Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Exploring the concept of bacterial memory

Abstract

Bacteria have multiple mechanisms through which they sense changes in their environment and respond appropriately. In some instances, bacteria appear to retain an imprint of past events that can influence future behaviour, resembling a form of memory. This Perspective explores this concept of bacterial memory at the genetic, epigenetic, biochemical and ecological levels. We discuss how memory can prime bacteria to respond appropriately to recurring stimuli, providing fitness benefits in fluctuating environments. At the cellular level, there is evidence for memory storage mechanisms involving mutations, DNA methylation, or the inheritance of metabolites or proteins that provide a means of accessing past experiences. Complex bacterial communities can exhibit ecological memories of past environments, stored as microbiota population changes that persist or lag after acute environmental change. We review the emerging evidence supporting these concepts of microbial memory, outline some of the key molecular mechanisms, and identify research gaps and potential future applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Mechanisms of bacterial memory and ecological memory.
Fig. 2: Anticipatory regulation strategies.
Fig. 3: Protein-based inheritance confers phenotypic memory.
Fig. 4: Response memory of the lactose operon.
Fig. 5: DNA methylation-dependent gene regulation.
Fig. 6: Ecological memory in response to diet switching.

Similar content being viewed by others

References

  1. Richards, B. A. & Frankland, P. W. The persistence and transience of memory. Neuron 94, 1071–1084 (2017).

    Article  CAS  PubMed  Google Scholar 

  2. Zlotnik, G. & Vansintjan, A. Memory: an extended definition. Front Psychol. 10, 2523 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Kukushkin, N. V., Carney, R. E., Tabassum, T. & Carew, T. J. The massed-spaced learning effect in non-neural human cells. Nat. Commun. 15, 9635 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Witzany, G. in Memory and Learning in Plants (eds Frantisek, B. et al.) 1–16 (Springer, 2018); https://doi.org/10.1007/978-3-319-75596-0_1

  5. De la Fuente, I. M. et al. Evidence of conditioned behavior in amoebae. Nat. Commun. 10, 3690 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Saigusa, T., Tero, A., Nakagaki, T. & Kuramoto, Y. Amoebae anticipate periodic events. Phys. Rev. Lett. 100, 018101 (2008).

    Article  PubMed  Google Scholar 

  7. Nakagaki, T., Yamada, H. & Tóth, Á Maze-solving by an amoeboid organism. Nature 407, 470–470 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Vermeersch, L. et al. Do microbes have a memory? History-dependent behavior in the adaptation to variable environments. Front. Microbiol. 13, 1004488 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Solopova, A. et al. Bet-hedging during bacterial diauxic shift. Proc. Natl Acad. Sci. USA 111, 7427–7432 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mitchell, A. et al. Adaptive prediction of environmental changes by microorganisms. Nature 460, 220–224 (2009).

    Article  CAS  PubMed  Google Scholar 

  11. Lambert, G. et al. Correction: Memory and fitness optimization of bacteria under fluctuating environments. PLoS Genet. 10, e1004793 (2014).

    Article  Google Scholar 

  12. Casadesús, J. & Low, D. Epigenetic gene regulation in the bacterial world. Microbiol. Mol. Biol. Rev. 70, 830–856 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Letourneau, J. et al. Ecological memory of prior nutrient exposure in the human gut microbiome. ISME J. 16, 2479–2490 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Globus, R. & Qimron, U. Crystal-clear memories of a bacterium. Science 357, 1096–1097 (2017).

    Article  CAS  PubMed  Google Scholar 

  15. Harvey, Z. H., Chen, Y. & Jarosz, D. F. Protein-based inheritance: epigenetics beyond the chromosome. Mol. Cell 69, 195–202 (2018).

    Article  CAS  PubMed  Google Scholar 

  16. Lambert, G. & Kussell, E. Memory and fitness optimization of bacteria under fluctuating environments. PLoS Genet. 10, e1004556 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Mitchell, A. & Pilpel, Y. A mathematical model for adaptive prediction of environmental changes by microorganisms. Proc. Natl Acad. Sci. USA 108, 7271–7276 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Veening, J.-W., Smits, W. K. & Kuipers, O. P. Bistability, epigenetics, and bet-hedging in bacteria. Annu Rev. Microbiol 62, 193–210 (2008).

    Article  CAS  PubMed  Google Scholar 

  19. Grimbergen, A. J., Siebring, J., Solopova, A. & Kuipers, O. P. Microbial bet-hedging: the power of being different. Curr. Opin. Microbiol. 25, 67–72 (2015).

    Article  PubMed  Google Scholar 

  20. Mahilkar, A., Venkataraman, P., Mall, A. & Saini, S. Experimental evolution of anticipatory regulation in Escherichia coli. Front. Microbiol. 12, 796228 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Rai, N., Kim, M. & Tagkopoulos, I. Understanding the formation and mechanism of anticipatory responses in Escherichia coli. Int. J. Mol. Sci. 23, 5985 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Tagkopoulos, I., Liu, Y.-C. & Tavazoie, S. Predictive behavior within microbial genetic networks. Science 320, 1313–1317 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Delaney, J. M. Requirement of the Escherichia coli dnaK gene for thermotolerance and protection against H2O2. J. Gen. Microbiol. 136, 2113–2118 (1990).

    Article  CAS  PubMed  Google Scholar 

  24. Badrinarayanan, A., Le, T. B. K. & Laub, M. T. Bacterial chromosome organization and segregation. Annu. Rev. Cell Dev. Biol. 31, 171–199 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Thompson, S. R., Wadhams, G. H. & Armitage, J. P. The positioning of cytoplasmic protein clusters in bacteria. Proc. Natl Acad. Sci. USA 103, 8209–8214 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Reyes-Lamothe, R. & Sherratt, D. J. The bacterial cell cycle, chromosome inheritance and cell growth. Nat. Rev. Microbiol. 17, 467–478 (2019).

    Article  CAS  PubMed  Google Scholar 

  27. Birky, W. C. & Skavaril, R. V. Random partitioning of cytoplasmic organelles at cell division: the effect of organelle and cell volume. J. Theor. Biol. 106, 441–447 (1984).

    Article  CAS  PubMed  Google Scholar 

  28. Ostovar, G. & Boedicker, J. Q. Phenotypic memory in quorum sensing. PLoS Comput. Biol. 20, e1011696 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ishihama, A. Prokaryotic genome regulation: multifactor promoters, multitarget regulators and hierarchic networks. FEMS Microbiol. Rev. 34, 628–645 (2010).

    Article  CAS  PubMed  Google Scholar 

  30. Novick, A. & Weiner, M. Enzyme induction as an all-or-none phenomenon. Proc. Natl Acad. Sci. USA 43, 553–566 (1957).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sourjik, V. & Wingreen, N. S. Responding to chemical gradients: bacterial chemotaxis. Curr. Opin. Cell Biol. 24, 262–268 (2012).

    Article  CAS  PubMed  Google Scholar 

  32. Macnab, R. M. & Koshland, D. E. The gradient-sensing mechanism in bacterial chemotaxis. Proc. Natl Acad. Sci. USA 69, 2509–2512 (1972).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Goy, M. F., Springer, M. S. & Adler, J. Sensory transduction in Escherichia coli: role of a protein methylation reaction in sensory adaptation. Proc. Natl Acad. Sci. USA 74, 4964–4968 (1977).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Stock, J. B. & Zhang, S. The biochemistry of memory. Curr. Biol. 23, R741–R745 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Krembel, A., Colin, R. & Sourjik, V. Importance of multiple methylation sites in Escherichia coli chemotaxis. PLoS ONE 10, e0145582 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Kalinin, Y. V., Jiang, L., Tu, Y. & Wu, M. Logarithmic sensing in Escherichia coli bacterial chemotaxis. Biophys. J. 96, 2439–2448 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gosztolai, A. & Barahona, M. Cellular memory enhances bacterial chemotactic navigation in rugged environments. Commun. Phys. 3, 47 (2020).

    Article  Google Scholar 

  38. Govers, S. K., Mortier, J., Adam, A. & Aertsen, A. Protein aggregates encode epigenetic memory of stressful encounters in individual Escherichia coli cells. PLoS Biol. 16, e2003853 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Veening, J.-W. et al. Bet-hedging and epigenetic inheritance in bacterial cell development. Proc. Natl Acad. Sci. USA 105, 4393–4398 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bhattacharyya, S. et al. A heritable iron memory enables decision-making in Escherichia coli. Proc. Natl Acad. Sci. USA 120, e2309082120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Riber, L. & Hansen, L. H. Epigenetic memories: the hidden drivers of bacterial persistence? Trends Microbiol 29, 190–194 (2021).

    Article  CAS  PubMed  Google Scholar 

  42. Lim, H. N. & van Oudenaarden, A. A multistep epigenetic switch enables the stable inheritance of DNA methylation states. Nat. Genet. 39, 269–275 (2007).

    Article  CAS  PubMed  Google Scholar 

  43. Harms, A., Maisonneuve, E. & Gerdes, K. Mechanisms of bacterial persistence during stress and antibiotic exposure. Science 354, aaf4268 (2016).

    Article  PubMed  Google Scholar 

  44. Niu, H., Gu, J. & Zhang, Y. Bacterial persisters: molecular mechanisms and therapeutic development. Signal Transduct. Target Ther. 9, 174 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Xu, Y., Liu, S., Zhang, Y. & Zhang, W. DNA adenine methylation is involved in persister formation in E. coli. Microbiol. Res. 246, 126709 (2021).

    Article  CAS  PubMed  Google Scholar 

  46. Adam, M., Murali, B., Glenn, N. O. & Potter, S. S. Epigenetic inheritance based evolution of antibiotic resistance in bacteria. BMC Evol. Biol. 8, 52 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Jõers, A. & Tenson, T. Growth resumption from stationary phase reveals memory in Escherichia coli cultures. Sci. Rep. 6, 24055 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Miyaue, S. et al. Bacterial memory of persisters: bacterial persister cells can retain their phenotype for days or weeks after withdrawal from colony–biofilm culture. Front. Microbiol. 9, 1396 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Desmond, C., Stanton, C., Fitzgerald, G. F., Collins, K. & Paul Ross, R. Environmental adaptation of probiotic lactobacilli towards improvement of performance during spray drying. Int. Dairy J. 11, 801–808 (2001).

    Article  Google Scholar 

  50. Svenningsen, M. S., Svenningsen, S., Lo, Sørensen, M. A. & Mitarai, N. Existence of log-phase Escherichia coli persisters and lasting memory of a starvation pulse. Life Sci. Alliance 5, e202101076 (2022).

    Article  CAS  PubMed  Google Scholar 

  51. Shmidov, E. et al. Multigenerational proteolytic inactivation of restriction upon subtle genomic hypomethylation in Pseudomonas aeruginosa. Nat. Microbiol. 10, 2498–2510 (2025).

    Article  CAS  PubMed  Google Scholar 

  52. Holloway, B. W. Variations in restriction and modification of bacteriophage following increase of growth temperature of Pseudomonas aeruginosa. Virology 25, 634–642 (1965).

    Article  CAS  PubMed  Google Scholar 

  53. Ogle, K. et al. Quantifying ecological memory in plant and ecosystem processes. Ecol. Lett. 18, 221–235 (2015).

    Article  PubMed  Google Scholar 

  54. Dethlefsen, L. & Relman, D. A. Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation. Proc. Natl Acad. Sci. USA 108, 4554–4561 (2011).

    Article  CAS  PubMed  Google Scholar 

  55. Thaiss, C. A. et al. Persistent microbiome alterations modulate the rate of post-dieting weight regain. Nature 540, 544–551 (2016).

    Article  CAS  PubMed  Google Scholar 

  56. Palleja, A. et al. Recovery of gut microbiota of healthy adults following antibiotic exposure. Nat. Microbiol 3, 1255–1265 (2018).

    Article  CAS  PubMed  Google Scholar 

  57. Canarini, A. et al. Ecological memory of recurrent drought modifies soil processes via changes in soil microbial community. Nat. Commun. 12, 5308 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Vompe, A. D. et al. Microbiome ecological memory and responses to repeated marine heatwaves clarify variation in coral bleaching and mortality. Glob. Change Biol. 30, e17088 (2024).

    Article  Google Scholar 

  59. Smith, M. B. et al. Natural bacterial communities serve as quantitative geochemical biosensors. mBio 6, e00326–15 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kuster, S. P. et al. Previous antibiotic exposure and antimicrobial resistance in invasive pneumococcal disease: results from prospective surveillance. Clin. Infect. Dis. 59, 944–952 (2014).

    Article  CAS  PubMed  Google Scholar 

  61. Stacy, A. et al. Infection trains the host for microbiota-enhanced resistance to pathogens. Cell 184, 615–627.e17 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Carmody, R. N. et al. Diet dominates host genotype in shaping the murine gut microbiota. Cell Host Microbe 17, 72–84 (2015).

    Article  CAS  PubMed  Google Scholar 

  63. Salonen, A. et al. Impact of diet and individual variation on intestinal microbiota composition and fermentation products in obese men. ISME J. 8, 2218–2230 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Khazaei, T. et al. Metabolic multistability and hysteresis in a model aerobe–anaerobe microbiome community. Sci. Adv. 6, eaba0353 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Louca, S. & Doebeli, M. Transient dynamics of competitive exclusion in microbial communities. Environ. Microbiol. 18, 1863–1874 (2016).

    Article  CAS  PubMed  Google Scholar 

  66. Debray, R. et al. Priority effects in microbiome assembly. Nat. Rev. Microbiol. 20, 109–121 (2022).

    Article  CAS  PubMed  Google Scholar 

  67. Wallecha, A., Munster, V., Correnti, J., Chan, T. & van der Woude, M. Dam- and OxyR-dependent phase variation of agn43: essential elements and evidence for a new role of DNA methylation. J. Bacteriol. 184, 3338–3347 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was conducted with the financial support of Research Ireland under grant no. SFI/12/RC/2273_P2 and the Weston Family Foundation.

Author information

Authors and Affiliations

Authors

Contributions

All authors conceptualized the content of the paper. K.S wrote the draft paper. F.S., R.P.R. and C.H. reviewed and edited the paper.

Corresponding author

Correspondence to Colin Hill.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Microbiology thanks Yitzhak Pilpel, Tanel Tenson and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Scanlon, K., Shanahan, F., Ross, R.P. et al. Exploring the concept of bacterial memory. Nat Microbiol 10, 3049–3058 (2025). https://doi.org/10.1038/s41564-025-02185-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41564-025-02185-3

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology