Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Quasi-non-volatile capacitorless DRAM based on ultralow-leakage edge-contact MoS2 transistors

Abstract

Two-dimensional semiconductors are emerging as crucial materials for the post-Moore era. However, the transition to industrial-scale applications is hindered by engineering challenges, including the contact engineering. Among different strategies, edge contact offers advantages of ultimate contact scaling and the elimination of Fermi level pinning, but struggles with co-optimization between on-state current, threshold voltage and off-state leakage current. Here we address these challenges by utilizing an in situ multistep process, in which etching, soft plasma treatment and metal deposition are performed sequentially within the same custom-designed high-vacuum chamber to minimize interface defects. This approach enables molybdenum disulfide (MoS2)-based edge-contact field-effect transistors exhibiting an ultralow leakage current of 1.75 × 10−20 A μm−1 at zero gate voltage and an enhanced on-state current. The optimized capacitorless two-transistor dynamic random-access memory (DRAM) achieves a quasi-non-volatile memory operation, 5-bit memory accuracy and nanosecond-level write speed, demonstrating the potential for two-dimensional semiconductor-based circuits and memory devices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: TC and EC device structures.
Fig. 2: 2T0C device structure and electrical characteristics.
Fig. 3: Energy-band analysis and device simulation.
Fig. 4: Off-state leakage current characteristics of EC-2T0C.

Similar content being viewed by others

Data availability

All data needed to evaluate the findings of this study are available within the Article. Source data are available from Figshare via https://doi.org/10.6084/m9.figshare.30818588 (ref. 59). Source data are provided with this paper.

References

  1. Jiang, J., Wu, P., Liu, Y., Kong, J. & Peng, L.-M. Towards fab-compatible two-dimensional electronics. Nat. Rev. Electr. Eng. 2, 6–8 (2025).

    Article  Google Scholar 

  2. Wilson, L. et al. in 2021 IEEE International Roadmap for Devices and Systems Outbriefs 1–64 (IEEE, 2021).

  3. Kim, K. S. et al. The future of two-dimensional semiconductors beyond Moore’s law. Nat. Nanotechnol. 19, 895–906 (2024).

    Article  CAS  PubMed  Google Scholar 

  4. Fan, D. et al. Two-dimensional semiconductor integrated circuits operating at gigahertz frequencies. Nat. Electron. 6, 879–887 (2023).

    Article  Google Scholar 

  5. Das, S. et al. Transistors based on two-dimensional materials for future integrated circuits. Nat. Electron. 4, 786–799 (2021).

    Article  CAS  Google Scholar 

  6. Wu, F. et al. Vertical MoS2 transistors with sub-1-nm gate lengths. Nature 603, 259–264 (2022).

    Article  CAS  PubMed  Google Scholar 

  7. Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V. & Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 6, 147–150 (2011).

    Article  CAS  PubMed  Google Scholar 

  8. Chen, J. et al. Performance limits and advancements in single 2D transition metal dichalcogenide transistor. Nanomicro Lett. 16, 264 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Sheng, C. et al. Two-dimensional semiconductors: from device processing to circuit integration. Adv. Funct. Mater. 33, 2304778 (2023).

    Article  CAS  Google Scholar 

  10. Wu, R. et al. Van der Waals epitaxial growth of atomically thin 2D metals on dangling-bond-free WSe2 and WS2. Adv. Funct. Mater. 29, 1806611 (2019).

    Article  Google Scholar 

  11. Liu, Y. et al. Promises and prospects of two-dimensional transistors. Nature 591, 43–53 (2021).

    Article  CAS  PubMed  Google Scholar 

  12. Zheng, Y., Gao, J., Han, C. & Chen, W. Ohmic contact engineering for two-dimensional materials. Cell. Rep. Phys. Sci. 2, 100298 (2021).

    Article  CAS  Google Scholar 

  13. Zhou, Y. et al. Contact-engineered reconfigurable two-dimensional Schottky junction field-effect transistor with low leakage currents. Nat. Commun. 14, 4270 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Li, W. et al. Approaching the quantum limit in two-dimensional semiconductor contacts. Nature 613, 274–279 (2023).

    Article  CAS  PubMed  Google Scholar 

  15. Shen, P.-C. et al. Ultralow contact resistance between semimetal and monolayer semiconductors. Nature 593, 211–217 (2021).

    Article  CAS  PubMed  Google Scholar 

  16. Jiang, J., Xu, L., Qiu, C. & Peng, L.-M. Ballistic two-dimensional InSe transistors. Nature 616, 470–475 (2023).

    Article  CAS  PubMed  Google Scholar 

  17. Kappera, R. et al. Phase-engineered low-resistance contacts for ultrathin MoS2 transistors. Nat. Mater. 13, 1128–1134 (2014).

    Article  CAS  PubMed  Google Scholar 

  18. Zhao, P. et al. Air stable p-doping of WSe2 by covalent functionalization. ACS Nano 8, 10808–10814 (2014).

    Article  CAS  PubMed  Google Scholar 

  19. Chuang, H.-J. et al. Low-resistance 2D/2D ohmic contacts: a universal approach to high-performance WSe2, MoS2, and MoSe2 transistors. Nano Lett. 16, 1896–1902 (2016).

    Article  CAS  PubMed  Google Scholar 

  20. Liu, Y. et al. Approaching the Schottky–Mott limit in van der Waals metal–semiconductor junctions. Nature 557, 696–700 (2018).

    Article  CAS  PubMed  Google Scholar 

  21. Hu, Q. et al. True nonvolatile high-speed DRAM cells using tailored ultrathin IGZO. Adv. Mater. 35, 2210554 (2023).

    Article  CAS  Google Scholar 

  22. Bhati, I., Chang, M. T., Chishti, Z., Lu, S. L. & Jacob, B. DRAM refresh mechanisms, penalties, and trade-offs. IEEE Trans. Comput. 65, 108–121 (2016).

    Article  Google Scholar 

  23. Wang, L. et al. One-dimensional electrical contact to a two-dimensional material. Science 342, 614–617 (2013).

    Article  CAS  PubMed  Google Scholar 

  24. Jain, A. et al. One-dimensional edge contacts to a monolayer semiconductor. Nano Lett. 19, 6914–6923 (2019).

    Article  CAS  PubMed  Google Scholar 

  25. Hung, T. Y. T. et al. Pinning-free edge contact monolayer MoS2 FET. In IEEE International Electron Devices Meeting 3.3.1–3.3.4 (IEEE, 2020).

  26. Chai, Y. et al. Making one-dimensional electrical contacts to molybdenum disulfide-based heterostructures through plasma etching. Phys. Status Solidi A 213, 1358–1364 (2016).

    Article  CAS  Google Scholar 

  27. Cheng, Z. et al. Immunity to contact scaling in MoS2 transistors using in situ edge contacts. Nano Lett. 19, 5077–5085 (2019).

    Article  CAS  PubMed  Google Scholar 

  28. Yu, J. et al. Simultaneously ultrafast and robust two-dimensional flash memory devices based on phase-engineered edge contacts. Nat. Commun. 14, 5662 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Allain, A., Kang, J., Banerjee, K. & Kis, A. Electrical contacts to two-dimensional semiconductors. Nat. Mater. 14, 1195–1205 (2015).

    Article  CAS  PubMed  Google Scholar 

  30. Panarella, L. et al. Implications of side contact depth on the Schottky barrier of 2D field-effect transistors. J. Comput. Electron. 24, 32 (2024).

    Article  Google Scholar 

  31. Zhang, P. & Lin, F. Study of thickness-dependent mobility of MoS2FETs with HfO2 Encapsulation by edge contact. In IEEE International Conference on Integrated Circuits, Technologies and Applications 170–171 (IEEE, 2019).

  32. Yang, Z. et al. A Fermi-level-pinning-free 1D electrical contact at the intrinsic 2D MoS2–metal junction. Adv. Mater. 31, 1808231 (2019).

    Article  Google Scholar 

  33. Conde-Rubio, A., Liu, X., Boero, G. & Brugger, J. Edge-contact MoS2 transistors fabricated using thermal scanning probe lithography. ACS Appl. Mater. Interfaces 14, 42328–42336 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Xu, H. et al. High-performance wafer-scale MoS2 transistors toward practical application. Small 14, 1803465 (2018).

    Article  Google Scholar 

  35. Abidi, I. H. et al. Oxygen driven defect engineering of monolayer MoS2 for tunable electronic, optoelectronic, and electrochemical devices. Adv. Funct. Mater. 34, 2402402 (2024).

    Article  CAS  Google Scholar 

  36. Zhang, C. et al. Correcting charged supercell defect calculations in low-dimensional semiconductors. Phys. Rev. B 108, 245305 (2023).

    Article  CAS  Google Scholar 

  37. Kshirsagar, C. U. et al. Dynamic memory cells using MoS2 field-effect transistors demonstrating femtoampere leakage currents. ACS Nano 10, 8457–8464 (2016).

    Article  CAS  PubMed  Google Scholar 

  38. Shockley, W. & Read, W. T. Statistics of the recombinations of holes and electrons. Phys. Rev. 87, 835–842 (1952).

    Article  CAS  Google Scholar 

  39. Sah, C.-T. & Shockley, W. Electron–hole recombination statistics in semiconductors through flaws with many charge conditions. Phys. Rev. 109, 1103–1115 (1958).

    Article  CAS  Google Scholar 

  40. Huang, K., Rhys, A. & Mott, N. F. Theory of light absorption and non-radiative transitions in F-centres. Proc. R. Soc. A 204, 406–423 (1950).

    CAS  Google Scholar 

  41. Alkauskas, A., Yan, Q. & Van de Walle, C. G. First-principles theory of nonradiative carrier capture via multiphonon emission. Phys. Rev. B 90, 075202 (2014).

    Article  CAS  Google Scholar 

  42. Huang, K. Lattice relaxation and multiphonon transitions. Contemp. Phys. 22, 599–612 (1981).

    Article  CAS  Google Scholar 

  43. Turiansky, M. E., Alkauskas, A. & Van de Walle, C. G. Dimensionality effects on trap-assisted recombination: the Sommerfeld parameter. Phys. Condens. Matter 36, 195902 (2024).

    Article  CAS  Google Scholar 

  44. Ma, J. et al. Top gate engineering of field-effect transistors based on wafer-scale two-dimensional semiconductors. J. Mater. Sci. Technol. 106, 243–248 (2022).

    Article  CAS  Google Scholar 

  45. Belmonte, A. et al. Lowest IOFF < 3×10−21 A/μm in capacitorless DRAM achieved by reactive ion etch of IGZO-TFT. In IEEE Symposium on VLSI Technology and Circuits 1–2 (IEEE, 2023).

  46. Xiao, K. et al. High performance Si–MoS2 heterogeneous embedded DRAM. Nat. Commun. 15, 9782 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Belmonte, A. et al. Capacitor-less, long-retention (>400s) DRAM cell paving the way towards low-power and high-density monolithic 3D DRAM. In IEEE International Electron Devices Meeting 28.2.1–28.2.4 (IEEE, 2020).

  48. Belmonte, A. et al. Tailoring IGZO-TFT architecture for capacitorless DRAM, demonstrating > 103s retention, >1011 cycles endurance and Lg scalability down to 14nm. In IEEE International Electron Devices Meeting 10.6.1–10.6.4 (IEEE, 2021).

  49. Duan, X. et al. Novel vertical channel-all-around (CAA) IGZO FETs for 2T0C DRAM with high density beyond 4F2 by monolithic stacking. In IEEE International Electron Devices Meeting 10.5.1–10.5.4 (IEEE, 2021).

  50. Zhao, Z. et al. Computational associative memory based on monolithically integrated metal-oxide thin film transistors for update-frequent search applications. In IEEE International Electron Devices Meeting 37.6.1–37.6.4 (IEEE, 2021).

  51. Ye, H. et al. Double-gate W-doped amorphous indium oxide transistors for monolithic 3D capacitorless gain cell eDRAM. In IEEE International Electron Devices Meeting 28.3.1–28.3.4 (IEEE, 2020).

  52. Hu, Q. et al. Capacitorless DRAM cells based on high-performance indium–tin–oxide transistors with record data retention and reduced write latency. IEEE Electron Device Lett. 44, 60–63 (2023).

    Article  Google Scholar 

  53. Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    Article  CAS  Google Scholar 

  54. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    Article  CAS  Google Scholar 

  55. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  PubMed  Google Scholar 

  56. Freysoldt, C. et al. First-principles calculations for point defects in solids. Rev. Mod. Phys. 86, 253–305 (2014).

    Article  Google Scholar 

  57. Lany, S. & Zunger, A. Assessment of correction methods for the band-gap problem and for finite-size effects in supercell defect calculations: case studies for ZnO and GaAs. Physical Review B 78, 235104 (2008).

    Article  Google Scholar 

  58. Wang, D. et al. Determination of formation and ionization energies of charged defects in two-dimensional materials. Phys. Rev. Lett. 114, 196801 (2015).

    Article  PubMed  Google Scholar 

  59. Gou, S. et al. Research data supporting ‘Quasi-non-volatile capacitorless DRAM based on ultra-low leakage edge contact MoS2 transistor’. Figshare https://doi.org/10.6084/m9.figshare.30818588 (2025).

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program (grant 2021YFA1200500), the National Natural Science Foundation of China (grants 62374037, 12334005, 12174060 and 12404089), the Innovation Program of Shanghai Municipal Education Commission (grant 2021-01-07-00-07-E00077), the Science and Technology Commission of Shanghai Municipality (grant 23JC1401100) and the Shanghai Pilot Program for Basic Research—Fudan University 21TQ1400100 (grant 23TQ008). This work has been supported by the New Cornerstone Science Foundation through the XPLORER PRIZE.

Author information

Authors and Affiliations

Authors

Contributions

W.B., P.Z. and S.C. supervised the project. S.G., Y.Z., Z.Z. and J.Z. conceived the experiments. M.H. and S.C. performed the theoretical calculations. S.G., Y.Z., Z.Z., J.Z., X.D., M.A., Q.S., Y.H., Y.S., H.C., Y.T., X.H., J.W., Z.S., Q.C., Y.L. and J.S. fabricated the devices. S.G., Y.Z., Z.Z., Z.C. and J.Z. performed the electrical measurements. Z.X. conducted the growth of MoS2. X.Y. and C.C. performed the Raman and PL experiments. S.G., Y.Z., M.H., Z.Z. and J.Z. wrote the original article. W.B., P.Z., S.C., Y.W., L.L., X.T., M.L., C.Y., H.M., M.L. and H.L. revised the article. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Shiyou Chen, Peng Zhou or Wenzhong Bao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks Vita Pi-Ho Hu, Won Jong Yoo, Han Wang for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–25 and Supplementary Tables 1 and 2.

Source data

Source Data Fig. 1

Statistical Source Data

Source Data Fig. 2

Statistical Source Data

Source Data Fig. 3

Statistical Source Data

Source Data Fig. 4

Statistical Source Data

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gou, S., Zhu, Y., Zhang, Z. et al. Quasi-non-volatile capacitorless DRAM based on ultralow-leakage edge-contact MoS2 transistors. Nat. Mater. (2026). https://doi.org/10.1038/s41563-025-02470-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41563-025-02470-w

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing