Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Collective photon emission and ferroelectric exciton ordering near Mott insulating state in WSe2/WS2 heterobilayers

Abstract

Spontaneous symmetry breaking, driven by competing interactions and quantum fluctuations, is fundamental to understanding ordered electronic phases. Although electrically neutral, optical excitations like excitons can interact through their dipole moment, raising the possibility of optically active ordered phases. The effects of spontaneous ordering on optical properties remains underexplored. The excitonic Mott insulating state recently observed in semiconducting moiré crystals may help clarify this question. Here we present evidence for an in-plane ferroelectric phase of dipolar moiré excitons driven by strong exciton–exciton interactions. We reveal a speed-up of photon emission at late times and low densities in excitonic decay. This counterintuitive behaviour is attributed to collective radiance, linked to the transition between disordered and symmetry-broken ferroelectric phases of moiré excitons. Our findings provide evidence for strong dipolar intersite interactions in moiré lattices, demonstrate collective photon emission as a probe for moiré quantum materials and a path for exploring cooperative optical phenomena in strongly correlated systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: IXs in a WSe2/WS2 bilayer and their Mott insulating state.
Fig. 2: Redshifted IX emission at high excitonic density.
Fig. 3: Temporally and spectrally resolved IX emission in the H-stacked region.
Fig. 4: Experimental study and modelling of the density-dependent IX lifetime and energy dynamics in the H-stacked region.

Data availability

All the data that support the findings of this study are reported in the Article and its Supplementary Information. Source data are provided with this paper.

References

  1. Cai, J. et al. Signatures of fractional quantum anomalous Hall states in twisted MoTe2. Nature 622, 63–68 (2023).

    Article  CAS  PubMed  Google Scholar 

  2. Park, H. et al. Observation of fractionally quantized anomalous Hall effect. Nature 622, 74–79 (2023).

    Article  CAS  PubMed  Google Scholar 

  3. Zeng, Y. et al. Thermodynamic evidence of fractional Chern insulator in moiré MoTe2. Nature 622, 69–73 (2023).

    Article  CAS  PubMed  Google Scholar 

  4. Xu, Y. et al. Correlated insulating states at fractional fillings of moiré superlattices. Nature 587, 214–218 (2020).

    Article  CAS  PubMed  Google Scholar 

  5. Regan, E. C. et al. Mott and generalized Wigner crystal states in WSe2/WS2 moiré superlattices. Nature 579, 359–363 (2020).

    Article  CAS  PubMed  Google Scholar 

  6. Tang, Y. et al. Simulation of Hubbard model physics in WSe2/WS2 moiré superlattices. Nature 579, 353–358 (2020).

    Article  CAS  PubMed  Google Scholar 

  7. Shimazaki, Y. et al. Strongly correlated electrons and hybrid excitons in a moiré heterostructure. Nature 580, 472–477 (2020).

    Article  CAS  PubMed  Google Scholar 

  8. Smoleński, T. et al. Signatures of Wigner crystal of electrons in a monolayer semiconductor. Nature 595, 53–57 (2021).

    Article  PubMed  Google Scholar 

  9. Zhou, Y. et al. Bilayer Wigner crystals in a transition metal dichalcogenide heterostructure. Nature 595, 48–52 (2021).

    Article  CAS  PubMed  Google Scholar 

  10. Jin, C. et al. Observation of moiré excitons in WSe2/WS2 heterostructure superlattices. Nature 567, 76–80 (2019).

    Article  CAS  PubMed  Google Scholar 

  11. Tran, K. et al. Evidence for moiré excitons in van der Waals heterostructures. Nature 567, 71–75 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Karni, O. et al. Structure of the moiré exciton captured by imaging its electron and hole. Nature 603, 247–252 (2022).

    Article  CAS  PubMed  Google Scholar 

  13. Lagoin, C., Suffit, S., Baldwin, K., Pfeiffer, L. & Dubin, F. Mott insulator of strongly interacting two-dimensional semiconductor excitons. Nat. Phys. 18, 149–153 (2022).

    Article  CAS  Google Scholar 

  14. Xiong, R. et al. Correlated insulator of excitons in WSe2/WS2 moiré superlattices. Science 380, 860–864 (2023).

    Article  CAS  PubMed  Google Scholar 

  15. Park, H. et al. Dipole ladders with large Hubbard interaction in a moiré exciton lattice. Nat. Phys. 19, 1286–1292 (2023).

    Article  CAS  Google Scholar 

  16. Wang, X. et al. Intercell moiré exciton complexes in electron lattices. Nat. Mater. 22, 599–604 (2023).

    Article  CAS  PubMed  Google Scholar 

  17. Gao, B. et al. Excitonic Mott insulator in a Bose-Fermi-Hubbard system of moiré WS2/WSe2 heterobilayer. Nat. Commun. 15, 2305 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lian, Z. et al. Valley-polarized excitonic mott insulator in WS2/WSe2 moiré superlattice. Nat. Phys. 20, 34–39 (2024).

    Article  CAS  Google Scholar 

  19. Rivera, P. et al. Valley-polarized exciton dynamics in a 2D semiconductor heterostructure. Science 351, 688–691 (2016).

    Article  CAS  PubMed  Google Scholar 

  20. Li, W., Lu, X., Dubey, S., Devenica, L. & Srivastava, A. Dipolar interactions between localized interlayer excitons in van der Waals heterostructures. Nat. Mater. 19, 624–629 (2020).

    Article  CAS  PubMed  Google Scholar 

  21. Kremser, M. et al. Discrete interactions between a few interlayer excitons trapped at a MoSe2-WSe2 heterointerface. npj 2DMater. Appl. 4, 39 (2020).

    Google Scholar 

  22. Lagoin, C. et al. Extended Bose–Hubbard model with dipolar excitons. Nature 609, 485–489 (2022).

    Article  CAS  PubMed  Google Scholar 

  23. Lagoin, C., Baldwin, K., Pfeiffer, L. & Dubin, F. Superlattice quantum solid of dipolar excitons. Phys. Rev. Lett. 132, 176001 (2024).

    Article  CAS  PubMed  Google Scholar 

  24. Kumlin, J., Srivastava, A. & Pohl, T. Superradiance of strongly interacting dipolar excitons in moiré quantum materials (2024). Phys. Rev. Lett. 134, 126901 (2025).

    Article  CAS  PubMed  Google Scholar 

  25. Huang, T.-S. et al. Collective optical properties of moiré‚ excitons. Phys. Rev. Lett. 134, 176901 (2025).

    Article  CAS  PubMed  Google Scholar 

  26. Lagoin, C., Morin, C., Baldwin, K., Pfeiffer, L. & Dubin, F. Evidence for a lattice supersolid of subradiant dipolar excitons. Preprint at http://arxiv.org/abs/2410.17162 (2024).

  27. Li, H. et al. Imaging two-dimensional generalized Wigner crystals. Nature 597, 650–654 (2021).

    Article  CAS  PubMed  Google Scholar 

  28. Montblanch, A. R.-P. et al. Confinement of long-lived interlayer excitons in WS2/WSe2 heterostructures. Commun. Phys. 4, 119 (2021).

    Article  CAS  Google Scholar 

  29. Miller, B. et al. Long-lived direct and indirect interlayer excitons in van der Waals heterostructures. Nano Lett. 17, 5229–5237 (2017).

    Article  CAS  PubMed  Google Scholar 

  30. Jauregui, L. A. et al. Electrical control of interlayer exciton dynamics in atomically thin heterostructures. Science 366, 870–875 (2019).

    Article  CAS  PubMed  Google Scholar 

  31. Choi, J. et al. Twist angle-dependent interlayer exciton lifetimes in van der Waals heterostructures. Phys. Rev. Lett. 126, 047401 (2021).

    Article  CAS  PubMed  Google Scholar 

  32. Moody, G., Schaibley, J. & Xu, X. Exciton dynamics in monolayer transition metal dichalcogenides. J. Opt. Soc. Am. B 33, C39–C49 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Zhang, X.-X., You, Y., Zhao, S. Y. F. & Heinz, T. F. Experimental evidence for dark excitons in monolayer WSe2. Phys. Rev. Lett. 115, 257403 (2015).

    Article  PubMed  Google Scholar 

  34. Wu, F., Lovorn, T., Tutuc, E. & MacDonald, A. H. Hubbard model physics in transition metal dichalcogenide moiré bands. Phys. Rev. Lett. 121, 026402 (2018).

    Article  CAS  PubMed  Google Scholar 

  35. Shabani, S. et al. Deep moiré potentials in twisted transition metal dichalcogenide bilayers. Nat. Phys. 17, 720–725 (2021).

    Article  CAS  Google Scholar 

  36. Wilson, N. R. et al. Determination of band offsets, hybridization, and exciton binding in 2D semiconductor heterostructures. Sci. Adv. 3, e1601832 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Zhang, D., Schoenherr, P., Sharma, P. & Seidel, J. Ferroelectric order in van der Waals layered materials. Nat. Rev. Mater. 8, 25–40 (2023).

    Article  Google Scholar 

  38. de Paz, A. et al. Nonequilibrium quantum magnetism in a dipolar lattice gas. Phys. Rev. Lett. 111, 185305 (2013).

    Article  PubMed  Google Scholar 

  39. Zhang, C., Safavi-Naini, A., Rey, A. M. & Capogrosso-Sansone, B. Equilibrium phases of tilted dipolar lattice bosons. New J. Phys. 17, 123014 (2015).

    Article  Google Scholar 

  40. Huber, J., Kirton, P. & Rabl, P. Nonequilibrium magnetic phases in spin lattices with gain and loss. Phys. Rev. A 102, 012219 (2020).

    Article  CAS  Google Scholar 

  41. Su, L. et al. Dipolar quantum solids emerging in a Hubbard quantum simulator. Nature 622, 724–729 (2023).

    Article  CAS  PubMed  Google Scholar 

  42. Rui, J. et al. A subradiant optical mirror formed by a single structured atomic layer. Nature 583, 369–374 (2020).

    Article  CAS  PubMed  Google Scholar 

  43. Wu, F. Y. The Potts model. Rev. Mod. Phys. 54, 235–268 (1982).

    Article  Google Scholar 

  44. Park, H. Three-state Potts model on a triangular lattice. Phys. Rev. B 49, 12881–12887 (1994).

    Article  CAS  Google Scholar 

  45. de Vega, I., Cirac, J. I. & Porras, D. Detection of spin correlations in optical lattices by light scattering. Phys. Rev. A 77, 051804 (2008).

    Article  Google Scholar 

  46. Pizzi, A., Gorlach, A., Rivera, N., Nunnenkamp, A. & Kaminer, I. Light emission from strongly driven many-body systems. Nat. Phys. 19, 551–561 (2023).

    Article  CAS  Google Scholar 

  47. Zomer, P., Guimarães, M., Brant, J., Tombros, N. & Van Wees, B. Fast pick up technique for high quality heterostructures of bilayer graphene and hexagonal boron nitride. Appl. Phys. Lett. 105, 013101 (2014).

    Article  Google Scholar 

  48. Kim, K. et al. Van der Waals heterostructures with high accuracy rotational alignment. Nano Lett. 16, 1989–1995 (2016).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank L. Zhang, M. Hafezi, A. Imamoğlu, M. Claassen, T. Smoleński and M. Kroner for insightful discussions. A.S. acknowledges funding from the NSF Division of Materials Research (award number 1905809) and the State Secretariat for Education, Research and Innovation (SERI)-funded European Research Council Consolidator Grant TuneInt2Quantum (number 101043957). T.P. and J.K. acknowledge support from the European Union’s Horizon Europe research and innovation programme under the Marie Skłodowska-Curie grant agreement number 101106552 (QuLowD), from the Austrian Science Fund (grant number 10.55776/COE1) and the European Union (NextGenerationEU), and from the European Research Council through the ERC Synergy Grant SuperWave (grant number 101071882). Synthesis of WSe2 (S.L. and J.H.) was supported by the NSF MRSEC program through the Columbia University Center for Precision-Assembled Quantum Materials (DMR-2011738). K.W. and T.T. acknowledge support from the JSPS KAKENHI (grant numbers 21H05233 and 23H02052), the CREST (JPMJCR24A5), JST and World Premier International Research Center Initiative (WPI), MEXT, Japan.

Author information

Authors and Affiliations

Authors

Contributions

A.S., T.P., L.M.D., Z.H. and D.S.-F. conceived the project. K.W. and T.T. provided the hBN crystals, and S.L. and J.H. provided the WSe2 crystals. L.M.D., B.L., W.L., Z.H. and L.F. prepared the samples. L.M.D., Z.H., R.L., D.S.-F., K.D., B.L., V.V., N.U. and L.F. carried out the measurements. J.K. and T.P. developed the theoretical model and conducted the Monte Carlo simulations. A.S. and T.P. supervised the project. All authors were involved in the analysis of the experimental data and contributed extensively.

Corresponding authors

Correspondence to Daniel Suárez-Forero, Thomas Pohl or Ajit Srivastava.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–17 and Notes 1–5.

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Devenica, L.M., Hadjri, Z., Kumlin, J. et al. Collective photon emission and ferroelectric exciton ordering near Mott insulating state in WSe2/WS2 heterobilayers. Nat. Mater. (2026). https://doi.org/10.1038/s41563-025-02476-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41563-025-02476-4

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing