Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Experimental observation of liquid–solid transition of nanoconfined water at ambient temperature

Abstract

Nanoconfined water exhibits many abnormal properties compared with bulk water. However, the origin of those anomalies remains controversial due to the lack of experimental access to the molecular-level details of the hydrogen-bonding network of water within a nanocavity. Here we address this issue by combining scanning probe microscopy with nitrogen-vacancy-centre-based quantum sensing. Such a technique allows us to characterize both dynamics and structure of water confined between a hexagonal boron nitride flake and a hydrophilic diamond surface by nanoscale nuclear magnetic resonance. We observe a liquid–solid phase transition of nanoconfined water at ambient temperature with an onset confinement size of ~1.6 nm, below which the water diffusion is considerably suppressed and the hydrogen-bonding network of water becomes structurally ordered. The complete crystallization is observed below a confinement size of ~1 nm. The liquid–solid transition is further confirmed by molecular dynamics simulation. These findings shed new light on the phase transition of nanoconfined water and may form a unified picture for understanding water anomalies at the nanoscale.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematics of the experimental setup and SPM measurements for the confinement size.
Fig. 2: Nanoscale NMR spectroscopy of confined water at different confinement sizes.
Fig. 3: Phase transition of nanoconfined water obtained by experiment and theoretical calculation.
Fig. 4: Structure analysis of confined water.

Similar content being viewed by others

Data availability

The relevant data supporting the findings of this study are available via Zenodo (https://doi.org/10.5281/zenodo.17555910)82. All other data needed to evaluate the conclusions in the paper are present in the Article or Supplementary Information. Source data are provided with this paper.

Code availability

The code used in this study for the NMR simulations is available via Zenodo (https://doi.org/10.5281/zenodo.17555910)82.

References

  1. Liou, Y. C., Tocilj, A., Davies, P. L. & Jia, Z. C. Mimicry of ice structure by surface hydroxyls and water of a β-helix antifreeze protein. Nature 406, 322–324 (2000).

    Article  CAS  PubMed  Google Scholar 

  2. Sui, H. X., Han, B. G., Lee, J. K., Walian, P. & Jap, B. K. Structural basis of water-specific transport through the AQP1 water channel. Nature 414, 872–878 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Joshi, R. K. et al. Precise and ultrafast molecular sieving through graphene oxide membranes. Science 343, 752–754 (2014).

    Article  CAS  PubMed  Google Scholar 

  4. Surwade, S. P. et al. Water desalination using nanoporous single-layer graphene. Nat. Nanotechnol. 10, 459–464 (2015).

    Article  CAS  PubMed  Google Scholar 

  5. Hanikel, N., Prévot, M. S. & Yaghi, O. M. MOF water harvesters. Nat. Nanotechnol. 15, 348–355 (2020).

    Article  CAS  PubMed  Google Scholar 

  6. Logan, B. E. & Elimelech, M. Membrane-based processes for sustainable power generation using water. Nature 488, 313–319 (2012).

    Article  CAS  PubMed  Google Scholar 

  7. Holt, J. K. et al. Fast mass transport through sub-2-nanometer carbon nanotubes. Science 312, 1034–1037 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. Radha, B. et al. Molecular transport through capillaries made with atomic-scale precision. Nature 538, 222–225 (2016).

    Article  CAS  PubMed  Google Scholar 

  9. Fumagalli, L. et al. Anomalously low dielectric constant of confined water. Science 360, 1339–1342 (2018).

    Article  CAS  PubMed  Google Scholar 

  10. Chin, H. T. et al. Ferroelectric 2D ice under graphene confinement. Nat. Commun. 12, 6291 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Khan, S. H., Matei, G., Patil, S. & Hoffmann, P. M. Dynamic solidification in nanoconfined water films. Phys. Rev. Lett. 105, 106101 (2010).

    Article  PubMed  Google Scholar 

  12. Zangi, R. & Mark, A. E. Monolayer ice. Phys. Rev. Lett. 91, 025502 (2003).

    Article  PubMed  Google Scholar 

  13. Giovambattista, N., Rossky, P. J. & Debenedetti, P. G. Phase transitions induced by nanoconfinement in liquid water. Phys. Rev. Lett. 102, 050603 (2009).

    Article  PubMed  Google Scholar 

  14. Falk, K., Sedlmeier, F., Joly, L., Netz, R. R. & Bocquet, L. Molecular origin of fast water transport in carbon nanotube membranes: superlubricity versus curvature dependent friction. Nano Lett. 10, 4067–4073 (2010).

    Article  CAS  PubMed  Google Scholar 

  15. Han, S. H., Choi, M. Y., Kumar, P. & Stanley, H. E. Phase transitions in confined water nanofilms. Nat. Phys. 6, 685–689 (2010).

    Article  CAS  Google Scholar 

  16. Kastelowitz, N. & Molinero, V. Ice-liquid oscillations in nanoconfined water. ACS Nano 12, 8234–8239 (2018).

    Article  CAS  PubMed  Google Scholar 

  17. Kapil, V. et al. The first-principles phase diagram of monolayer nanoconfined water. Nature 609, 512–516 (2022).

    Article  CAS  PubMed  Google Scholar 

  18. Jiang, J. et al. Rich proton dynamics and phase behaviours of nanoconfined ices. Nat. Phys. 20, 456–464 (2024).

    Article  CAS  Google Scholar 

  19. Ma, R. Z. et al. Atomic imaging of the edge structure and growth of a two-dimensional hexagonal ice. Nature 577, 60–63 (2020).

    Article  CAS  PubMed  Google Scholar 

  20. Hong, J. N. et al. Imaging surface structure and premelting of ice Ih with atomic resolution. Nature 630, 375–380 (2024).

    Article  CAS  PubMed  Google Scholar 

  21. Algara-Siller, G. et al. Square ice in graphene nanocapillaries. Nature 519, 443–445 (2015).

    Article  CAS  PubMed  Google Scholar 

  22. Grünberg, B. et al. Hydrogen bonding of water confined in mesoporous silica MCM-41 and SBA-15 studied by H solid-state NMR. Chemistry 10, 5689–5696 (2004).

    Article  PubMed  Google Scholar 

  23. Ishizaki, T., Maruyama, M., Furukawa, Y. & Dash, J. G. Premelting of ice in porous silica glass. J. Cryst. Growth 163, 455–460 (1996).

    Article  CAS  Google Scholar 

  24. Sovago, M. et al. Vibrational response of hydrogen-bonded interfacial water is dominated by intramolecular coupling. Phys. Rev. Lett. 100, 173901 (2008).

    Article  PubMed  Google Scholar 

  25. Wang, Y. H. et al. In situ Raman spectroscopy reveals the structure and dissociation of interfacial water. Nature 600, 81–85 (2021).

    Article  CAS  PubMed  Google Scholar 

  26. Xu, Y., Ma, Y. B., Gu, F., Yang, S. S. & Tian, C. S. Structure evolution at the gate-tunable suspended graphene-water interface. Nature 621, 506–510 (2023).

    Article  CAS  PubMed  Google Scholar 

  27. Alabarse, F. G. et al. Freezing of water confined at the nanoscale. Phys. Rev. Lett. 109, 035701 (2012).

    Article  CAS  PubMed  Google Scholar 

  28. Staudacher, T. et al. Nuclear magnetic resonance spectroscopy on a (5-nanometer)3 sample volume. Science 339, 561–563 (2013).

    Article  CAS  PubMed  Google Scholar 

  29. Schmitt, S. et al. Submillihertz magnetic spectroscopy performed with a nanoscale quantum sensor. Science 356, 832–837 (2017).

    Article  CAS  PubMed  Google Scholar 

  30. Degen, C. L., Reinhard, F. & Cappellaro, P. Quantum sensing. Rev. Mod. Phys. 89, 035002 (2017).

    Article  Google Scholar 

  31. Du, J. F., Shi, F. Z., Kong, X., Jelezko, F. & Wrachtrup, J. Single-molecule scale magnetic resonance spectroscopy using quantum diamond sensors. Rev. Mod. Phys. 96, 025001 (2024).

    Article  CAS  Google Scholar 

  32. Zheng, W. T. et al. Coherence enhancement of solid-state qubits by local manipulation of the electron spin bath. Nat. Phys. 18, 1317–1323 (2022).

    Article  CAS  Google Scholar 

  33. DeVience, S. J. et al. Nanoscale NMR spectroscopy and imaging of multiple nuclear species. Nat. Nanotechnol. 10, 129–136 (2015).

    Article  CAS  PubMed  Google Scholar 

  34. Aslam, N. et al. Nanoscale nuclear magnetic resonance with chemical resolution. Science 357, 67–71 (2017).

    Article  CAS  PubMed  Google Scholar 

  35. Bian, K. et al. Nanoscale electric-field imaging based on a quantum sensor and its charge-state control under ambient condition. Nat. Commun. 12, 2457 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bian, K. et al. A scanning probe microscope compatible with quantum sensing at ambient conditions. Rev. Sci. Instrum. 95, 053707 (2024).

    Article  CAS  PubMed  Google Scholar 

  37. Zhu, Y. B., Wang, F. C., Bai, J. I., Zeng, X. C. & Wu, H. A. Compression limit of two-dimensional water constrained in graphene nanocapillaries. ACS Nano 9, 12197–12204 (2015).

    Article  CAS  PubMed  Google Scholar 

  38. Leng, Y. S. & Cummings, P. T. Hydration structure of water confined between mica surfaces. J. Chem. Phys. 124, 074711 (2006).

    Article  Google Scholar 

  39. Lane, J. M. D., Chandross, M., Stevens, M. J. & Grest, G. S. Water in nanoconfinement between hydrophilic self-assembled monolayers. Langmuir 24, 5209–5212 (2008).

    Article  CAS  PubMed  Google Scholar 

  40. Kumar, H., Dasgupta, C. & Maiti, P. K. Phase transition in monolayer water confined in Janus nanopore. Langmuir 34, 12199–12205 (2018).

    Article  CAS  PubMed  Google Scholar 

  41. Staudacher, T. et al. Probing molecular dynamics at the nanoscale via an individual paramagnetic centre. Nat. Commun. 6, 8527 (2015).

    Article  CAS  PubMed  Google Scholar 

  42. Yang, Z. P. et al. Detection of magnetic dipolar coupling of water molecules at the nanoscale using quantum magnetometry. Phys. Rev. B 97, 205438 (2018).

    Article  CAS  Google Scholar 

  43. Baldwin, C. G., Downes, J. E., McMahon, C. J., Bradac, C. & Mildren, R. P. Nanostructuring and oxidation of diamond by two-photon ultraviolet surface excitation: an XPS and NEXAFS study. Phys. Rev. B 89, 195422 (2014).

    Article  Google Scholar 

  44. Sangtawesin, S. et al. Origins of diamond surface noise probed by correlating single-spin measurements with surface spectroscopy. Phys. Rev. X. 9, 031052 (2019).

    CAS  Google Scholar 

  45. Laage, D., Elsaesser, T. & Hynes, J. T. Water dynamics in the hydration shells of biomolecules. Chem. Rev. 117, 10694–10725 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Xu, K., Cao, P. G. & Heath, J. R. Graphene visualizes the first water adlayers on mica at ambient conditions. Science 329, 1188–1191 (2010).

    Article  CAS  PubMed  Google Scholar 

  47. Shin, D., Hwang, J. & Jhe, W. Ice-VII-like molecular structure of ambient water nanomeniscus. Nat. Commun. 10, 286 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Martelli, F., Calero, C. & Franzese, G. Redefining the concept of hydration water near soft interfaces. Biointerphases 16, 020801 (2021).

    Article  CAS  PubMed  Google Scholar 

  49. Wu, D. et al. Probing structural superlubricity of two-dimensional water transport with atomic resolution. Science 384, 1254–1259 (2024).

    Article  CAS  PubMed  Google Scholar 

  50. Maletinsky, P. et al. A robust scanning diamond sensor for nanoscale imaging with single nitrogen-vacancy centres. Nat. Nanotechnol. 7, 320–324 (2012).

    Article  CAS  PubMed  Google Scholar 

  51. Boss, J. M., Cujia, K. S., Zopes, J. & Degen, C. L. Quantum sensing with arbitrary frequency resolution. Science 356, 837–840 (2017).

    Article  CAS  PubMed  Google Scholar 

  52. Schwartz, I. et al. Robust optical polarization of nuclear spin baths using Hamiltonian engineering of nitrogen-vacancy center quantum dynamics. Sci. Adv. 4, eaat8978 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zhao, N. et al. Sensing single remote nuclear spins. Nat. Nanotechnol. 7, 657–662 (2012).

    Article  CAS  PubMed  Google Scholar 

  54. Bocquet, L. Nanofluidics coming of age. Nat. Mater. 19, 254–256 (2020).

    Article  CAS  PubMed  Google Scholar 

  55. Casola, F., van der Sar, T. & Yacoby, A. Probing condensed matter physics with magnetometry based on nitrogen-vacancy centres in diamond. Nat. Rev. Mater. 3, 17088 (2018).

    Article  CAS  Google Scholar 

  56. Giessibl, F. J. The qPlus sensor, a powerful core for the atomic force microscope. Rev. Sci. Instrum. 90, 011101 (2019).

    Article  PubMed  Google Scholar 

  57. de Oliveira, F. F. et al. Tailoring spin defects in diamond by lattice charging. Nat. Commun. 8, 15409 (2017).

    Article  Google Scholar 

  58. Rugar, D. et al. Proton magnetic resonance imaging using a nitrogen-vacancy spin sensor. Nat. Nanotechnol. 10, 120–124 (2015).

    Article  CAS  PubMed  Google Scholar 

  59. Lovchinsky, I. et al. Magnetic resonance spectroscopy of an atomically thin material using a single-spin qubit. Science 355, 503–507 (2017).

    Article  CAS  PubMed  Google Scholar 

  60. Wastl, D. S., Weymouth, A. J. & Giessibl, F. J. Optimizing atomic resolution of force microscopy in ambient conditions. Phys. Rev. B 87, 245415 (2013).

    Article  Google Scholar 

  61. Glenn, D. R. et al. High-resolution magnetic resonance spectroscopy using a solid-state spin sensor. Nature 555, 351–354 (2018).

    Article  CAS  PubMed  Google Scholar 

  62. Shannon, C. E. Communication in the presence of noise. Proc. Inst. Radio Eng. 37, 10–21 (1949).

    Google Scholar 

  63. Lu, S. H. et al. Ground-state structure of oxidized diamond (100) surface: an electronically nearly surface-free reconstruction. Carbon 159, 9–15 (2020).

    Article  CAS  Google Scholar 

  64. Zamborlini, G. et al. Nanobubbles at GPa pressure under graphene. Nano Lett. 15, 6162–6169 (2015).

    Article  CAS  PubMed  Google Scholar 

  65. Khestanova, E., Guinea, F., Fumagalli, L., Geim, A. K. & Grigorieva, I. V. Universal shape and pressure inside bubbles appearing in van der Waals heterostructures. Nat. Commun. 7, 12587 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Vasu, K. S. et al. Van der Waals pressure and its effect on trapped interlayer molecules. Nat. Commun. 7, 12168 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Lin, S. T., Blanco, M. & Goddard III, W. The two-phase model for calculating thermodynamic properties of liquids from molecular dynamics: validation for the phase diagram of Lennard-Jones fluids. J. Chem. Phys. 119, 11792–11805 (2003).

    Article  CAS  Google Scholar 

  68. Jorgensen, W. L., Maxwell, D. S. & TiradoRives, J. Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J. Am. Chem. Soc. 118, 11225–11236 (1996).

    Article  CAS  Google Scholar 

  69. Abascal, J. L. F., Sanz, E., Fernández, R. G. & Vega, C. A potential model for the study of ices and amorphous water: TIP4P/Ice. J. Chem. Phys. 122, 234511 (2005).

    Article  CAS  PubMed  Google Scholar 

  70. Conde, M. M., Rovere, M. & Gallo, P. High precision determination of the melting points of water TIP4P/2005 and water TIP4P/Ice models by the direct coexistence technique. J. Chem. Phys. 147, 244506 (2017).

    Article  CAS  PubMed  Google Scholar 

  71. Johnston, J. C., Kastelowitz, N. & Molinero, V. Liquid to quasicrystal transition in bilayer water. J. Chem. Phys. 133, 154516 (2010).

    Article  PubMed  Google Scholar 

  72. Babin, V., Leforestier, C. & Paesani, F. Development of a ‘first principles’ water potential with flexible monomers: dimer potential energy surface, VRT spectrum, and second virial coefficient. J. Chem. Theory Comput. 9, 5395–5403 (2013).

    Article  CAS  PubMed  Google Scholar 

  73. Babin, V., Medders, G. R. & Paesani, F. Development of a ‘first principles’ water potential with flexible monomers. II: trimer potential energy surface, third virial coefficient, and small clusters. J. Chem. Theory Comput. 10, 1599–1607 (2014).

    Article  CAS  PubMed  Google Scholar 

  74. Medders, G. R., Babin, V. & Paesani, F. Development of a ‘first principles’ water potential with flexible monomers. III. Liquid phase properties. J. Chem. Theory Comput. 10, 2906–2910 (2014).

    Article  CAS  PubMed  Google Scholar 

  75. Thompson, A. P. et al. LAMMPS—a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Comput. Phys. Commun. 271, 108171 (2022).

    Article  CAS  Google Scholar 

  76. Lee, K., Murray, ÉD., Kong, L. Z., Lundqvist, B. I. & Langreth, D. C. Higher-accuracy van der Waals density functional. Phys. Rev. B 82, 081101(R) (2010).

    Article  Google Scholar 

  77. Brandenburg, J. G., Zen, A., Alfè, D. & Michaelides, A. Interaction between water and carbon nanostructures: how good are current density functional approximations?. J. Chem. Phys. 151, 164702 (2019).

    Article  PubMed  Google Scholar 

  78. Goedecker, S., Teter, M. & Hutter, J. Separable dual-space Gaussian pseudopotentials. Phys. Rev. B 54, 1703–1710 (1996).

    Article  CAS  Google Scholar 

  79. Kühne, T. D. et al. CP2K: an electronic structure and molecular dynamics software package—quickstep: efficient and accurate electronic structure calculations. J. Chem. Phys. 152, 194103 (2020).

    Article  PubMed  Google Scholar 

  80. Calero, C. & Franzese, G. Water under extreme confinement in graphene: oscillatory dynamics, structure, and hydration pressure explained as a function of the confinement width. J. Mol. Liq. 317, 114027 (2020).

    Article  CAS  Google Scholar 

  81. Leoni, F., Calero, C. & Franzese, G. Nanoconfined fluids: uniqueness of water compared to other liquids. ACS Nano 15, 19864–19876 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Zheng, W. et al. Experimental observation of liquid-solid transition of nanoconfined water at ambient temperature. Zenodo https://doi.org/10.5281/zenodo.17555910 (2025).

Download references

Acknowledgements

We thank L. Yang and C. Yu from Peking University (PKU) for their help with the 2D material transfer and fabrications, and N. Zhao from Beijing Computational Science Research Center (CSRC) for meaningful guidance and discussions on the NMR simulations. This work was supported by the National Key R&D Program under grant number 2021YFA1400500; the Program under grant number 2023ZD0301300; the National Natural Science Foundation of China under grant numbers 11888101, 21725302, 12474160, U22A20260 and 12250001; the Strategic Priority Research Program of the Chinese Academy of Sciences under grant number XDB28000000; and the Beijing Municipal Science & Technology Commission under grant number Z231100006623009. W.Z. acknowledges the China Postdoctoral Science Foundation under grant number 2022M710235. Y.J. acknowledges the New Cornerstone Science Foundation through the New Cornerstone Investigator Program and the XPLORER PRIZE, and the Beijing Outstanding Young Scientist Program under grant number JWZQ20240101002. X.C.Z. acknowledges support from the Hong Kong Global STEM Professorship Scheme and the Research Grants Council of Hong Kong (GRF grant numbers 11204123 and 11302225). J.J. acknowledges funding support from the National Natural Science Foundation of China (grant number 22303072). R.S., A.D. and J.W. acknowledge the BMBF via Clusters4Future: QSens and the DFG under grant numbers FOR 2724, GRK 2642 and WR 28/34-1.

Author information

Authors and Affiliations

Authors

Contributions

Y.J., K.B. and E.-G.W. supervised the project. K.B. and Y.J. designed the experiment. R.S. and A.D. grew the diamond chips and fabricated the shallow NVs. S.Z. and W.Z. transferred the hBN flakes and fabricated the hBN–diamond structure. W.Z. and S.Z. performed the experiments and data acquisition. W.Z., S.Z., J.J., K.B., Y.H., J.W., X.C.Z., Y.J. and E.-G.W. performed the experimental data analysis and interpretation. J.J. and X.C.Z. performed the MD simulations. W.Z., S.Z., J.J. and K.B. performed the NMR simulations. W.Z., K.B., S.Z., J.J., X.C.Z., Y.J. and E.-G.W. wrote the manuscript with input from all other authors. All authors commented on the final manuscript.

Corresponding authors

Correspondence to Xiao Cheng Zeng, Ke Bian, En-Ge Wang or Ying Jiang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks Giancarlo Franzese, Francesco Paesani and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Determine the thickness of the intrinsic water layer on the diamond surface.

(a) Topographic image of diamond surface without the hBN flake, corresponding to the open system. The position of the NV center was determined by the procedures described in Supplementary Fig. 1, denoted as an orange dashed circle with the nearby reference protrusion being marked by an arrow. (b) Topographic image of the same area with the hBN flake and without confined water molecules, which was confirmed by the nanoscale-NMR measurement. (c) Z-profile was measured along the dashed line in (a) (black) and in (b) (red). The position of the NV center was estimated with an uncertainty denoted by the shades. The measured height difference of the two profiles indicates the thickness of the intrinsic water layer on the diamond surface: dwater = 2.7 ± 0.2 nm. Scale bar: 250 nm.

Source data

Extended Data Fig. 2 Nanoscale-NMR spectroscopies showing beating features under the strong confinement measured by two different NVs.

(a) Left panel: correlation spectroscopy at a confinement size of 0.7 ± 0.3 nm measured by an NV with depth of 4.39 ± 0.49 nm. By using a sum of cosine functions with multiple frequencies and an exponentially decayed envelope \(S\left(\widetilde{\tau }\right)={e}^{-\widetilde{\tau }/{T}_{{\rm{corr}}}}{\sum }_{i}{S}_{i}\cos \left({2\pi f}_{i}\widetilde{{\rm{\tau }}}+{\varphi }_{i}\right)\), the signal was fitted with a time constant of Tcorr = 183.7 ± 29.5 µs. Right panel: the corresponding power spectrum showing a multi-peak feature. (b) Left panel: correlation spectroscopy at a confinement size of 1.5 ± 0.4 nm measured by an NV with depth of 5.13 ± 0.65 nm. The signal was fitted with a time constant of Tcorr = 224.3 ± 45.1 µs. Right panel: the corresponding power spectrum showing two peaks.

Source data

Extended Data Fig. 3 Influence of surface functionalization on the diffusivity of nanoconfined water.

(a) The hydroxylated (100) surface with carbonyl(-C = O), ether(C-O-C), and hydroxyl(-OH) functional groups, and (b) the methoxy-acetone oxidized diamond (100) surface with carbonyl(-C = O) and ether(C-O-C) functional groups adopted for classical MD simulation. Red, white, and gray balls represent oxygen, hydrogen, and carbon atoms, respectively. (c) The calculated diffusion coefficients of the whole water layer in three different confinement systems from MD simulation: (1) Water confined between a hydroxylated hydrophilic diamond surface and a hydrophobic hBN surface (gray), (2) water confined between a methoxy-acetone oxidized hydrophilic diamond surface and a hydrophobic hBN surface (red), and (3) water confined between two hydrophobic hBN surfaces (blue). Dt are presented as mean values ± standard deviations, derived from 3 simulations.

Source data

Extended Data Fig. 4 MD simulation of the rotational coefficients of the whole water layer.

Rotational coefficients (Dr) were calculated through the statistical trajectories of water molecules, for dconfine ranging from 1 nm to 6 nm, where they exhibited a large suppression at dconfine < 2 nm. Dr are presented as mean values ± standard deviations, derived from 3 simulations.

Source data

Extended Data Fig. 5 Calculation of the bond-order parameter.

Calculated local q6 Steinhardt parameters of the confined water layer with dconfine ranging from 0.6 nm to 6 nm by using the TIP4P/Ice model. q6 bond-order parameter quantifies the six-fold symmetry of the hydrogen bond structures. The results show increased ordering with decreasing confinement size, with two transition points of slope change (marked by arrows) at approximately 2.1 nm and 1.2 nm, respectively. The increase in q6 at ~2.1 nm indicates the onset of the liquid-solid transition, while the sharp increase in q6 at ~1.2 nm indicates the rapid crystallization.

Source data

Supplementary information

Supplementary Information

Supplementary Texts 1–8, Table 1, Figs. 1–11 and refs. 1–21.

Supplementary Data 1

Raw data for Supplementary Fig. 1.

Supplementary Data 2

Raw data for Supplementary Fig. 2c,d.

Supplementary Data 3

Raw data for Supplementary Fig. 3b.

Supplementary Data 4

Raw data for Supplementary Fig. 4b.

Supplementary Data 5

Raw data for Supplementary Fig. 5.

Supplementary Data 6

Raw data for Supplementary Fig. 8.

Supplementary Data 7

Raw data for Supplementary Fig. 10d,e.

Supplementary Data 8

Raw data for Supplementary Fig. 11.

Source data

Source Data Fig. 1

Raw data for Figs. 1d–g.

Source Data Fig. 2

Raw data for Fig. 2a–c.

Source Data Fig. 3

Raw data for Fig. 3a,b.

Source Data Fig. 4

Raw data and code for Fig. 4d.

Source Data Extended Data Fig. 1

Raw data for Extended Data Fig. 1a–c.

Source Data Extended Data Fig. 2

Raw data for Extended Data Fig. 2.

Source Data Extended Data Fig. 3

Raw data for Extended Data Fig. 3.

Source Data Extended Data Fig. 4

Raw data for Extended Data Fig. 4.

Source Data Extended Data Fig. 5

Raw data for Extended Data Fig. 5.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, W., Zhang, S., Jiang, J. et al. Experimental observation of liquid–solid transition of nanoconfined water at ambient temperature. Nat. Mater. (2026). https://doi.org/10.1038/s41563-025-02456-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41563-025-02456-8

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing