Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Rational design of high-performance low-loading oxygen reduction catalysts for alkaline fuel cells

Abstract

The lack of mechanistic understanding and catalyst design principles for alkaline electrolytes, especially for the sluggish oxygen reduction reaction, has impeded the advancement of alkaline fuel cells. Here we propose a modified volcano plot and apply this rationale to strategically design Pt nanosheets with PdHx nanosheets substrates. This catalyst exhibited high stability with a specific activity of 1.71 mA cm−2 at 0.95 V versus the reversible hydrogen electrode, surpassing the benchmark of Pt/C by 49-fold. Spectroscopic, electrochemical and electron microscopic characterizations revealed that such performance enhancement originated from tensile-strained Pt{111} facets, improving oxidative stability and suppressing carbon corrosion. In fuel cell testing, the catalyst enabled a peak power density of 1.67 W cm−2 with a loading of 10 µgPGM Cathode cm−2. Further optimization delivered a peak power density of 21.7 W mg−1PGM Cathode+Anode with a total specific catalyst cost US$1.27 kW−1, surpassing the US Department of Energy’s Pt group metal loading and cost targets. This study provides valuable insights into catalyst design for the alkaline oxygen reduction reaction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: ORR on Pt/C, Pd/C, Ir/C, Rh/C and Ru/C in acidic and alkaline electrolytes.
Fig. 2: Structural characterizations of PdHx@Pt NS catalyst.
Fig. 3: Electrochemical properties of PdHx@Pt NS catalyst.
Fig. 4: Operando XAS studies of PdHx@Pt NS and Pt/C under electrochemical conditions.
Fig. 5: ORR performance of PdHx@Pt NS under different conditions.
Fig. 6: AEMFC performance with PdHx@Pt NS cathodes.

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available in the Article and its Supplementary Information. Additional data are available from the corresponding authors on request. Source data are provided with this paper.

References

  1. Britton, B. et al. Perspective—the next decade of AEMFCs: near-term targets to accelerate applied R&D. J. Electrochem. Soc. 167, 084514 (2020).

    Article  Google Scholar 

  2. Luo, M. & Koper, M. T. M. A kinetic descriptor for the electrolyte effect on the oxygen reduction kinetics on Pt(111). Nat. Catal. 5, 615–623 (2022).

    Article  CAS  Google Scholar 

  3. She, Z. W. et al. Combining theory and experiment in electrocatalysis: insights into materials design. Science 355, eaad4998 (2017).

    Article  Google Scholar 

  4. Ooka, H., Huang, J. & Exner, K. S. The Sabatier principle in electrocatalysis: basics, limitations, and extensions. Front. Energy Res. 9, 654460 (2021).

    Article  Google Scholar 

  5. Sabatier, P. How I have been led to the direct hydrogenation method by metallic catalysts. Ind. Eng. Chem. 18, 1005–1008 (1926).

    Article  CAS  Google Scholar 

  6. Kulkarni, A., Siahrostami, S., Patel, A. & Nørskov, J. K. Understanding catalytic activity trends in the oxygen reduction reaction. Chem. Rev. 118, 2302–2312 (2018).

    Article  CAS  PubMed  Google Scholar 

  7. Nørskov, J. K. et al. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 108, 17886–17892 (2004).

    Article  PubMed  Google Scholar 

  8. Wang, Y. J. et al. Carbon-supported Pt-based alloy electrocatalysts for the oxygen reduction reaction in polymer electrolyte membrane fuel cells: particle size, shape, and composition manipulation and their impact to activity. Chem. Rev. 115, 3433–3467 (2015).

    Article  CAS  PubMed  Google Scholar 

  9. Lim, C., Fairhurst, A. R., Ransom, B. J., Haering, D. & Stamenkovic, V. R. Role of transition metals in Pt alloy catalysts for the oxygen reduction reaction. ACS Catal. 13, 14874–14893 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Stamenkovic, V. R., Strmcnik, D., Lopes, P. P. & Markovic, N. M. Energy and fuels from electrochemical interfaces. Nat. Mater. 16, 57–69 (2016).

    Article  PubMed  Google Scholar 

  11. Li, H. et al. Oxidative stability matters: a case study of pallidum hydride nanosheets for alkaline fuel cells. J. Am. Chem. Soc. 144, 8106–8114 (2022).

    Article  CAS  PubMed  Google Scholar 

  12. Zhou, M. et al. Improvement of oxygen reduction performance in alkaline media by tuning phase structure of Pd-Bi nanocatalysts. J. Am. Chem. Soc. 143, 15891–15897 (2021).

    Article  CAS  PubMed  Google Scholar 

  13. Wang, L. et al. Tunable intrinsic strain in two-dimensional transition metal electrocatalysts. Science 363, 870–874 (2019).

    Article  CAS  PubMed  Google Scholar 

  14. Luo, M. et al. PdMo bimetallene for oxygen reduction catalysis. Nature 574, 81–85 (2019).

    Article  CAS  PubMed  Google Scholar 

  15. Gómez-Marín, A. M., Rizo, R. & Feliu, J. M. Oxygen reduction reaction at Pt single crystals: a critical overview. Catal. Sci. Technol. 4, 1685–1698 (2014).

    Article  Google Scholar 

  16. Li, M. F., Liao, L. W., Yuan, D. F., Mei, D. & Chen, Y. X. pH effect on oxygen reduction reaction at Pt(111) electrode. Electrochim. Acta 110, 780–789 (2013).

    Article  CAS  Google Scholar 

  17. Jensen, K. D. et al. Elucidation of the oxygen reduction volcano in alkaline media using a copper–platinum(111) alloy. Angew. Chem. Int. Ed. 57, 2800–2805 (2018).

    Article  CAS  Google Scholar 

  18. Suntivich, J. et al. Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal–air batteries. Nat. Chem. 3, 546–550 (2011).

    Article  CAS  PubMed  Google Scholar 

  19. Friebel, D. et al. In situ X-ray probing reveals fingerprints of surface platinum oxide. Phys. Chem. Chem. Phys. 13, 262–266 (2010).

    Article  PubMed  Google Scholar 

  20. McCaulley, J. A. In-situ X-ray absorption spectroscopy studies of hydride and carbide formation in supported palladium catalysts. J. Phys. Chem. 97, 10372–10379 (1993).

    Article  CAS  Google Scholar 

  21. Liu, G. et al. Hydrogen-intercalation-induced lattice expansion of Pd@Pt core-shell nanoparticles for highly efficient electrocatalytic alcohol oxidation. J. Am. Chem. Soc. 143, 11262–11270 (2021).

    Article  CAS  PubMed  Google Scholar 

  22. Sasaki, K., Marinkovic, N., Isaacs, H. S. & Adzic, R. R. Synchrotron-based in situ characterization of carbon-supported platinum and platinum monolayer electrocatalysts. ACS Catal. 6, 69–76 (2016).

    Article  CAS  Google Scholar 

  23. Takimoto, D. et al. Platinum nanosheets synthesized via topotactic reduction of single-layer platinum oxide nanosheets for electrocatalysis. Nat. Commun. 14, 19 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Stamenkovic, V. R. et al. Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science 315, 493–497 (2007).

    Article  CAS  PubMed  Google Scholar 

  25. Liang, Y., McLaughlin, D., Csoklich, C., Schneider, O. & Bandarenka, A. S. The nature of active centers catalyzing oxygen electro-reduction at platinum surfaces in alkaline media. Energy Environ. Sci. 12, 351–357 (2019).

    Article  CAS  Google Scholar 

  26. Govindarajan, N., Xu, A. & Chan, K. How pH affects electrochemical processes. Science 375, 379–380 (2022).

    Article  CAS  PubMed  Google Scholar 

  27. Kelly, S. R., Kirk, C., Chan, K. & Nørskov, J. K. Electric field effects in oxygen reduction kinetics: rationalizing pH dependence at the Pt(111), Au(111), and Au(100) electrodes. J. Phys. Chem. C 124, 14581–14591 (2020).

    Article  CAS  Google Scholar 

  28. Briega-Martos, V., Herrero, E. & Feliu, J. M. Effect of pH and water structure on the oxygen reduction reaction on platinum electrodes. Electrochim. Acta 241, 497–509 (2017).

    Article  CAS  Google Scholar 

  29. Li, H. et al. Analysis of the limitations in the oxygen reduction activity of transition metal oxide surfaces. Nat. Catal. 4, 463–468 (2021).

    Article  CAS  Google Scholar 

  30. Tian, X. et al. Engineering bunched Pt-Ni alloy nanocages for efficient oxygen reduction in practical fuel cells. Science 366, 850–856 (2019).

    Article  CAS  PubMed  Google Scholar 

  31. Wang, Q. et al. Unveiling the pitfalls of comparing oxygen reduction reaction kinetic data for Pd-based electrocatalysts without the experimental conditions of the current−potential curves. ACS Energy Lett. 7, 952–957 (2022).

    Article  CAS  Google Scholar 

  32. He, T. et al. Mastering the surface strain of platinum catalysts for efficient electrocatalysis. Nature 598, 76–81 (2021).

    Article  CAS  PubMed  Google Scholar 

  33. Bugaev, A. L. et al. Palladium carbide and hydride formation in the bulk and at the surface of palladium nanoparticles. J. Phys. Chem. C 122, 12029–12037 (2018).

    Article  CAS  Google Scholar 

  34. Kabiraz, M. K. et al. Ligand effect of shape-controlled β-palladium hydride nanocrystals on liquid-fuel oxidation reactions. Chem. Mater. 31, 5663–5673 (2019).

    Article  CAS  Google Scholar 

  35. Zhang, J. et al. Controlling the catalytic activity of platinum-monolayer electrocatalysts for oxygen reduction with different substrates. Angew. Chem. Int. Ed. 44, 2132–2135 (2005).

    Article  CAS  Google Scholar 

  36. Xu, Y., Ruban, A. V. & Mavrikakis, M. Adsorption and dissociation of O2 on Pt-Co and Pt-Fe alloys. J. Am. Chem. Soc. 126, 4717–4725 (2004).

    Article  CAS  PubMed  Google Scholar 

  37. Rizo, R., Sitta, E., Herrero, E., Climent, V. & Feliu, J. M. Towards the understanding of the interfacial pH scale at Pt(111) electrodes. Electrochim. Acta 162, 138–145 (2015).

    Article  CAS  Google Scholar 

  38. Kuo, D. Y., Lu, X., Hu, B., Abruña, H. D. & Suntivich, J. Rate and mechanism of electrochemical formation of surface-bound hydrogen on Pt(111) single crystals. J. Phys. Chem. Lett. 13, 6383–6390 (2022).

    Article  CAS  PubMed  Google Scholar 

  39. Editor, G. et al. Stripping voltammetry of carbon monoxide oxidation on stepped platinum single-crystal electrodes in alkaline solution. Phys. Chem. Chem. Phys. 10, 3802–3811 (2008).

    Article  Google Scholar 

  40. Jia, Q. et al. Activity descriptor identification for oxygen reduction on platinum-based bimetallic nanoparticles: in situ observation of the linear composition–strain–activity relationship. ACS Nano 9, 387–400 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Roth, C. et al. Determination of O[H] and CO coverage and adsorption sites on PtRu electrodes in an operating PEM fuel cell. J. Am. Chem. Soc. 127, 14607–14615 (2005).

    Article  CAS  PubMed  Google Scholar 

  42. Teliska, M., O’Grady, W. E. & Ramaker, D. E. Determination of O and OH adsorption sites and coverage in situ on Pt electrodes from Pt L23 X-ray absorption spectroscopy. J. Phys. Chem. B 109, 8076–8084 (2005).

    Article  CAS  PubMed  Google Scholar 

  43. Meier, J. C. et al. Design criteria for stable Pt/C fuel cell catalysts. Beilstein J. Nanotechnol. 5, 44–67 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Zeng, R. et al. Methanol oxidation using ternary ordered intermetallic electrocatalysts: a DEMS study. ACS Catal. 10, 770–776 (2020).

    Article  CAS  Google Scholar 

  45. Cherstiouk, O. V. et al. Microstructure effects on the electrochemical corrosion of carbon materials and carbon-supported Pt catalysts. Electrochim. Acta 55, 8453–8460 (2010).

    Article  CAS  Google Scholar 

  46. Wang, X. X., Swihart, M. T. & Wu, G. Achievements, challenges and perspectives on cathode catalysts in proton exchange membrane fuel cells for transportation. Nat. Catal. 2, 578–589 (2019).

    Article  CAS  Google Scholar 

  47. Hydrogen and Fuel Cell Technologies Office DOE Technical Targets for Polymer Electrolyte Membrane Fuel Cell Components (US DOE, 2022); https://www.energy.gov/eere/fuelcells/doe-technical-targets-polymer-electrolyte-membrane-fuel-cell-components

  48. Setzler, B. P., Zhuang, Z., Wittkopf, J. A. & Yan, Y. Activity targets for nanostructured platinum-group-metal-free catalysts in hydroxide exchange membrane fuel cells. Nat. Nanotechnol. 11, 1020–1025 (2016).

    Article  CAS  PubMed  Google Scholar 

  49. Douglin, J. C. et al. High-performance ionomerless cathode anion-exchange membrane fuel cells with ultra-low-loading Ag–Pd alloy electrocatalysts. Nat. Energy 8, 1262–1272 (2023).

    Article  CAS  Google Scholar 

  50. Kim, D., Resasco, J., Yu, Y., Asiri, A. M. & Yang, P. Synergistic geometric and electronic effects for electrochemical reduction of carbon dioxide using gold–copper bimetallic nanoparticles. Nat. Commun. 5, 4948 (2014).

    Article  CAS  PubMed  Google Scholar 

  51. Lima, F. H. B. et al. Catalytic activity–d-band center correlation for the O2 reduction reaction on platinum in alkaline solutions. J. Phys. Chem. C 111, 404–410 (2007).

    Article  CAS  Google Scholar 

  52. Mustain, W. E., Chatenet, M., Page, M. & Kim, Y. S. Durability challenges of anion exchange membrane fuel cells. Energy Environ. Sci. 13, 2805–2838 (2020).

    Article  CAS  Google Scholar 

  53. Wang, H. & Abruña, H. D. IrPdRu/C as H2 oxidation catalysts for alkaline fuel cells. J. Am. Chem. Soc. 139, 6807–6810 (2017).

    Article  CAS  PubMed  Google Scholar 

  54. Leshchev, D. et al. The Inner Shell Spectroscopy beamline at NSLS-II: a facility for in situ and operando X-ray absorption spectroscopy for materials research. J. Synchrotron Radiat. 29, 1095–1106 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Yang, Y. et al. In situ X-ray absorption spectroscopy of a synergistic Co-Mn oxide catalyst for the oxygen reduction reaction. J. Am. Chem. Soc. 141, 1463–1466 (2019).

    Article  CAS  PubMed  Google Scholar 

  56. Ravel, B. & Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 12, 537–541 (2005).

    Article  CAS  PubMed  Google Scholar 

  57. Yang, Y. et al. High-loading composition-tolerant Co-Mn spinel oxides with performance beyond 1 W/cm2 in alkaline polymer electrolyte fuel cells. ACS Energy Lett. 4, 1251–1257 (2019).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Center for Alkaline Based Energy Solutions (CABES), part of the Energy Frontier Research Center (EFRC) program supported by the US DOE, Office of Science, Office of Basic Energy Sciences, under grant number DE-SC-0019445 (H.L., R.Z., Z.S., H.W., M.M.T-C., W.X., M.K., A.M.V., Q.L., D.M. and H.D.A). This work made use of the TEM facilities at the Cornell Center for Materials Research (CCMR), which are supported through the National Science Foundation Materials Research Science and Engineering Center (NSF MRSEC) program (DMR1719875; Z.S. and D.M.). This research used the ISS (8-ID) beamline of the National Synchrotron Light Source II, a US DOE, Office of Science User Facility, operated for the US DOE, Office of Science, by Brookhaven National Laboratory under contract number DE-SC0012704 (D.L. and E.S.). H.L. gratefully acknowledges support from the Scientific Foundation for Youth Scholars of Shenzhen University (868-000001033351; H.L.).

Author information

Authors and Affiliations

Authors

Contributions

H.L., R.Z. and H.D.A. conceived the research and wrote the paper. H.L., R.Z. and H.W. performed the catalyst synthesis, electrochemical measurements and general characterization. Z.S. conducted the STEM/EDX characterization and analysis, supervised by D.A.M. H.L., R.Z., D.L. and E.S. performed the operando XAS characterization. H.L. and R.Z. handled the XAS data analysis and operando XAS electrochemical cell design with the help of M.M.T.-C., W.X. and A.M.V. H.L. performed the MEA testing with the assistance of Q.L., A.M.V. and M.-J.K. H.D.A. supervised the research. All authors contributed to the discussions and revisions of the paper.

Corresponding authors

Correspondence to David A. Muller or Héctor D. Abruña.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks Min-Rui Gao, Hirohito Ogasawara and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Comparison of ORR activities on Polycrystalline Pt (Poly_Pt) and Polycrystalline Pd (Poly_Pd) in acidic and alkaline electrolytes.

a, O2-saturated 0.1 M HClO4. b, O2-saturated 0.01 M HClO4. c, O2-saturated 0.01 M KOH. d, O2-saturated 0.1 M KOH. e, O2-saturated 1.0 M KOH. Scan rate: 5 mV s−1; rotation rate: 1,600 rpm. f, Specific activity measured at 0.85 V vs. RHE. The comparison showed that the ORR performance of polycrystalline Pd could rival, and even surpass, that of polycrystalline Pt at higher pH values, despite polycrystalline Pd being significantly less active than Pt at lower pHs.

Source data

Extended Data Fig. 2 CO stripping and ORR performance of Pt/C, Pd/C and a series of PdHx@Pt NS catalysts prepared with different Pt precursor molar ratios (5%, 10%, 15%, 25% and 50%).

a, CO stripping voltammograms of different catalysts in Ar-saturated 1.0 M KOH solution. Since Pt was deposited onto the surface of PdHx NS, the surface coverage increased with higher Pt precursor ratios. Accordingly, the CO stripping peak of PdHx NS initially exhibited a much more positive peak potential than Pt/C, but progressively shifted negatively as the Pt ratio increased. Notably, PdHx@Pt NS showed a peak position matching that of Pt/C, indicating that its surface was nearly fully covered with Pt. b, c, ORR polarization profiles of catalysts during anodic (b) and cathodic (c) scans in O2-saturated 1.0 M KOH solution. Even though PdHx@Pt NS did not significantly enhance the ORR activity (ΔE1/2 = 5 mV compared to PdHx NS) during the anodic scans, an activity improvement of 43 mV was achieved in the cathodic scans, pointing to the superior oxidative stability of PdHx@Pt NS.

Source data

Extended Data Fig. 3 Operando XANES spectra at the Pt L3-edge.

a, b, Spectra of PdHx@Pt NS (a) and Pt/C (b) measured under steady-state conditions. c, d, Comparisons of XANES spectra collected at 0.3 V for PdHx@Pt NS (c) and Pt/C (d) during different scan directions. The 0.3 V during anodic scan indicates the initial potential when the potential was ramped from 0.3 V to 1.1 V. The 0.3 V during cathodic scan means the applied potential when it decreased from 1.1 V to 0.3 V.

Source data

Extended Data Fig. 4 XANES and EXAFS analyses of catalyst stability after 10,000 ADT cycles.

a, b, XANES spectra of PdHx@Pt NS (a) and Pt/C (b) before and after 10,000 ADT cycles. PdHx@Pt NS displayed no change before and after ADT cycles while Pt/C exhibited a clear diminution in intensity at the white line. c, d, Pd K-edge XANES (c) and Fourier transforms of k3-weighted EXAFS spectra (d) of PdHx@Pt NS after 10,000 cycles. PdHx@Pt NS displayed no substantial changes before and after ADT cycles.

Source data

Supplementary information

Supplementary Information

Supplementary Figs. 1–18, Tables 1–4 and Notes 1–3.

Source data

Source Data Fig. 1

ORR polarization data for the catalysts plotted in Fig. 1a–e, data of the half-wave potentials versus oxygen binding energy plotted in Fig. 1f and white-line or i1/i2 intensity data from the XANES spectra plotted in Fig. 1g,h.

Source Data Fig. 2

XANES and EXAFS spectral data at the Pd K edge plotted in Fig. 2d,e, XANES and EXAFS spectral data at the Pt L3 edge plotted in Fig. 2f,g, XRD data plotted in Fig. 2h and XPS data plotted in Fig. 2i.

Source Data Fig. 3

CV and ORR polarization data in alkaline media plotted in Fig. 3a,b, CV and ORR polarization data in acidic media plotted in Fig. 3d,e and the corresponding mass and specific activity data plotted in Fig. 3c,f.

Source Data Fig. 4

Operando XANES and Δµ(E) spectral data plotted in Fig. 4a–e, and white-line or i1/i2 intensity data from the XANES spectra plotted in Fig. 4g–i.

Source Data Fig. 5

ORR polarization data before and after the ADT cycles plotted in Fig. 5a, EXAFS spectral data plotted in Fig. 5c,d, DEMS data plotted in Fig. 5e and temperature-dependent ORR data plotted in Fig. 5f.

Source Data Fig. 6

AEMFC polarization and power density data plotted in Fig. 6a,b,d, stability test data plotted in Fig. 6c and data of cost versus PGM loading analysis plotted in Fig. 6e.

Source Data Extended Data Fig./Table 1

ORR polarization data for polycrystalline Pd and Pt electrodes plotted in Extended Data Fig. 1a–e and specific activity data plotted in Extended Data Fig. 1f.

Source Data Extended Data Fig./Table 2

CO stripping voltammogram data plotted in Extended Data Fig. 2a and ORR polarization data during anodic and cathodic scans plotted in Extended Data Fig. 2b,c.

Source Data Extended Data Fig./Table 3

Operando XANES spectral data at the Pt L3 edge plotted in Extended Data Fig. 3a,d.

Source Data Extended Data Fig./Table 4

XANES and EXAFS spectral data for catalysts before and after the ADT cycles plotted in Extended Data Fig. 4a–d.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Zeng, R., Shi, Z. et al. Rational design of high-performance low-loading oxygen reduction catalysts for alkaline fuel cells. Nat. Mater. (2026). https://doi.org/10.1038/s41563-025-02422-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41563-025-02422-4

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing