Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Ecophysiology and global dispersal of the freshwater SAR11-IIIb genus Fontibacterium

Abstract

The SAR11-IIIb genus Fontibacterium within the order ‘Ca. Pelagibacterales’ is recognized for its ubiquitous presence in freshwater environments. However, cultivation limitations have hampered deeper ecophysiological understanding of this genus, with most data limited to lakes in the Northern Hemisphere. Here we present seven isolates representing two previously undescribed species, along with 93 high-quality metagenome-assembled genomes (MAGs) derived from a global survey across five continents. Phylogenomic analysis revealed 16 species forming nine distinct biogeographic clusters, indicating speciation patterns linked to water temperature and latitude. We observed endemic species restricted to African lakes, and quasi-endemic species confined to the Northern or Southern Hemisphere, which co-exist alongside cosmopolitan species. Metabolic profiling and growth experiments uncovered species- and strain-specific adaptations for nutrient uptake, along with unique pathways for sulfur metabolism. These findings provide a global-scale genomic and ecological overview for this underexplored lineage of freshwater SAR11.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Phylogeny of the SAR11 order.
Fig. 2: Global occurrence of different Fontibacterium species.
Fig. 3: Seasonal distribution of different Fontibacterium species.
Fig. 4: Growth of two Fontibacterium species under different experimental conditions.
Fig. 5: Metabolic pathways of seven Fontibacterium strains.

Similar content being viewed by others

Data availability

Genomes from cultures have been submitted to ENA under project accession number PRJEB77526, Illumina and Oxford Nanopore reads, and MAGs under ENA project accession numbers PRJEB35770 and PRJEB86000PRJEB86004. Novel species were registered at SeqCode29 in register lists seqco.de/r:gnukuc44 and seqco.de/r:opjv7zsc. Phylogenomic and phylogenetic trees are available in iTOL (https://itol.embl.de/shared/2Kl1yRwH6Azmk). Strains can be requested by email to M.M.S. (michaelasalcher@gmail.com). All commercial interests in the data from Lake Malawi are reserved by the Government of Malawi; any proposed commercial use requires negotiation of a separate agreement by the intended user with the Government of Malawi, according to an ABS contract between the Government of the Republic of Malawi and the Biology Centre of the Czech Academy of Sciences.

References

  1. Giovannoni, S. J. SAR11 bacteria: the most abundant plankton in the oceans. Annu. Rev. Mar. Sci. 9, 231–255 (2017).

    Article  Google Scholar 

  2. Henson, M. W., Lanclos, V. C., Faircloth, B. C. & Thrash, J. C. Cultivation and genomics of the first freshwater SAR11 (LD12) isolate. ISME J. 12, 1846–1860 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Salcher, M. M., Pernthaler, J. & Posch, T. Seasonal bloom dynamics and ecophysiology of the freshwater sister clade of SAR11 bacteria ‘that rule the waves’ (LD12). ISME J. 5, 1242–1252 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Giovannoni, S. J., Cameron Thrash, J. & Temperton, B. Implications of streamlining theory for microbial ecology. ISME J. 8, 1553–1565 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Haro-Moreno, J. M. et al. Ecogenomics of the SAR11 clade. Environ. Microbiol. 22, 1748–1763 (2020).

    Article  CAS  PubMed  Google Scholar 

  6. Grote, J. et al. Streamlining and core genome conservation among highly divergent members of the SAR11 clade. mBio 3, e00252-12 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. López-Pérez, M., Haro-Moreno, J. M., Coutinho, F. H., Martinez-Garcia, M. & Rodriguez-Valera, F. The evolutionary success of the marine bacterium SAR11 analyzed through a metagenomic perspective. mSystems 5, e00605–e00620 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Chiriac, M.-C., Haber, M. & Salcher, M. M. Adaptive genetic traits in pelagic freshwater microbes. Environ. Microbiol. 25, 606–641 (2023).

    Article  PubMed  Google Scholar 

  9. Tsementzi, D. et al. Ecogenomic characterization of widespread, closely-related SAR11 clades of the freshwater genus ‘Candidatus Fonsibacter’ and proposal of Ca. Fonsibacter lacus sp. nov. Syst. Appl. Microbiol. 42, 495–505 (2019).

    Article  PubMed  Google Scholar 

  10. Morris, J. J., Lenski, R. E. & Zinser, E. R. The Black Queen Hypothesis: evolution of dependencies through adaptive gene loss. mBio 3, e00036-12 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Carini, P. et al. Discovery of a SAR11 growth requirement for thiamin’s pyrimidine precursor and its distribution in the Sargasso Sea. ISME J. 8, 1727–1738 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Tripp, H. J. et al. SAR11 marine bacteria require exogenous reduced sulphur for growth. Nature 452, 741–744 (2008).

    Article  CAS  PubMed  Google Scholar 

  13. Zaremba-Niedzwiedzka, K. et al. Single-cell genomics reveal low recombination frequencies in freshwater bacteria of the SAR11 clade. Genome Biol. 14, R130 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Rodriguez-Valera, F., Martin-Cuadrado, A.-B. & López-Pérez, M. Flexible genomic islands as drivers of genome evolution. Curr. Opin. Microbiol. 31, 154–160 (2016).

    Article  CAS  PubMed  Google Scholar 

  15. Rodriguez-Valera, F. et al. Explaining microbial population genomics through phage predation. Nat. Rev. Microbiol. 7, 828–836 (2009).

    Article  CAS  PubMed  Google Scholar 

  16. Okazaki, Y. et al. Microdiversity and phylogeographic diversification of bacterioplankton in pelagic freshwater systems revealed through long-read amplicon sequencing. Microbiome 9, 24 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Brown, M. V. et al. Global biogeography of SAR11 marine bacteria. Mol. Syst. Biol. 8, 595 (2012).

  18. Delmont, T. O. et al. Single-amino acid variants reveal evolutionary processes that shape the biogeography of a global SAR11 subclade. eLife 8, e46497 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Louca, S. The rates of global bacterial and archaeal dispersal. ISME J. 16, 159–167 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Garcia, S. L. et al. Contrasting patterns of genome-level diversity across distinct co-occurring bacterial populations. ISME J. 12, 742–755 (2018).

    Article  CAS  PubMed  Google Scholar 

  21. Neuenschwander, S. M., Ghai, R., Pernthaler, J. & Salcher, M. M. Microdiversification in genome-streamlined ubiquitous freshwater Actinobacteria. ISME J. 12, 185–198 (2018).

    Article  CAS  PubMed  Google Scholar 

  22. Newton, R. J., Jones, S. E., Eiler, A., McMahon, K. D. & Bertilsson, S. A guide to the natural history of freshwater lake bacteria. Microbiol. Mol. Biol. Rev. 75, 14–49 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Salcher, M. M., Schaefle, D., Kaspar, M., Neuenschwander, S. M. & Ghai, R. Evolution in action: habitat transition from sediment to the pelagial leads to genome streamlining in Methylophilaceae. ISME J. 13, 2764–2777 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hoetzinger, M., Pitt, A., Huemer, A. & Hahn, M. W. Continental-scale gene flow prevents allopatric divergence of pelagic freshwater bacteria. Genome Biol. Evol. 13, evab019 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Mehrshad, M. et al. Hidden in plain sight—highly abundant and diverse planktonic freshwater Chloroflexi. Microbiome 6, 176 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Hoetzinger, M. et al. Geographic population structure and distinct intra-population dynamics of globally abundant freshwater bacteria. ISME J. https://doi.org/10.1093/ismejo/wrae113 (2024).

  27. Buck, M. et al. Comprehensive dataset of shotgun metagenomes from oxygen stratified freshwater lakes and ponds. Sci. Data 8, 131 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Garner, R. E. et al. A genome catalogue of lake bacterial diversity and its drivers at continental scale. Nat. Microbiol. https://doi.org/10.1038/s41564-023-01435-6 (2023).

  29. Hedlund, B. P. et al. SeqCode: a nomenclatural code for prokaryotes described from sequence data. Nat. Microbiol. 7, 1702–1708 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Cabello-Yeves, P. J. et al. Genomes of novel microbial lineages assembled from the sub-ice waters of Lake Baikal. Appl. Environ. Microbiol. 84, e02132-17 (2018).

    Article  PubMed  Google Scholar 

  31. Konstantinidis, K. T., Rossello-Mora, R. & Amann, R. Uncultivated microbes in need of their own taxonomy. ISME J. 11, 2399–2406 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Zhao, J. et al. Promiscuous and genome-wide recombination underlies the sequence-discrete species of the SAR11 lineage in the deep ocean. ISME J. https://doi.org/10.1093/ismejo/wraf072 (2025).

  33. Salcher, M. M. et al. Bringing the uncultivated microbial majority of freshwater ecosystems into culture. Nat. Commun. (in the press).

  34. Tran, P. Q. et al. Depth-discrete metagenomics reveals the roles of microbes in biogeochemical cycling in the tropical freshwater Lake Tanganyika. ISME J. 15, 1971–1986 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Okazaki, Y., Nakano, S.-i, Toyoda, A. & Tamaki, H. Long-read-resolved, ecosystem-wide exploration of nucleotide and structural microdiversity of lake bacterioplankton genomes. mSystems 7, e00433-22 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Layoun, P. et al. Flexible genomic island conservation across freshwater and marine Methylophilaceae. ISME J. 18, wrad036 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Linz, A. M. et al. Freshwater carbon and nutrient cycles revealed through reconstructed population genomes. PeerJ 6, e6075 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Heinrich, F., Eiler, A. & Bertilsson, S. Seasonality and environmental control of freshwater SAR11 (LD12) in a temperate lake (Lake Erken, Sweden). Aquat. Microb. Ecol. 70, 33–44 (2013).

    Article  Google Scholar 

  39. Carlson, C. A. et al. Seasonal dynamics of SAR11 populations in the euphotic and mesopelagic zones of the northwestern Sargasso Sea. ISME J. 3, 283–295 (2008).

    Article  PubMed  Google Scholar 

  40. Eiler, A., Hayakawa, D. H., Church, M. J., Karl, D. M. & Rappé, M. S. Dynamics of the SAR11 bacterioplankton lineage in relation to environmental conditions in the oligotrophic North Pacific subtropical gyre. Environ. Microbiol. 11, 2291–2300 (2009).

    Article  CAS  PubMed  Google Scholar 

  41. Vergin, K. L. et al. High-resolution SAR11 ecotype dynamics at the Bermuda Atlantic Time-series Study site by phylogenetic placement of pyrosequences. ISME J. 7, 1322–1332 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Rappé, M. S., Connon, S. A., Vergin, K. L. & Giovannoni, S. J. Cultivation of the ubiquitous SAR11 marine bacterioplankton clade. Nature 418, 630–633 (2002).

    Article  PubMed  Google Scholar 

  43. Tripp, H. J. The unique metabolism of SAR11 aquatic bacteria. J. Microbiol. 51, 147–153 (2013).

    Article  CAS  PubMed  Google Scholar 

  44. Molina-Pardines, C., Haro-Moreno, J. M., Rodriguez-Valera, F. & López-Pérez, M. Extensive paralogism in the environmental pangenome: a key factor in the ecological success of natural SAR11 populations. Microbiome 13, 41 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Borisov, V. B., Gennis, R. B., Hemp, J. & Verkhovsky, M. I. The cytochrome bd respiratory oxygen reductases. Biochim. Biophys. Acta 1807, 1398–1413 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Tanaka, Y. et al. Crystal structure of a YeeE/YedE family protein engaged in thiosulfate uptake. Sci. Adv. 6, eaba7637 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Liu, Y.-K., Kuo, H.-C., Lai, C.-H. & Chou, C.-C. Single amino acid utilization for bacterial categorization. Sci. Rep. 10, 12686 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kim, S., Kang, I., Seo, J.-H. & Cho, J.-C. Culturing the ubiquitous freshwater actinobacterial acI lineage by supplying a biochemical ‘helper’ catalase. ISME J. 13, 2252–2263 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ruiz-Perez, C. A. et al. Description of Candidatus Mesopelagibacter carboxydoxydans and Candidatus Anoxipelagibacter denitrificans: nitrate-reducing SAR11 genera that dominate mesopelagic and anoxic marine zones. Syst. Appl. Microbiol. 44, 126185 (2021).

    Article  CAS  PubMed  Google Scholar 

  50. Tsementzi, D. et al. SAR11 bacteria linked to ocean anoxia and nitrogen loss. Nature 536, 179–183 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Moore, L. R., Post, A. F., Rocap, G. & Chisholm, S. W. Utilization of different nitrogen sources by the marine cyanobacteria Prochlorococcus and Synechococcus. Limnol. Oceanogr. 47, 989–996 (2002).

    Article  CAS  Google Scholar 

  52. Wiedenbeck, J. & Cohan, F. M. Origins of bacterial diversity through horizontal genetic transfer and adaptation to new ecological niches. FEMS Microbiol. Rev. 35, 957–976 (2011).

    Article  CAS  PubMed  Google Scholar 

  53. Arnold, B. J., Huang, I. T. & Hanage, W. P. Horizontal gene transfer and adaptive evolution in bacteria. Nat. Rev. Microbiol. 20, 206–218 (2022).

    Article  CAS  PubMed  Google Scholar 

  54. Beier, S. et al. The transcriptional regulation of the glyoxylate cycle in SAR11 in response to iron fertilization in the Southern Ocean. Environ. Microbiol. Rep. 7, 427–434 (2015).

    Article  CAS  PubMed  Google Scholar 

  55. Vrede, T. & Tranvik, L. J. Iron constraints on planktonic primary production in oligotrophic lakes. Ecosystems 9, 1094–1105 (2006).

    Article  CAS  Google Scholar 

  56. Swan, B. K. et al. Prevalent genome streamlining and latitudinal divergence of planktonic bacteria in the surface ocean. Proc. Natl Acad. Sci. USA 110, 11463–11468 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Herbold, C. W., Lee, C. K., McDonald, I. R. & Cary, S. C. Evidence of global-scale aeolian dispersal and endemism in isolated geothermal microbial communities of Antarctica. Nat. Commun. 5, 3875 (2014).

    Article  CAS  PubMed  Google Scholar 

  58. Schultze, M. et al. Localization of cytochrome b6f complexes implies an incomplete respiratory chain in cytoplasmic membranes of the cyanobacterium Synechocystis sp. PCC 6803. Biochim. Biophys. Acta 1787, 1479–1485 (2009).

    Article  CAS  PubMed  Google Scholar 

  59. Kozhov, M. Biology of Lake Baikal (Publishing House of the USSR Acad. Sci., 1962).

  60. Salzburger, W., Van Bocxlaer, B. & Cohen, A. S. Ecology and evolution of the African Great Lakes and their faunas. Annu. Rev. Ecol. Syst. 45, 519–545 (2014).

    Article  Google Scholar 

  61. Cabello-Yeves, P. J. et al. Microbiome of the deep Lake Baikal, a unique oxic bathypelagic habitat. Limnol. Oceanogr. 65, 1471–1488 (2020).

    Article  CAS  Google Scholar 

  62. De Meester, L., Gómez, A., Okamura, B. & Schwenk, K. The Monopolization Hypothesis and the dispersal–gene flow paradox in aquatic organisms. Acta Oecol. 23, 121–135 (2002).

    Article  Google Scholar 

  63. Jezbera, J., Jezberová, J., Brandt, U. & Hahn, M. W. Ubiquity of Polynucleobacter necessarius subspecies asymbioticus results from ecological diversification. Environ. Microbiol. 13, 922–931 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Baas-Becking, L. G. M. Geobiologie of Inleiding tot de Milieukunde (WP Van Stockum & Zoon NV, 1934).

  65. Chiriac, M.-C. et al. Ecogenomics sheds light on diverse lifestyle strategies in freshwater CPR. Microbiome 10, 84 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Šimek, K. et al. A finely tuned symphony of factors modulates the microbial food web of a freshwater reservoir in spring. Limnol. Oceanogr. 59, 1477–1492 (2014).

    Article  Google Scholar 

  67. Zotina, T., Köster, O. & Jüttner, F. Photoheterotrophy and light-dependent uptake of organic and organic nitrogenous compounds by Planktothrix rubescens under low irradiance. Freshw. Biol. 48, 1859–1872 (2003).

    Article  CAS  Google Scholar 

  68. Salcher, M. M., Neuenschwander, S. M., Posch, T. & Pernthaler, J. The ecology of pelagic freshwater methylotrophs assessed by a high-resolution monitoring and isolation campaign. ISME J. 9, 2442–2453 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Li, H. Fast construction of FM-index for long sequence reads. Bioinformatics 30, 3274–3275 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Bonenfant, Q., Noé, L. & Touzet, H. Porechop_ABI: discovering unknown adapters in Oxford Nanopore Technology sequencing reads for downstream trimming. Bioinform. Adv. 3, vbac085 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Mak, Q. X. C., Wick, R. R., Holt, J. M. & Wang, J. R. Polishing de novo Nanopore assemblies of bacteria and eukaryotes with FMLRC2. Mol. Biol. Evol. 40, msad048 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kolmogorov, M. et al. metaFlye: scalable long-read metagenome assembly using repeat graphs. Nat. Methods 17, 1103–1110 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Sieber, C. M. K. et al. Recovery of genomes from metagenomes via a dereplication, aggregation and scoring strategy. Nat. Microbiol. 3, 836–843 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Chaumeil, P.-A., Mussig, A. J., Hugenholtz, P. & Parks, D. H. GTDB-Tk v2: memory friendly classification with the genome taxonomy database. Bioinformatics 38, 5315–5316 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson, G. W. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 25, 1043–1055 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Chklovski, A., Parks, D. H., Woodcroft, B. J. & Tyson, G. W. CheckM2: a rapid, scalable and accurate tool for assessing microbial genome quality using machine learning. Nat. Methods 20, 1203–1212 (2023).

    Article  CAS  PubMed  Google Scholar 

  77. Seemann, T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30, 2068–2069 (2014).

    Article  CAS  PubMed  Google Scholar 

  78. Lowe, T. M. & Eddy, S. R. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 25, 955–964 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Eddy, S. R. Accelerated profile HMM searches. PLoS Comput. Biol. 7, e1002195 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Jones, P. et al. InterProScan 5: genome-scale protein function classification. Bioinformatics 30, 1236–1240 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Tatusov, R. L. et al. The COG database: new developments in phylogenetic classification of proteins from complete genomes. Nucleic Acids Res. 29, 22–28 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Haft, D. H. et al. TIGRFAMs: a protein family resource for the functional identification of proteins. Nucleic Acids Res. 29, 41–43 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Kanehisa, M., Furumichi, M., Sato, Y., Matsuura, Y. & Ishiguro-Watanabe, M. KEGG: biological systems database as a model of the real world. Nucleic Acids Res. 53, D672–D677 (2024).

    Article  PubMed Central  Google Scholar 

  84. Löytynoja, A. in Multiple Sequence Alignment: Methods and Protocols (ed Katoh, K.) 17–37 (Springer, 2021).

  85. Minh, B. Q. et al. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 37, 1530–1534 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., von Haeseler, A. & Jermiin, L. S. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat. Methods 14, 587–589 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Getz, E. W. et al. The AEGEAN-169 clade of bacterioplankton is synonymous with SAR11 subclade V (HIMB59) and metabolically distinct. mSystems 8, e00179-23 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Goris, J. et al. DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. Int. J. Syst. Evol. Microbiol. 57, 81–91 (2007).

    Article  CAS  PubMed  Google Scholar 

  89. Palmer, M., Steenkamp, E. T., Blom, J., Hedlund, B. P. & Venter, S. N. All ANIs are not created equal: implications for prokaryotic species boundaries and integration of ANIs into polyphasic taxonomy. Int. J. Syst. Evol. Microbiol. 70, 2937–2948 (2020).

    Article  CAS  PubMed  Google Scholar 

  90. Olm, M. R., Brown, C. T., Brooks, B. & Banfield, J. F. dRep: a tool for fast and accurate genomic comparisons that enables improved genome recovery from metagenomes through de-replication. ISME J. 11, 2864–2868 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Rissman, A. I. et al. Reordering contigs of draft genomes using the Mauve Aligner. Bioinformatics 25, 2071–2073 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Hyatt, D. et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 11, 119 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Steinegger, M. & Söding, J. MMseqs2 enables sensitive protein sequence searching for the analysis of massive data sets. Nat. Biotechnol. 35, 1026–1028 (2017).

    Article  CAS  PubMed  Google Scholar 

  94. Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Kavagutti, V. S., Andrei, A.-Ş., Mehrshad, M., Salcher, M. M. & Ghai, R. Phage-centric ecological interactions in aquatic ecosystems revealed through ultra-deep metagenomics. Microbiome 7, 135 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Kavagutti, V. S. et al. High-resolution metagenomic reconstruction of the freshwater spring bloom. Microbiome 11, 15 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Cheng, C. & Thrash, J. C. sparse-growth-curve: a computational pipeline for parsing cellular growth curves with low temporal resolution. Microbiol. Resour. Announc. 10, e00296-21 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Giorgi, F. M., Ceraolo, C. & Mercatelli, D. The R language: an engine for bioinformatics and data science. Life 12, 648 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Oksanen, J. et al. Community ecology package. R package Version 2 (2013).

  100. Maechler, M. Cluster: cluster analysis basics and extensions. R package version 2.0 (2018).

  101. Kruskal, W. H. & Wallis, W. A. Use of ranks in one-criterion variance analysis. J. Am. Stat. Assoc. 47, 583–621 (1952).

    Article  Google Scholar 

  102. Revelle, W. psych: Procedures for Personality and Psychological Research. R package version 1.5.1 (2015).

  103. Wickham, H. ggplot2. WIREs Comput. Stat. 3, 180–185 (2011).

    Article  Google Scholar 

  104. Gu, Z. Complex heatmap visualization. Imeta 1, e43 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank local fisherman, captains and technicians, and S. Sho, M. Zalewski, A. Woźniczka, P. Znachor, P. Rychtecký, P. Pejsar, V. Lanta, C. Callieri, F. Lepori, S. Mayer, A. Kust, B. Sonntag, E. Loher, J. Pernthaler and T. Posch for help during sampling. The Government of Malawi and the Department of Fisheries (Ministry of Natural Resources and Climate Change, Lilongwe, Malawi) are acknowledged for issuing sampling and export permits to take samples from Lake Malawi; the Department of Environment and Science, Queensland Government, Australia for issuing a permit to sample lakes on K’gari (Fraser Island, Great Sandy National Park), and the Butchulla Aboriginal Corporation for allowing us to take samples from lakes on K’gari. Sample collection in Lake Biwa was supported by the Center for Ecological Research, Kyoto University, a Joint Usage/Research Center and the research vessel ‘Hasu’. Sampling in Lake Toya was supported by a joint usage with Toya Lake Station of the Field Science Center for Northern Biosphere, Hokkaido University. F. Kostanjšek, M. Okrouhliková, A. Férová and I. Lebeda are acknowledged for excellent laboratory support. We thank the Biology Centre CAS core facility LEM supported by MEYS CR (LM2023050 Czech-BioImaging and OP VVV CZ.02.1.01/0.0/0.0/18_046/0016045). This study was mainly supported by Czech Science Foundation (GAČR) grants. Grants 22-03662S and 25-15813S were awarded to M.M.S. and supported C.F, M.H., P.L., M.-C.C. and M.M.S. Grant 21-21990S was awarded to M.H. and supported M.-C.C. and M.H. Grant 20-12496X was awarded to R.G. and supported R.G., P.-A.B. and V.K. C.F. and P.L. also received support from the Grant Agency of the University of South Bohemia in České Budějovice (grants 017/2022/P to C.F. and 022/2019/P to P.L.). J.W. and H.-P.G. were funded by the Leibniz foundation, a German Science Foundation grant (GR1540/37-1 to H.-P.G.), and thank the entire LIMNOS team. Y.O. was funded by JST FOREST programme (JPMJFR2273) and JSPS KAKENHI grants (16H06279, 18J00300, 22K15182).

Author information

Authors and Affiliations

Authors

Contributions

M.M.S. conceived the study. Sampling was performed by C.F., M.H., P.L., M.-C.C., R.G., V.K., T.S., H.-P.G., J.W., K.P., C.A., J.Z., D.P.H., M.N. S.N., Y.O. and M.M.S. C.F., M.H., P.L. and M.M.S. isolated and maintained the strains, and C.F. conducted growth assays. C.F., M.-C.C., P.-A.B. and M.M.S. assembled, binned and annotated the metagenomes with pipelines designed by P.-A.B. and R.G. C.F. analysed the data and prepared the figures, supervised by M.M.S. C.F. and M.M.S. wrote the manuscript with input from all authors.

Corresponding author

Correspondence to Michaela M. Salcher.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Microbiology thanks Luis Rodriguez-R and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Map displaying the origin of Fontibacterium genomes.

Global distribution of sampling locations for Fontibacterium genomes. Yellow stars and green circles indicate new culture genomes and high-quality MAGs, respectively, retrieved in this study from a. Europe, b. Japan, c. Uruguay, d. Malawi and e. Australia. Red circles indicate genomes from public databases and a red star indicates the culture F. commune LSUCC0530.

Extended Data Fig. 2 Genome synteny and genomic islands in complete genomes of Fontibacterium spp.

a. Whole-genome alignments and BLASTp comparisons of all complete Fontibacterium genomes analyzed in this study. The hypervariable region 2 (HVR2) in between 16S-23S rRNA and 5S rRNA appears conserved in the genus. Genomes are sorted according to taxonomy as follows: F. medardense (ME-31, ME-33, ME-17, ME-20, ME-18), F. abundans (30–26, MiE-29, MKE-138), F. lacus (N-BarE-26apr23-C31), F. commune (LSUCC0530), tRNA and rRNA genes are indicated by short lines. b. Zoom-in of the first few genes in HVR2 of strain ME-20. Genes involved in sulfate reduction (cysD, cysNC) and cysteine biosynthesis (cysE) are highlighted in yellow.

Extended Data Fig. 3 Average nucleotide identities (ANI, %) within each species of Fontibacterium and ANI to the closest relative.

Boxplots showing average nucleotide identities (ANI, %) within each species of Fontibacterium and max. ANI to the closest relative. Boxes indicate the 25th and 75th quantiles, medians are displayed by central lines, whiskers indicate the 5th and 95th quantiles. ANI values to the closest relative from another species group are displayed as red dots and lines. The number of genomes used for ANI comparisons (n) is indicated above the plot.

Extended Data Fig. 4 Genome synteny plot of Fontibacterium species.

Whole-genome alignments and BLASTn comparisons of one to two representatives per Fontibacterium species and all complete genomes analyzed in this study. Genomes are sorted according to taxonomy and colour-coded as in Fig. 1. Asterisks indicate complete genomes; all others were concatenated in order based on the closest complete relative and turned to start with DnaA for an easier display of synteny and nucleotide identity. Note that nucleotide identities >95% were rarely detected between different species and that HVR2 (located at approx. 0.1-0.2 Mb) was not assembled in multiple MAGs.

Extended Data Fig. 5 Clustering of SAR11-IIIb.1-16 species based on coverage per Gb values in metagenomes.

a. Non-metric multidimensional scaling (NMDS) plot showing distinct clusters based on metagenomic fragment recruitment values (n = 307). Points in the NMDS plot represent species that are coloured and shaped according to their assigned cluster (stress value: 0.071). b. The corresponding dendrogram from hierarchical clustering (Ward’s linkage method); with observed clusters highlighted by black rectangles. Nine optimal clusters were identified, with the number of clusters determined by average silhouette width (Supplementary Fig. 2) and dendrogram evaluation. Raw data can be found in Supplementary Table 6.

Extended Data Fig. 6 Latitudinal variation across the SAR11-IIIb clusters.

Box plots show the latitudinal distribution for each of the nine distinct clusters identified from n = 307 metagenomes (see Extended Data Fig. 5). The number of individual metagenomes assigned to each cluster (n) is indicated below the x-axis label. Box plots display the median (center line) and interquartile range (IQR; box), and whiskers extend to the furthest data point within 1.5 × IQR of the hinge, with outliers plotted individually. An overall difference in latitude among the nine clusters was tested using a Kruskal-Wallis test (P = 2.2e-16).

Extended Data Fig. 7 Redundancy analysis (RDA) ordination plots of the seasonal distribution of SAR11-IIIb species in six lakes in relation to environmental variables.

Redundancy analysis (RDA) biplots showing the relationship between the dominant SAR11-IIIb species (red circles), seasonal sampling points (yellow circles), and significant environmental variables (arrows). Key environmental factors were identified through forward selection (P < 0.05). The model was statistically significant (ANOVA, P < 0.001, 999 permutations). Abbreviations: Temp, water temperature (°C); Chla, chlorophyll a (µg l−1); Total.Chl, Total chlorophyll (µg l−1); SRP, soluble reactive phosphorus (µg l⁻¹); NO₃, nitrate (mg l−1); NO₂, nitrite (mg l−1); npoc, non-purgeable particulate organic carbon; TP, total phosphorus (µg l−1); TN, total nitrogen (mg l−1); DOC, dissolved organic carbon (mg l−1); R-Si, dissolved reactive silica (mg l−1); DO, dissolved oxygen (mg l−1). Raw data can be found in Supplementary Tables 7 and 9, results of statistical tests in Supplementary Table 9.

Extended Data Fig. 8 Growth of two Fontibacterium species under different experimental conditions.

Maximum abundances (a-d) and growth rates (e-h) of F. medardense ME-17 and F. abundans MiE-29. a,e: Different media (med2, 3 and 5); b,f: Sulfur-amino acids (cysteine and methionine) concentrations (0.1, 0.5, 1 and 5 µM); c,g: Oxaloacetate concentrations (0.1, 0.5, 1 and 5 µM) d,h: Pyruvate concentrations (0.1, 0.5, 1 and 5 µM). Shown are means of triplicates, error bars represent standard errors, individual samples are displayed as red dots. Letters indicate significant differences between treatments; blue asterisks indicate significant differences between strains based on ANOVA and post-hoc tests (Turkey-HSD). Raw data can be found in Supplementary Table 11, results of statistical tests in Supplementary Tables 12 and 13.

Extended Data Fig. 9 Phylogenetic tree of isocitrate lyase (AceA).

a. Full tree of 1367 AceA protein sequences from all bacterial phyla, the SAR11 clade is highlighted in red. b. Subtree of SAR11 AceA protein sequences and closely related taxa.

Extended Data Fig. 10 Phylogenetic trees of proteins involved in sulfate reduction (CysD, CysNC) and cysteine biosynthesis (CysE) present in HVR2 of F. medardense ME-20.

a. Phylogenetic tree of O-acetylhomoserine (thiol)-lyase CysD including 100 closely related protein sequences. b. Phylogenetic tree of sulfate adenylyltransferase CysNC including 100 closely related protein sequences. c. Phylogenetic tree of serine O-acetyltransferase CysE including 100 closely related protein sequences. Accession numbers are colour-coded by taxonomy and collapsed at order level. The habitat of origin of ‘Ca. Pelagibacterales’ is indicated by different colours.

Supplementary information

Supplementary Information

Supplementary Text (additional findings and discussion, SeqCode descriptions of new species, supplementary references) and Figs. 1–4.

Reporting Summary

Peer Review File

Supplementary Tables

Supplementary Table 1. Sampling details for newly sequenced metagenomes. Table 2. Details on genomes used in this study. Table 3. List of TIGRFAMs used for phylogenomic tree reconstruction. Table 4. Average nucleotide identity (ANI) matrix of all genomes used in this study. Table 5. Average amino acid identity (AAI) matrix of all genomes used in this study. Table 6. Metagenomic fragment recruitment results for 16 Fontibacterium species. Table 7. Metagenomic fragment recruitment results for 16 Fontibacterium species in time-series metagenomes. Table 8. Physico-chemical data for time-series metagenomes. Table 9. Statistical tests for seasonal distribution of Fontibacterium species. Table 10. Media components. Table 11. Raw data of growth assays conducted in this study. Table 12. ANOVA and post hoc tests (Turkey-HSD) for growth assays based on maximum abundances. Table 13. ANOVA and post hoc tests (Turkey-HSD) for growth assays based on maximum growth rates. Table 14. Overview of metabolic pathways present in the culture genomes. Table 15. Presence/absence of individual KEGG IDs (metabolic pathways) detected in different Fontibacterium species.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fernandes, C., Haber, M., Layoun, P. et al. Ecophysiology and global dispersal of the freshwater SAR11-IIIb genus Fontibacterium. Nat Microbiol 10, 2194–2206 (2025). https://doi.org/10.1038/s41564-025-02091-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41564-025-02091-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing