Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

All-nitride superconducting qubits based on atomic layer deposition

Abstract

The development of large-scale quantum processors benefits from superconducting qubits that can operate at elevated temperatures and be fabricated with scalable, foundry-compatible processes. Atomic layer deposition (ALD) is increasingly being adopted as an industrial standard for thin-film growth, particularly in applications requiring precise control over layer thickness and composition. Here we report superconducting qubits based on NbN/AlN/NbN trilayers deposited entirely by ALD. By varying the number of ALD cycles used to form the AlN barrier, we achieve Josephson tunnelling through barriers of different thicknesses, with critical current density spanning seven orders of magnitude, demonstrating the uniformity and versatility of the process. Owing to the high critical temperature of NbN, transmon qubits based on these all-nitride trilayers exhibit microsecond-scale relaxation times, even at temperatures above 300 mK. These results establish ALD as a viable low-temperature deposition technique for superconducting quantum circuits and position all-nitride ALD qubits as a promising platform for operation at elevated temperatures.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: ALD growth sequence and atomic-scale characterization of NbN/AlN/NbN trilayer.
Fig. 2: Device schematics and IV characterization at 4 K.
Fig. 3: Qubit performance at the base temperature.
Fig. 4: Qubit performance at elevated temperatures.

Similar content being viewed by others

Data availability

The data supporting this study are included in the Article and its Supplementary Information. Source data are provided with this paper.

References

  1. Nakamura, Y., Pashkin, Y. A. & Tsai, J. S. Coherent control of macroscopic quantum states in a single-Cooper-pair box. Nature 398, 786–788 (1999).

    Article  CAS  Google Scholar 

  2. Koch, J. et al. Charge-insensitive qubit design derived from the Cooper pair box. Phys. Rev. A 76, 042319 (2007).

  3. Siddiqi, I. Engineering high-coherence superconducting qubits. Nat. Rev. Mater. 6, 875–891 (2021).

    Article  Google Scholar 

  4. Google Quantum AI and Collaborators. Quantum error correction below the surface code threshold. Nature 638, 920–926 (2025).

    Article  CAS  Google Scholar 

  5. Van Damme, J. et al. Advanced CMOS manufacturing of superconducting qubits on 300 mm wafers. Nature 634, 74–79 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Krinner, S. et al. Engineering cryogenic setups for 100-qubit scale superconducting circuit systems. EPJ Quantum Technol. 6, 2 (2019).

  7. Martin, M. J. et al. Energy use in quantum data centers: scaling the impact of computer architecture, qubit performance, size, and thermal parameters. IEEE Trans. Sustain. Comput. 7, 864–874 (2022).

    Article  Google Scholar 

  8. Yang, C. H. et al. Operation of a silicon quantum processor unit cell above one kelvin. Nature 580, 350–354 (2020).

    Article  CAS  PubMed  Google Scholar 

  9. Anferov, A., Lee, K.-H., Zhao, F., Simon, J. & Schuster, D. I. Improved coherence in optically defined niobium trilayer-junction qubits. Phys. Rev. Appl. 21, 024047 (2024).

  10. Anferov, A. et al. Superconducting qubits above 20 GHz operating over 200 mK. PRX Quantum 5, 020336 (2024).

  11. Anferov, A., Wan, F., Harvey, S. P., Simon, J. & Schuster, D. I. Millimeter-wave superconducting qubit. PRX Quantum 6, 020336 (2025).

    Article  Google Scholar 

  12. Nakamura, Y. et al. Superconducting qubits consisting of epitaxially grown NbN/AlN/NbN Josephson junctions. Appl. Phys. Lett. 99, 212502 (2011).

    Article  Google Scholar 

  13. Kim, S. et al. Enhanced coherence of all-nitride superconducting qubits epitaxially grown on silicon substrate. Commun. Mater. 2, 21 (2021).

  14. Tinkham, M. Introduction to Superconductivity 2nd edn (Dover Publications, 2004).

  15. Wang, Z., Shinozaki, K., Murooka, Y., & Kuzmin, L. S. High-quality epitaxial NbN/AlN/NbN tunnel junctions with a wide range of current density. Appl. Phys. Lett. 102, 102601 (2013).

  16. Makise, K., Terai, H. & Uzawa, Y. NbN/AlN/NbN/TiN tunnel junctions on Si (100) substrate for superconducting devices. IEEE Trans. Appl. Supercond. 26, 1100403 (2016).

    Article  Google Scholar 

  17. Qiu, W. & Terai, H. Fabrication of deep-sub-micrometer NbN/AlN/NbN epitaxial junctions on a Si-substrate. Appl. Phys. Express 13, 126501 (2020).

    Article  CAS  Google Scholar 

  18. George, S. M. Atomic layer deposition: an overview. Chem. Rev. 110, 111–131 (2010).

    Article  CAS  PubMed  Google Scholar 

  19. Deyu, G. K. et al. Recent advances in atomic layer deposition of superconducting thin films: a review. Mater. Horiz. 12, 5594–5626 (2025).

  20. Zhao, C. & Xiang, J. Atomic layer deposition (ALD) of metal gates for CMOS. Appl. Sci. 9, 2388 (2019).

    Article  CAS  Google Scholar 

  21. Sheng, J. et al. Review article: atomic layer deposition for oxide semiconductor thin film transistors: advances in research and development. J. Vac. Sci. Technol. A 36, 060801 (2018).

    Article  Google Scholar 

  22. Waechtler, T. et al. ALD-grown seed layers for electrochemical copper deposition integrated with different diffusion barrier systems. Microelectron. Eng. 88, 684–689 (2011).

    Article  CAS  Google Scholar 

  23. Chen, R. et al. Atomic layer deposition in advanced display technologies: from photoluminescence to encapsulation. Int. J. Extrem. Manuf. 6, 022003 (2024).

    Article  Google Scholar 

  24. Sowa, M. J. et al. Plasma-enhanced atomic layer deposition of superconducting niobium nitride. J. Vac. Sci. Technol. A 35, 01B143 (2017).

    Article  Google Scholar 

  25. Cheng, R., Wang, S. & Tang, H. X. Superconducting nanowire single-photon detectors fabricated from atomic-layer-deposited NbN. Appl. Phys. Lett. 115, 241101 (2019).

    Article  Google Scholar 

  26. Wilt, J. et al. Atomically thin Al2⁢O3 films for tunnel junctions. Phys. Rev. Appl. 7, 064022 (2017).

  27. Jhabvala, C. A., Nagler, P. C. & Stevenson, T. R. Atomic layer deposition Josephson junctions for cryogenic circuit applications. J. Low. Temp. Phys. 200, 331–335 (2020).

    Article  CAS  Google Scholar 

  28. Rosenberg, D. et al. 3D integrated superconducting qubits. npj Quantum Inf. 3, 42 (2017).

  29. Alevli, M., Ozgit, C., Donmez, I. & Biyikli, N. The influence of N2/H2 and ammonia N source materials on optical and structural properties of AlN films grown by plasma enhanced atomic layer deposition. J. Cryst. Growth 335, 51–57 (2011).

    Article  CAS  Google Scholar 

  30. Goerke, S. et al. Atomic layer deposition of AlN for thin membranes using trimethylaluminum and H2/N2 plasma. Appl. Surf. Sci. 338, 35–41 (2015).

    Article  CAS  Google Scholar 

  31. Shibalov, M. V. et al. Ultrathin epitaxial NbNx film deposited by PEALD method on C-plane sapphire: growth, structure and superconducting properties. Appl. Surf. Sci. 612, 155697 (2023).

    Article  CAS  Google Scholar 

  32. Dang, P. et al. An all-epitaxial nitride heterostructure with concurrent quantum hall effect and superconductivity. Sci. Adv. 7, eabf1388 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yaddanapudi, K. First-principles study of structural phase transformation and dynamical stability of cubic AlN semiconductors. AIP Adv. 8, 125006 (2018).

    Article  Google Scholar 

  34. Chen, Z., Holec, D., Bartosik, M., Mayrhofer, P. H. & Zhang, Z. Crystallographic orientation dependent maximum layer thickness of cubic AlN in CrN/AlN multilayers. Acta Mater. 168, 190–202 (2019).

    Article  CAS  Google Scholar 

  35. Shih, H.-Y. et al. Low-temperature atomic layer epitaxy of AlN ultrathin films by layer-by-layer, in-situ atomic layer annealing. Sci. Rep. 7, 17307 (2017).

  36. Grönberg, L. et al. Side-wall spacer passivated sub-μm Josephson junction fabrication process. Supercond. Sci. Technol. 30, 125016 (2017).

    Article  Google Scholar 

  37. Higurashi, E., Okumura, K., Kunimune, Y., Suga, T. & Hagiwara, K. Room-temperature bonding of wafers with smooth Au thin films in ambient air using a surface-activated bonding method. IEICE Trans. Electron. E100.C, 156–160 (2017).

    Article  Google Scholar 

  38. Zhao, R. et al. Merged-element transmon. Phys. Rev. Appl. 14, 064006 (2020).

    Article  CAS  Google Scholar 

  39. Mamin, H. J. et al. Merged-element transmons: design and qubit performance. Phys. Rev. Appl. 16, 034035 (2021).

  40. Blais, A., Grimsmo, A. L., Girvin, S. M., & Wallraff, A. Circuit quantum electrodynamics. Rev. Mod. Phys. 93, 025005 (2021).

  41. Place, A. P. M. et al. New material platform for superconducting transmon qubits with coherence times exceeding 0.3 milliseconds. Nat. Commun. 12, 1779 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Krantz, P. et al. A quantum engineer’s guide to superconducting qubits. Appl. Phys. Rev. 6, 021318 (2019).

    Article  Google Scholar 

  43. Gao, Y. Y., Rol, M. A., Touzard, S., & Wang, C. Practical guide for building superconducting quantum devices. PRX Quantum 2, 047001 (2021).

  44. Paik, H. et al. Observation of high coherence in Josephson junction qubits measured in a three-dimensional circuit QED architecture. Phys. Rev. Lett. 107, 240501 (2011).

    Article  PubMed  Google Scholar 

  45. Catelani, G., Schoelkopf, R. J., Devoret, M. H. & Glazman, L. I. Relaxation and frequency shifts induced by quasiparticles in superconducting qubits. Phys. Rev. B 84, 064517 (2011).

    Article  Google Scholar 

  46. Serniak, K. et al. Hot nonequilibrium quasiparticles in transmon qubits. Phys. Rev. Lett. 121, 157701 (2018).

  47. Jin, X. Y. et al. Thermal and residual excited-state population in a 3D transmon qubit. Phys. Rev. Lett. 114, 240501 (2015).

    Article  CAS  PubMed  Google Scholar 

  48. Lisenfeld, J., Lukashenko, A., Ansmann, M., Martinis, J. M. & Ustinov, A. V. Temperature dependence of coherent oscillations in Josephson phase qubits. Phys. Rev. Lett. 99, 170504 (2007).

    Article  CAS  PubMed  Google Scholar 

  49. Lvov, D. S., Lemziakov, S. A., Ankerhold, E., Peltonen, J. T. & Pekola, J. P. Thermometry based on a superconducting qubit. Phys. Rev. Appl. 23, 054079 (2025).

    Article  CAS  Google Scholar 

  50. Ganjam, S. et al. Surpassing millisecond coherence in on chip superconducting quantum memories by optimizing materials and circuit design. Nat. Commun. 15, 3687 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Huang, S. et al. Microwave package design for superconducting quantum processors. PRX Quantum 2, 047003 (2021).

  52. Tang, F. et al. Practical issues for atom probe tomography analysis of III-nitride semiconductor materials. Microsc. Microanal. 21, 544–556 (2015).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank D. Jena, H. G. Xing, V. Fatemi, F. Rana, C. E. Dreyer, P. L. McMahon, A. Ithepalli and M. Verma for helpful and inspirational discussions. We also thank Y. Sun, M. Rooks, L. McCabe, Y. Shin, K. Woods and S. Sohn for their assistance and guidance in device fabrications. This work was supported by the Air Force Office of Sponsored Research under grant number FA9550-23-1-0688 and by the Army Research Office under grant number W911NF-24-2-0240. H.X.T. acknowledges support from the Office of Naval Research under grant number N00014-23-1-2021. The use of the fabrication facilities was supported by the Yale Institute for Nanoscience and Quantum Engineering (YINQE) and the Yale SEAS Cleanroom. The TWPA used in this experiment was provided by IARPA and MIT Lincoln Laboratory. The work on STEM made use of the electron microscopy facility of the Cornell Center for Materials Research (CCMR) with support from the National Science Foundation Materials Research Science and Engineering Centers (MRSEC) program (DMR1719875). The Thermo Fisher Spectra 300 X-CFEG device was acquired with support from PARADIM, an NSF MIP (DMR-2039380) and Cornell University. N.P. acknowledges support from the National Science Foundation Graduate Research Fellowship under grant number DGE2139899. P.G. and B.M. acknowledge support from the Air Force Office of Sponsored Research under grant number 162023-22608.

Author information

Authors and Affiliations

Authors

Contributions

H.X.T. and D.W. conceived the research and designed the experiments. D.W. deposited the ALD films and fabricated the devices with contributions from M.C.C.P. D.W. performed the d.c. measurement with contributions from C.G.L.B. Y.W. constructed the RF measurement setup and Y.W. and D.W. performed the RF measurement. D.W., C.G.L.B. and M.C.C.P. provided the theoretical analysis. N.P. performed the STEM characterization. P.G. conducted the APT characterization. H.X.T., D.A.M. and B.M. supervised the project. D.W., N.P., P.G. and H.X.T. wrote the manuscript with input from all authors.

Corresponding author

Correspondence to Hong X. Tang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks Cameron Kopas and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. S1–S4, Sections I–VI and Tables S1 and S2.

Source data

Source Data Fig. 1

Statistical source data for Fig. 1b.

Source Data Fig. 2

Statistical source data for Fig. 2b.

Source Data Fig. 3

Statistical source data for Fig. 3a–c,e,f.

Source Data Fig. 4

Statistical source data for Fig. 4a,b.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, D., Wu, Y., Pieczulewski, N. et al. All-nitride superconducting qubits based on atomic layer deposition. Nat. Mater. (2026). https://doi.org/10.1038/s41563-025-02448-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41563-025-02448-8

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing