Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Heterogeneous doping via nanoscale coating impacts the mechanics of Li intrusion in brittle solid electrolytes

Abstract

Lithium dendrite intrusion in solid-state batteries limits fast charging and causes short-circuiting, yet the underlying regulating mechanisms are not well-understood. Here we discover that heterogeneous Ag+ doping dramatically affects lithium intrusion into Li6.6La3Zr1.6Ta0.4O12 (LLZO), a brittle solid electrolyte. Nanoscale Ag+ doping is achieved by thermally annealing a 3-nm-thick metallic coating on LLZO, inducing Ag–Li ion exchange and Ag diffusion into grains and grain boundaries. Density functional theory calculations and experimental characterization show negligible impact on the electronic properties and surface wettability from Ag+ incorporation. Mechanically, nanoindentation experiments show a fivefold increase in the mechanical force required to fracture the surface Ag+-doped LLZO, indicating substantial doping-induced surface toughening. Operando microprobe scanning electron microscopy experiments show that the Ag+-doped LLZO surface exhibits improved lithium plating at >250 mA cm−2 and an electroplating diameter that is expanded by over fourfold, even under an extreme indentation stress of 3 GPa. This demonstrates enhanced defect tolerance in LLZO, rather than electronic or adhesion effects. Our study reveals a chemo-mechanical mechanism via surface heterogeneous doping, complementing present bulk design rules to minimize mechanical failures in solid-state batteries.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Surface coating on cleaved LLZO with chemical characterization.
Fig. 2: Comparison of the electronic PDOS occupation between uncoated pristine LLZO and Ag+-LLZO.
Fig. 3: Operando Li electroplating and local defects engineering via microprobe experiments inside the SEM chamber.
Fig. 4: Improved Li electroplating stability via Ag+ doping.
Fig. 5: Mechanical characterization of Ag+-LLZO surfaces via in situ nanoindentation (3-nm-thick metallic Ag, post-annealing at 300 °C).

Similar content being viewed by others

Data availability

Data generated or analysed during this study are included in the Supplementary Information. Further data are available from the corresponding authors upon request. Source data are provided with this paper.

References

  1. Cao, D. et al. Lithium dendrite in all-solid-state batteries: growth mechanisms, suppression strategies, and characterizations. Matter 3, 57–94 (2020).

    Article  Google Scholar 

  2. Janek, J. & Zeier, W. G. Challenges in speeding up solid-state battery development. Nat. Energy 8, 230–240 (2023).

    Article  Google Scholar 

  3. Zhang, H., Ren, Y., Wu, X. & Wang, N. An interface-modified solid-state electrochemical device for lithium extraction from seawater. J. Power Sources 482, 228938 (2021).

    Article  CAS  Google Scholar 

  4. Xiong, Y. et al. Electrochemical lithium extraction from aqueous sources. Matter 5, 1760–1791 (2022).

    Article  CAS  Google Scholar 

  5. Teprovich, J. A. Jr et al. Electrochemical extraction of hydrogen isotopes from Li/LiT mixtures. Fusion Eng. Des. 139, 1–6 (2019).

    Article  CAS  Google Scholar 

  6. Tsai, C.-L. et al. Li7La3Zr2O12 interface modification for Li dendrite prevention. ACS Appl. Mater. Interfaces 8, 10617–10626 (2016).

    Article  PubMed  CAS  Google Scholar 

  7. Porz, L. et al. Mechanism of lithium metal penetration through inorganic solid electrolytes. Adv. Energy Mater. 7, 1701003 (2017).

    Article  Google Scholar 

  8. Ning, Z. et al. Dendrite initiation and propagation in lithium metal solid-state batteries. Nature 618, 287–293 (2023).

    Article  PubMed  CAS  Google Scholar 

  9. McConohy, G. et al. Mechanical regulation of lithium intrusion probability in garnet solid electrolytes. Nat. Energy 8, 241–250 (2023).

    Article  CAS  Google Scholar 

  10. Cheng, E. J., Sharafi, A. & Sakamoto, J. Intergranular Li metal propagation through polycrystalline Li6.25Al0.25La3Zr2O12 ceramic electrolyte. Electrochim. Acta 223, 85–91 (2017).

    Article  CAS  Google Scholar 

  11. Shen, F., Dixit, M. B., Xiao, X. & Hatzell, K. B. Effect of pore connectivity on Li dendrite propagation within LLZO electrolytes observed with synchrotron X-ray tomography. ACS Energy Lett. 3, 1056–1061 (2018).

    Article  CAS  Google Scholar 

  12. Tian, H.-K., Xu, B. & Qi, Y. Computational study of lithium nucleation tendency in Li7La3Zr2O12 (LLZO) and rational design of interlayer materials to prevent lithium dendrites. J. Power Sources 392, 79–86 (2018).

    Article  CAS  Google Scholar 

  13. Han, F. et al. High electronic conductivity as the origin of lithium dendrite formation within solid electrolytes. Nat. Energy 4, 187–196 (2019).

    Article  CAS  Google Scholar 

  14. Tian, H.-K., Liu, Z., Ji, Y., Chen, L.-Q. & Qi, Y. Interfacial electronic properties dictate Li dendrite growth in solid electrolytes. Chem. Mater. 31, 7351–7359 (2019).

    Article  CAS  Google Scholar 

  15. Liu, X. et al. Local electronic structure variation resulting in Li ‘filament’ formation within solid electrolytes. Nat. Mater. 20, 1485–1490 (2021).

    Article  PubMed  CAS  Google Scholar 

  16. Xiao, Y. et al. Understanding interface stability in solid-state batteries. Nat. Rev. Mater. 5, 105–126 (2020).

    Article  CAS  Google Scholar 

  17. Alexander, G. V., Shi, C., O’Neill, J. & Wachsman, E. D. Extreme lithium-metal cycling enabled by a mixed ion- and electron-conducting garnet three-dimensional architecture. Nat. Mater. 22, 1136–1143 (2023).

    Article  PubMed  CAS  Google Scholar 

  18. Dai, J., Yang, C., Wang, C., Pastel, G. & Hu, L. Interface engineering for garnet-based solid-state lithium-metal batteries: materials, structures, and characterization. Adv. Mater. 30, 1802068 (2018).

    Article  Google Scholar 

  19. Feng, W., Dong, X., Li, P., Wang, Y. & Xia, Y. Interfacial modification of Li/garnet electrolyte by a lithiophilic and breathing interlayer. J. Power Sources 419, 91–98 (2019).

    Article  CAS  Google Scholar 

  20. Kim, S. et al. The role of interlayer chemistry in Li-metal growth through a garnet-type solid electrolyte. Adv. Energy Mater. 10, 1903993 (2020).

    Article  CAS  Google Scholar 

  21. Xiang, X. et al. Improving the interfacial contact between Li7La3Zr2O12 and lithium anode by depositing a film of silver. J. Electrochem. Soc. 168, 060515 (2021).

    Article  CAS  Google Scholar 

  22. Qi, Y., Ban, C. & Harris, S. J. A new general paradigm for understanding and preventing Li metal penetration through solid electrolytes. Joule 4, 2599–2608 (2020).

    Article  CAS  Google Scholar 

  23. Jagad, H. D., Harris, S. J., Sheldon, B. W. & Qi, Y. Ion size effects on the thermodynamic, kinetic, and mechanical properties during ion exchange in solid-state electrolytes. Chem. Mater. 37, 8165–8177 (2025).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Yao, X. et al. Xenon ion implantation induced surface compressive stress for preventing dendrite penetration in solid-state electrolytes. Small 18, 2108124 (2022).

    Article  CAS  Google Scholar 

  25. Flatscher, F. et al. Deflecting dendrites by introducing compressive stress in Li7La3Zr2O12 using ion implantation. Small 20, 2307515 (2024).

    Article  CAS  Google Scholar 

  26. Garfinkel, H. M. Ion-exchange equilibriums between glass and molten salts. J. Phys. Chem. 72, 4175–4181 (1968).

    Article  CAS  Google Scholar 

  27. Shah, M. L. Optical waveguides in LiNbO3 by ion exchange technique. Appl. Phys. Lett. 26, 652–653 (1975).

    Article  CAS  Google Scholar 

  28. Biesuz, M. et al. Solid-state field-assisted ion exchange of Ag in lithium aluminum silicate glass-ceramics: a superfast processing route toward stronger materials with antimicrobial properties. J. Eur. Ceram. Soc. 42, 1750–1761 (2022).

    Article  CAS  Google Scholar 

  29. Ohtsuki, T., Peyghambarian, N., Honkanen, S. & Najafi, S. I. Gain characteristics of a high concentration Er3+-doped phosphate glass waveguide. J. Appl. Phys. 78, 3617–3621 (1995).

    Article  CAS  Google Scholar 

  30. Krauskopf, T. et al. The fast charge transfer kinetics of the lithium metal anode on the garnet-type solid electrolyte Li6.25Al0.25La3Zr2O12. Adv. Energy Mater. 10, 2000945 (2020).

    Article  CAS  Google Scholar 

  31. Zhao, J. et al. In situ observation of Li deposition-induced cracking in garnet solid electrolytes. Energy Environ. Mater. 5, 524–532 (2022).

    Article  CAS  Google Scholar 

  32. Cui, C. et al. Unlocking the in situ Li plating dynamics and evolution mediated by diverse metallic substrates in all-solid-state batteries. Sci. Adv. 8, eadd2000 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Wei, Z. et al. In situ observation of room-temperature magnesium metal deposition on a NASICON/IL hybrid solid electrolyte. Adv. Energy Mater. 13, 2302525 (2023).

    Article  CAS  Google Scholar 

  34. Siniscalchi, M. et al. Initiation of dendritic failure of LLZTO via sub-surface lithium deposition. Energy Environ. Sci. 17, 2431–2440 (2024).

    Article  CAS  Google Scholar 

  35. Kondo, S., Mitsuma, T., Shibata, N. & Ikuhara, Y. Direct observation of individual dislocation interaction processes with grain boundaries. Sci. Adv. 2, e1501926 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Kondo, S., Ishihara, A., Tochigi, E., Shibata, N. & Ikuhara, Y. Direct observation of atomic-scale fracture path within ceramic grain boundary core. Nat. Commun. 10, 2112 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Alam, T. & Das, A. Review on impurity and conductivity issues of garnet type Li7La3Zr2O12: mechanisms, solutions, and perspectives. Energy Fuels 37, 15267–15282 (2023).

    Article  CAS  Google Scholar 

  38. Jiang, X. et al. Effect of potassium and silver ion-exchange on the strengthening effect and properties of aluminosilicate glass. Ceram. Int. 49, 31351–31363 (2023).

    Article  CAS  Google Scholar 

  39. Andersen, H. H. The depth resolution of sputter profiling. Appl. Phys. 18, 131–140 (1979).

    Article  CAS  Google Scholar 

  40. Zalm, P. C. Ultra shallow doping profiling with SIMS. Rep. Prog. Phys. 58, 1321–1374 (1995).

    Article  CAS  Google Scholar 

  41. Tan, J. & Tiwari, A. Fabrication and characterization of Li7La3Zr2O12 thin films for lithium ion battery. ECS Solid State Lett. 1, Q57–Q60 (2012).

    Article  CAS  Google Scholar 

  42. Paolella, A. et al. Discovering the influence of lithium loss on garnet Li7La3Zr2O12 electrolyte phase stability. ACS Appl. Energy Mater. 3, 3415–3424 (2020).

    Article  CAS  Google Scholar 

  43. Huang, X. et al. Developing preparation craft platform for solid electrolytes containing volatile components: experimental study of competition between lithium loss and densification in Li7La3Zr2O12. ACS Appl. Mater. Interfaces 14, 33340–33354 (2022).

    Article  PubMed  CAS  Google Scholar 

  44. Hale, D. K. Strengthening of silicate glasses by ion exchange. Nature 217, 1115–1118 (1968).

    Article  CAS  Google Scholar 

  45. Shannon, R. D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A 32, 751–767 (1976).

    Article  Google Scholar 

  46. Callister, W. D. Jr & Rethwisch, D. G. Materials Science and Engineering (Wiley, 2019).

  47. Yu, S. & Siegel, D. J. Grain boundary contributions to Li-ion transport in the solid electrolyte Li7La3Zr2O12 (LLZO). Chem. Mater. 29, 9639–9647 (2017).

    Article  CAS  Google Scholar 

  48. Gao, B., Jalem, R., Tian, H.-K. & Tateyama, Y. Revealing atomic-scale ionic stability and transport around grain boundaries of garnet Li7La3Zr2O12 solid electrolyte. Adv. Energy Mater. 12, 2102151 (2022).

    Article  CAS  Google Scholar 

  49. Cojocaru-Mirédin, O. et al. Quantifying lithium enrichment at grain boundaries in Li7La3Zr2O12 solid electrolyte by correlative microscopy. J. Power Sources 539, 231417 (2022).

    Article  Google Scholar 

  50. Zhu, Y. et al. Dopant-dependent stability of garnet solid electrolyte interfaces with lithium metal. Adv. Energy Mater. 9, 1803440 (2019).

    Article  Google Scholar 

  51. Yu, S. et al. Elastic properties of the solid electrolyte Li7La3Zr2O12 (LLZO). Chem. Mater. 28, 197–206 (2016).

    Article  CAS  Google Scholar 

  52. Xie, H., Alonso, J. A., Li, Y., Fernández-Díaz, M. T. & Goodenough, J. B. Lithium distribution in aluminum-free cubic Li7La3Zr2O12. Chem. Mater. 23, 3587–3589 (2011).

    Article  CAS  Google Scholar 

  53. Jain, A. et al. Commentary: The Materials Project: a materials genome approach to accelerating materials innovation. APL Mater. 1, 011002 (2013).

    Article  Google Scholar 

  54. Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993).

    Article  CAS  Google Scholar 

  55. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article  Google Scholar 

  56. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  PubMed  CAS  Google Scholar 

  57. Das, T., Nicholas, J. D. & Qi, Y. Long-range charge transfer and oxygen vacancy interactions in strontium ferrite. J. Mater. Chem. A 5, 4493–4506 (2017).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Assistant Secretary for Energy Efficiency, Vehicle Technologies Office of the US Department of Energy under the Advanced Battery Materials Research Program. Additional support was provided by Samsung Advanced Institute of Technology. T.C., S.S.L. and X.W.G. acknowledge financial support from the StorageX Initiative at Stanford University and the grant DE-SC0021075 funded by the US Department of Energy, Office of Science. X.X. acknowledge additional financial support from the Ira A. Fulton Schools of Engineering at Arizona State University and the grant DE-SC0026366 funded by the US Department of Energy, Office of Science. Y.C. (0000-0002-6103-6352) acknowledges cryo-EM support from the US Department of Energy, Office of Basic Energy Sciences, Division of Materials Science and Engineering under contract DE-AC02-76SF00515. H.D.J. and Y.Q. acknowledge financial support from the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies of the US Department of Energy through the Battery 500 Consortium. We thank W. D. Nix for his contributions, including discussions and the examination of nanoindentation data and mechanical analyses; Y. Ju for discussion on the Li-plating dynamics on solid electrolytes; R. Chin, J. Jamtgaard, P. Wallace, C. Jilly-Rehak and M. Mills for assistance with the Helios SEM/FIB and nanoSIMS instruments; and L. Miara, S. Chakravarthy, S. J. Harris, A. Lee, Y. Liu and J. A. Greer for discussions. We extend special thanks to C. Zhao for his contribution to the art design of the schematics used in this work. Finally, we thank J.-H. Lee for discussions and comments on the manuscript. Part of this work was performed at the Stanford Nano Shared Facilities (SNSF), supported by the National Science Foundation under award ECCS-2026822.

Author information

Authors and Affiliations

Authors

Contributions

X.X. performed all of the experiments and analysed the results, with contributions from T.C., G.M. and S.S.L. Support in the XPS analysis was provided by S.W. and Y.Y. Contributions to the TEM characterization and analysis were made by Y.C. (0000-0001-8219-1856), Z.Z., H.R.L., R.S. and Y.C. (0000-0002-6103-6352). S.S.L., M.M.W. and R.X. contributed to the nanoindentation measurements. E.B. contributed to preparation of the LLZO samples. E.K., L.N., A.R. and A.G. contributed to electrical measurements and data analysis. C.M. and L.H. contributed to the surface coatings. H.D.J. and Y.Q. performed the DFT calculations on the Ag–Li ion-exchange process. X.W.G. supervised the nanoindentation measurements and their analysis. X.X. and W.C.C. designed the research plan and supervised the work. X.X. wrote the manuscript with input from all authors.

Corresponding authors

Correspondence to Xin Xu, Yue Qi, X. Wendy Gu or William C. Chueh.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Source data

Source Data Fig. 1

Depth-profiling XPS data for Ag, Zr and La plotted in Fig. 1c; depth profiling nanoSIMS data for Ag0 | LLZO and Ag+-LLZO plotted in Fig. 1d.

Source Data Fig. 2

DFT density of states data for Ag, Li, La, Oneighbour, Onon-neighbour and Zr plotted in Fig. 2b–g.

Source Data Fig. 4

Operando SEM electrochemical data of the lateral diameter of Li electroplating and the local current density at failure in various LLZO samples plotted in Fig. 4b.

Source Data Fig. 5

Loading–depth data of uncoated LLZO and the calculated Hertzian contact stress curve plotted in Fig. 5c; loading–depth data of Ag+-LLZO plotted in Fig. 5d; histogram data of the loading force at the initial crack for uncoated and Ag+-LLZO plotted in Fig. 5e.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, X., Cui, T., McConohy, G. et al. Heterogeneous doping via nanoscale coating impacts the mechanics of Li intrusion in brittle solid electrolytes. Nat. Mater. (2026). https://doi.org/10.1038/s41563-025-02465-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41563-025-02465-7

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing