of self-healing polymers and devices for extreme and hostile environments. Adv. Mater. 33, 2008052 (2021).

    Article  CAS  Google Scholar 

  7. Liu, H., Ye, K., Zhang, Z. & Zhang, H. An organic crystal with high elasticity at an ultra-low temperature (77 K) and shapeability at high temperatures. Angew. Chem. Int. Ed. 58, 19081–19086 (2019).

    Article  CAS  Google Scholar 

  8. Di, Q. et al. Fluorescence-based thermal sensing with elastic organic crystals. Nat. Commun. 13, 5280 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. White, S. R. et al. Autonomic healing of polymer composites. Nature 409, 794–797 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Chen, H., Ma, X., Wu, S. & Tian, H. A rapidly self-healing supramolecular polymer hydrogel with photostimulated room-temperature phosphorescence responsiveness. Angew. Chem. Int. Ed. 53, 14149–14152 (2014).

    Article  CAS  Google Scholar 

  11. Wei, Z. et al. Self-healing gels based on constitutional dynamic chemistry and their potential applications. Chem. Soc. Rev. 43, 8114–8131 (2014).

    Article  CAS  PubMed  Google Scholar 

  12. Cahen, D., Kronik, L. & Hodes, G. Are defects in lead-halide perovskites healed, tolerated, or both? ACS Energy Lett. 6, 4108–4114 (2021).

    Article  CAS  Google Scholar 

  13. Denissen, W. et al. Vinylogous urethane vitrimers. Adv. Funct. Mater. 25, 2451–2457 (2015).

    Article  CAS  Google Scholar 

  14. Zou, W., Dong, J., Luo, Y., Zhao, Q. & Xie, T. Dynamic covalent polymer networks: from old chemistry to modern day innovations. Adv. Mater. 29, 1606100 (2017).

    Article  Google Scholar 

  15. Commins, P., Hara, H. & Naumov, P. Self-healing molecular crystals. Angew. Chem. Int. Ed. 55, 13028–13032 (2016).

    Article  CAS  Google Scholar 

  16. Kathan, M. et al. Control of imine exchange kinetics with photoswitches to modulate self-healing in polysiloxane networks by light illumination. Angew. Chem. Int. Ed. 55, 13882–13886 (2016).

    Article  CAS  Google Scholar 

  17. Cacciapaglia, R., Stefano, S. D. & Mandolini, L. Metathesis reaction of formaldehyde acetals: an easy entry into the dynamic covalent chemistry of cyclophane formation. J. Am. Chem. Soc. 127, 13666–13671 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Zheng, N., Xu, Y., Zhao, Q. & Xie, T. Dynamic covalent polymer networks: a molecular platform for designing functions beyond chemical recycling and self-healing. Chem. Rev. 121, 1716–1745 (2021).

    Article  CAS  PubMed  Google Scholar 

  19. Al-Handawi, M. B. et al. Ferroelastic ionic organic crystals that self-heal to 95%. Nat. Commun. 15, 8095 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Meng, J., Su, Y., Zhu, H. & Cai, T. Shape memory and self-healing in a molecular crystal with inverse temperature symmetry breaking. Chem. Sci. 15, 5738–5745 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Pathan, J. R. et al. A self-healing crystal that repairs multiple cracks. J. Am. Chem. Soc. 146, 27100–27108 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gupta, P., Karothu, D. P., Ahmed, E., Naumov, P. & Nath, N. K. Thermally twistable, photobendable, elastically deformable, and self-healable soft crystals. Angew. Chem. Int. Ed. 57, 8498–8502 (2018).

    Article  CAS  Google Scholar 

  23. Liu, G. et al. Self-healing behavior in a thermo-mechanically responsive cocrystal during a reversible phase transition. Angew. Chem. Int. Ed. 56, 198–202 (2017).

    Article  CAS  Google Scholar 

  24. Karothu, D. P., Weston, J., Desta, I. T. & Naumov, P. Shape-memory and self-healing effects in mechanosalient molecular crystals. J. Am. Chem. Soc. 13, 13298–13306 (2016).

    Article  Google Scholar 

  25. Qiu, K. et al. Self-healing of fractured diamond. Nat. Mater. 22, 1317–1323 (2023).

    Article  CAS  PubMed  Google Scholar 

  26. Yadavalli, S. K., Dai, Z., Zhou, H., Zhou, Y. & Padture, N. P. Facile healing of cracks in organic–inorganic halide perovskite thin films. Acta Mater. 187, 112–121 (2020).

    Article  CAS  Google Scholar 

  27. Yamazaki, T., Driessche, A. E. S. V. & Kimura, Y. High mobility of lattice molecules and defects during the early stage of protein crystallization. Soft Matter 16, 1955–1960 (2020).

    Article  CAS  PubMed  Google Scholar 

  28. Yanagisawa, Y., Nan, Y., Okuro, K. & Aida, T. Mechanically robust, readily repairable polymers via tailored noncovalent cross-linking. Science 359, 72–76 (2018).

    Article  CAS  PubMed  Google Scholar 

  29. Sierra-Romero, A., Novakovic, K. & Geoghegan, M. A reversible water-based electrostatic adhesive. Angew. Chem. Int. Ed. 63, e202310750 (2024).

    Article  CAS  Google Scholar 

  30. Yamaguchi, M., Ono, S. & Terano, M. Self-repairing property of polymer network with dangling chains. Mater. Lett. 61, 1396–1399 (2007).

    Article  CAS  Google Scholar 

  31. Li, H., Xin, H. L., Muller, D. A. & Estroff, L. A. Visualizing the 3D internal structure of calcite single crystals grown in agarose hydrogels. Science 326, 1244–1247 (2009).

    Article  CAS  PubMed  Google Scholar 

  32. Zhang, L., Bailey, J. B., Subramanian, R. H., Groisman, A. & Tezcan, F. A. Hyperexpandable, self-healing macromolecular crystals with integrated polymer networks. Nature 557, 86–91 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Habault, D., Zhang, H. & Zhao, Y. Light-triggered self-healing and shape-memory polymers. Chem. Soc. Rev. 42, 7244–7256 (2013).

    Article  CAS  PubMed  Google Scholar 

  34. Li, Y. M., Zhang, Z. P., Rong, M. Z. & Zhang, M. Q. Sunlight stimulated photochemical self-healing polymers capable of re-bonding damages up to a centimeter below the surface even out of the reach of the illumination. Adv. Mater. 35, 2211009 (2023).

    Article  CAS  Google Scholar 

  35. Murphy, E. B. & Wudl, F. The world of smart healable materials. Prog. Polym. Sci. 35, 223–251 (2010).

    Article  CAS  Google Scholar 

  36. Commins, P., Al-Handawi, M. B. & Naumov, P. Self-healing crystals. Nat. Rev. Chem. 9, 343–355 (2025).

    Article  PubMed  Google Scholar 

  37. Liu, J. et al. Tough supramolecular polymer networks with extreme stretchability and fast room-temperature self-healing. Adv. Mater. 29, 1605325 (2017).

    Article  Google Scholar 

  38. Xu, J., Chen, J., Zhang, Y., Liu, T. & Fu, J. A fast room-temperature self-healing glassy polyurethane. Angew. Chem. Int. Ed. 60, 7947 (2021).

    Article  CAS  Google Scholar 

  39. Hu, J., Mo, R., Jiang, X., Sheng, X. & Zhang, X. Towards mechanical robust yet self-healing polyurethane elastomers via combination of dynamic main chain and dangling quadruple hydrogen bonds. Polymer 183, 121912 (2019).

    Article  CAS  Google Scholar 

  40. Corten, C. C. & Urban, M. W. Repairing polymers using oscillating magnetic field. Adv. Mater. 21, 5011–5015 (2009).

    Article  CAS  PubMed  Google Scholar 

  41. Wang, C. et al. Ultra-stretchable and fast self-healing ionic hydrogel in cryogenic environments for artificial nerve fiber. Adv. Mater. 34, 2105416 (2022).

    Article  CAS  Google Scholar 

  42. Park, S. K. & Diao, Y. Martensitic transition in molecular crystals for dynamic functional materials. Chem. Soc. Rev. 49, 8287–8314 (2020).

    Article  CAS  PubMed  Google Scholar 

  43. Awad, W. M. et al. Mechanical properties and peculiarities of molecular crystals. Chem. Soc. Rev. 52, 3098–3169 (2023).

    Article  CAS  PubMed  Google Scholar 

  44. Mahmoud Halabi, J., Al-Handawi, M. B., Ceballos, R. & Naumov, P. Intersectional effects of crystal features on the actuation performance of dynamic molecular crystals. J. Am. Chem. Soc. 145, 12173–12180 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Worthy, A. et al. Atomic resolution of structural changes in elastic crystals of copper(II) acetylacetonate. Nat. Chem. 10, 65–69 (2018).

    Article  CAS  PubMed  Google Scholar 

  46. Das, D., Jacobs, T. & Barbour, L. J. Exceptionally large positive and negative anisotropic thermal expansion of an organic crystalline material. Nat. Mater. 9, 36–39 (2010).

    Article  CAS  PubMed  Google Scholar 

  47. Chung, H. et al. Rotator side chains trigger cooperative transition for shape and function memory effect in organic semiconductors. Nat. Commun. 9, 278 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Duan, Y., Semin, S., Tinnemans, P., Xu, J. & Rasing, T. Fully controllable structural phase transition in thermomechanical molecular crystals with a very small thermal hysteresis. Small 17, 2006757 (2021).

    Article  CAS  Google Scholar 

  49. Commins, P. et al. Autonomous and directional flow of water and transport of particles across a subliming dynamic crystal surface. Nat. Chem. 15, 677–684 (2023).

    Article  CAS  PubMed  Google Scholar 

  50. Zhu, L., Al-Kaysi, R. O. & Bardeen, C. J. Reversible photoinduced twisting of molecular crystal microribbons. J. Am. Chem. Soc. 133, 12569–12575 (2011).

    Article  CAS  PubMed  Google Scholar 

  51. Yang, X. et al. Logarithmic and Archimedean organic crystalline spirals. Nat. Commun. 15, 9025 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Lan, L., Li, L., Wang, C., Naumov, P. & Zhang, H. Efficient aerial water harvesting with self-sensing dynamic Janus crystals. J. Am. Chem. Soc. 146, 30529–30538 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ahmed, E., Karothu, D. P. & Naumov, P. Crystal adaptronics: mechanically reconfigurable elastic and superelastic molecular crystals. Angew. Chem. Int. Ed. 57, 8837–8846 (2018).

    Article  CAS  Google Scholar 

  54. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. OLEX2: a complete structure solution, refinement, and analysis program. J. Appl. Crystallogr. 42, 339–341 (2009).

    Article  CAS  Google Scholar 

  55. Sheldrick, G. M. A short history of SHELX. Acta Crystallogr. A 64, 112–122 (2008).

    Article  CAS  PubMed  Google Scholar 

  56. Macrae, C. F. et al. Mercury CSD 2.0-New features for the visualization and investigation of crystal structures. J. Appl. Crystallogr. 41, 466–470 (2008).

    Article  CAS  Google Scholar 

  57. Lu, T. dimerscan (Beijing Kein Research Center for Natural Sciences, 2019); http://sobereva.com/soft/dimerscan

  58. Lu, T. Molclus v.1.12 (Beijing Kein Research Center for Natural Sciences, 2023); http://www.keinsci.com/research/molclus.html

  59. Lu, T. & Chen, Q. Simple, efficient, and universal energy decomposition analysis method based on dispersion-corrected density functional theory. J. Phys. Chem. A 127, 7023–7035 (2023).

    Article  CAS  PubMed  Google Scholar 

  60. Frisch, M. J. et al. Gaussian 16, revision A.03 (Gaussian, Inc., 2016)

  61. Lu, T. A comprehensive electron wavefunction analysis toolbox for chemists, Multiwfn. J. Chem. Phys. 161, 082503 (2024).

    Article  CAS  PubMed  Google Scholar 

  62. Lu, T. & Chen, F. Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 33, 580−592 (2012).

    Article  Google Scholar 

  63. Humphrey, W., Dalke, A. & Schulten, K. VMD: visual molecular dynamics. J. Mol. Graph. 14, 33–38 (1996).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work received support from the National Natural Science Foundation of China (grant nos. 52373181 and 52173164), the Natural Science Foundation of Jilin Province (grant no. 20230101038JC) and funding from New York University Abu Dhabi (project AD073). Additionally, this material is based on works supported by Tamkeen under NYUAD RRC grant no. CG011.

Author information

Authors and Affiliations

Authors

Contributions

H.Z., L.L. and P.N. conceived of the project. C.D., B.T., Y.Z. and B.J. performed the experiments. P.C., M.B.A. and H.Z. supervised the experiments. B.T., H.Z. and P.N. cowrote the manuscript.

Corresponding authors

Correspondence to Panče Naumov or Hongyu Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks Christopher Bardeen and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–5. Figs. 1–28. Tables 1–5 and References.

Supplementary Video 1

Fast self-healing process of PBDPA crystals.

Supplementary Video 2

Gradual self-healing process of PBDPA crystals.

Supplementary Video 3

Applying a longitudinal force parallel to the (001) plane induces healing of PBDPA crystals.

Supplementary Video 4

Applying a lateral force perpendicular to the (001) plane induces healing of PBDPA crystals.

Supplementary Video 5

Self-healing process of PBDPA crystals at 423 k.

Supplementary Video 6

Self-healing process of PBDPA crystals at 77 k (Sample 1).

Supplementary Video 7

Self-healing process of PBDPA crystals at 77 k (Sample 2).

Supplementary Video 8

PBDPA crystals used for AFM testing after self-healing.

Supplementary Video 9

PBDPA crystals used for CLSM testing after self-healing.

Supplementary Data 1

Source data for supplementary information.

Supplementary Data 2

Crystallographic data of PBDPA crystals at 100 K.

Supplementary Data 3

Crystallographic data of PBDPA crystals at 298 K.

Source data

Source Data Fig. 4

Source data for Fig. 4.

Source Data Fig. 5

Source data for Fig. 5.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, C., Tang, B., Zhou, Y. et al. Cryogenically self-healing organic crystals. Nat. Mater. (2025). https://doi.org/10.1038/s41563-025-02411-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41563-025-02411-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing