Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Multivalent-effect immobilization of reduced-dimensional perovskites for efficient and spectrally stable deep-blue light-emitting diodes

Abstract

Despite substantial advances in green and red metal halide perovskite light-emitting diodes (PeLEDs), blue PeLEDs, particularly deep-blue ones (defined as Commission International de l’Eclairage y coordinate (CIEy) less than 0.06) that meet the latest Rec. 2020 colour gamut standard, lag dramatically behind owing to a severe phase segregation-induced electroluminescent spectral shift and low exciton utilization in broadened bandgap perovskite emitters. Here we propose a multivalent immobilization strategy to realize high-efficiency and spectrally stable deep-blue PeLEDs by introducing a polyfluorinated oxygen-containing molecule. Systematic experiments and extensive 5,000 fs ab initio molecular dynamics simulations reveal that a crucial role of the multivalent effect stemming from three kinds of interaction of hydrogen bond (F···H–N), ionic bond (F–Pb) and coordination bond (C=O:Pb) with perovskite is to synergistically stabilize the perovskite phase and enhance exciton radiative recombination. The resultant exciton concentration and exciton recombination rate of the deep-blue perovskite emitter are increased by factors of 1.66 and 1.64, respectively. In this context, our target PeLEDs demonstrate a peak external quantum efficiency of up to 15.36% at a deep-blue emission wavelength of 459 nm and a half-lifetime of 144 min at a constant current density of 0.45 mA cm2. Moreover, the deep-blue PeLEDs maintain a constant spectrum peak with CIE chromaticity coordinates of (0.136, 0.051) under a steady driving current for 60 min.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Device performance and self-consistent photoelectric simulations of deep-blue PeLEDs.
Fig. 2: Optical and electrical characterizations of the RDP films.
Fig. 3: Multivalent effect between organic species and RDPs.
Fig. 4: Immobilization mechanism of deep-blue perovskite emitters by multivalent effect.

Similar content being viewed by others

Data availability

The main data supporting the findings of this study are available within the article and its Supplementary Information. Extra data are available from the corresponding authors upon reasonable request.

References

  1. Blancon, J. C., Even, J., Stoumpos, C. C., Kanatzidis, M. G. & Mohite, A. D. Semiconductor physics of organic–inorganic 2D halide perovskites. Nat. Nanotechnol. 15, 969–985 (2020).

    Article  CAS  PubMed  Google Scholar 

  2. Wei, Y., Cheng, Z. & Lin, J. An overview on enhancing the stability of lead halide perovskite quantum dots and their applications in phosphor-converted LEDs. Chem. Soc. Rev. 48, 310–350 (2019).

    Article  CAS  PubMed  Google Scholar 

  3. Liu, X. K. et al. Metal halide perovskites for light-emitting diodes. Nat. Mater. 20, 10–21 (2021).

    Article  CAS  PubMed  Google Scholar 

  4. Kim, Y. H., Kim, J. S. & Lee, T. W. Strategies to improve luminescence efficiency of metal-halide perovskites and light-emitting diodes. Adv. Mater. 31, e1804595 (2019).

    Article  PubMed  Google Scholar 

  5. Kim, J. S. et al. Ultra-bright, efficient and stable perovskite light-emitting diodes. Nature 611, 688–694 (2022).

    Article  CAS  PubMed  Google Scholar 

  6. Ma, D. et al. Distribution control enables efficient reduced-dimensional perovskite LEDs. Nature 599, 594–598 (2021).

    Article  CAS  PubMed  Google Scholar 

  7. Hassan, Y. et al. Ligand-engineered bandgap stability in mixed-halide perovskite LEDs. Nature 591, 72–77 (2021).

    Article  CAS  PubMed  Google Scholar 

  8. Han, D. et al. Tautomeric mixture coordination enables efficient lead-free perovskite LEDs. Nature 622, 493–498 (2023).

    Article  CAS  PubMed  Google Scholar 

  9. Sun, Y. et al. Bright and stable perovskite light-emitting diodes in the near-infrared range. Nature 615, 830–835 (2023).

    Article  CAS  PubMed  Google Scholar 

  10. Guo, B. et al. Ultrastable near-infrared perovskite light-emitting diodes. Nat. Photon. 16, 637–643 (2022).

    Article  CAS  Google Scholar 

  11. Luo, J. et al. Efficient blue light emitting diodes based on europium halide perovskites. Adv. Mater. 33, e2101903 (2021).

    Article  PubMed  Google Scholar 

  12. Tong, Y. et al. In situ halide exchange of cesium lead halide perovskites for blue light-emitting diodes. Adv. Mater. 35, e2207111 (2023).

    Article  PubMed  Google Scholar 

  13. Karlsson, M. et al. Mixed halide perovskites for spectrally stable and high-efficiency blue light-emitting diodes. Nat. Commun. 12, 361 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhang, L. et al. Manipulating local lattice distortion for spectrally stable and efficient mixed-halide blue perovskite LEDs. Angew. Chem. Int. Ed. 62, e202302184 (2023).

    Article  CAS  Google Scholar 

  15. Jiang, Y. et al. Spectra stable blue perovskite light-emitting diodes. Nat. Commun. 10, 1868 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Yuan, S. et al. Optimization of low-dimensional components of quasi-2D perovskite films for deep-blue light-emitting diodes. Adv. Mater. 31, e1904319 (2019).

    Article  PubMed  Google Scholar 

  17. Wang, C. et al. Dimension control of in situ fabricated CsPbClBr2 nanocrystal films toward efficient blue light-emitting diodes. Nat. Commun. 11, 6428 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tian, Y. et al. Modulating low-dimensional domains of self-assembling quasi-2D perovskites for efficient and spectra-stable blue light-emitting diodes. Chem. Eng. J. 415, 129088 (2021).

    Article  CAS  Google Scholar 

  19. Zhang, M. et al. Water-driven synthesis of deep-blue perovskite colloidal quantum wells for electroluminescent devices. Angew. Chem. Int. Ed. 62, e202300149 (2023).

    Article  CAS  Google Scholar 

  20. Yin, W. et al. Multidentate ligand polyethylenimine enables bright color-saturated blue light-emitting diodes based on CsPbBr3 nanoplatelets. ACS Energy Lett. 6, 477–484 (2021).

    Article  CAS  Google Scholar 

  21. Liu, A. et al. High color-purity and efficient pure-blue perovskite light-emitting diodes based on strongly confined monodispersed quantum dots. Nano Lett. 23, 2405–2411 (2023).

    Article  CAS  PubMed  Google Scholar 

  22. Pang, P. et al. Rearranging low-dimensional phase distribution of quasi-2D perovskites for efficient sky-blue perovskite light-emitting diodes. ACS Nano 14, 11420–11430 (2020).

    Article  CAS  PubMed  Google Scholar 

  23. Jia, Y. et al. Unveiling the complex evolution in mixed Br–Cl perovskite precursors for high-efficiency deep-blue light-emitting diodes. Small Struct. 4, 202200393 (2023).

    Article  Google Scholar 

  24. Yang, Y. et al. Highly efficient pure-blue light-emitting diodes based on rubidium and chlorine alloyed metal halide perovskite. Adv. Mater. 33, e2100783 (2021).

    Article  PubMed  Google Scholar 

  25. Jiang, Y. et al. Synthesis-on-substrate of quantum dot solids. Nature 612, 679–684 (2022).

    Article  CAS  PubMed  Google Scholar 

  26. Dong, Y. et al. Bipolar-shell resurfacing for blue LEDs based on strongly confined perovskite quantum dots. Nat. Nanotechnol. 15, 668–674 (2020).

    Article  CAS  PubMed  Google Scholar 

  27. Guo, J. et al. Pb2+ doped CsCdBr3 perovskite nanorods for pure-blue light-emitting diodes. Chem. Eng. J. 427, 131010 (2022).

    Article  CAS  Google Scholar 

  28. Zou, G. et al. Color-stable deep-blue perovskite light-emitting diodes based on organotrichlorosilane post-treatment. Adv. Funct. Mater. 31, 2103219 (2021).

    Article  CAS  Google Scholar 

  29. Zhou, Y. H. et al. Stabilized low-dimensional species for deep-blue perovskite light-emitting diodes with EQE approaching 3.4%. J. Am. Chem. Soc. 144, 18470–18478 (2022).

    Article  CAS  PubMed  Google Scholar 

  30. Yuan, S. et al. Efficient and spectrally stable blue perovskite light-emitting diodes employing a cationic pi-conjugated polymer. Adv. Mater. 33, e2103640 (2021).

    Article  PubMed  Google Scholar 

  31. Pang, P. et al. Deep-blue light-emitting diodes constructed with perovskite quasi-2D and nanocrystal mixtures. Adv. Opt. Mater. 10, 2201112 (2022).

    Article  CAS  Google Scholar 

  32. Dong, J. et al. Perovskite light-emitting diodes with low roll-off efficiency via interfacial ionic immobilization. Chem. Eng. J. 429, 132347 (2022).

    Article  CAS  Google Scholar 

  33. Hu, W. et al. High open-circuit voltage of 1.134 V for inverted planar perovskite solar cells with sodium citrate-doped PEDOT:PSS as a hole transport layer. ACS Appl. Mater. Interfaces 11, 22021–22027 (2019).

    Article  CAS  PubMed  Google Scholar 

  34. Dong, J. et al. Deep-blue electroluminescence of perovskites with reduced dimensionality achieved by manipulating adsorption-energy differences. Angew. Chem. Int. Ed. 61, e202210322 (2022).

    Article  CAS  Google Scholar 

  35. Tress, W. et al. Understanding the rate-dependent JV hysteresis, slow time component, and aging in CH3NH3PbI3 perovskite solar cells: the role of a compensated electric field. Energy Environ. Sci. 8, 995–1004 (2015).

    Article  CAS  Google Scholar 

  36. Li, C., Guerrero, A., Huettner, S. & Bisquert, J. Unravelling the role of vacancies in lead halide perovskite through electrical switching of photoluminescence. Nat. Commun. 9, 5113 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Wang, H. et al. A multi-functional molecular modifier enabling efficient large-area perovskite light-emitting diodes. Joule 4, 1977–1987 (2020).

    Article  CAS  Google Scholar 

  38. Chen, W. et al. Highly bright and stable single-crystal perovskite light-emitting diodes. Nat. Photon. 17, 401–407 (2023).

    Article  CAS  Google Scholar 

  39. Wu, K. et al. Temperature-dependent excitonic photoluminescence of hybrid organometal halide perovskite films. Phys. Chem. Chem. Phys. 16, 22476–22481 (2014).

    Article  CAS  PubMed  Google Scholar 

  40. Elbohy, H. et al. Tuning hole transport layer using urea for high-performance perovskite solar cells. Adv. Funct. Mater. 29, 1806740 (2018).

    Article  Google Scholar 

  41. Wang, H. et al. Trifluoroacetate induced small-grained CsPbBr3 perovskite films result in efficient and stable light-emitting devices. Nat. Commun. 10, 665 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Liu, Y. et al. A multifunctional additive strategy enables efficient pure-blue perovskite light-emitting diodes. Adv. Mater. 35, 2302161 (2023).

    Article  CAS  Google Scholar 

  43. Liu, Y. et al. Spectral stable blue-light-emitting diodes via asymmetric organic diamine based Dion–Jacobson perovskites. J. Am. Chem. Soc. 143, 19711–19718 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kong, L. et al. Smoothing the energy transfer pathway in quasi-2D perovskite films using methanesulfonate leads to highly efficient light-emitting devices. Nat. Commun. 12, 1246 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Xu, W. et al. Rational molecular passivation for high-performance perovskite light-emitting diodes. Nat. Photon. 13, 418–424 (2019).

    Article  CAS  Google Scholar 

  46. Kuang, C. et al. Critical role of additive-induced molecular interaction on the operational stability of perovskite light-emitting diodes. Joule 5, 618–630 (2021).

    Article  CAS  Google Scholar 

  47. Li, N. et al. Cation and anion immobilization through chemical bonding enhancement with fluorides for stable halide perovskite solar cells. Nat. Energy 4, 408–415 (2019).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NSFC 51972137, 62174104 and 62321166653), the National Key Research and Development Program of China (2022YFE0200200), the Science and Technology Planning Project of Jilin Province (grant numbers 20190201306JC and 20230101020JC), the Innovative Capacity Building Foundation of Jilin Province Development and Reform Commission (2023C034-5), the start-up funding and Excellent Youth Faculty Program of Jilin University, the Fundamental Research Funds for the Central Universities and the Program of Shanghai Academic/Technology Research Leader (22XD1421200). We thank the staff of beamlines BL17B1, BL02U2 and BL19U2 at SSRF for providing the beam time and User Experiment Assist System of SSRF for their help.

Author information

Authors and Affiliations

Authors

Contributions

J.D. and H.J. designed and fabricated the deep-blue PeLEDs under the guidance of N.W. Y.Y. carried out the GIWAXS measurements and analysed the results. B.Z. carried out the calculations. C.C. and Z.-H.Z. conducted the semiconductor physical simulations. Z.Z. carried out the PLQY measurements. J.W. and D.H. assisted with the preparation of diagrams and carried out the optical measurements. J.D. and H.J. performed the transient absorption and electrical measurements. J.D., H.J., B.Z., L.K., Y.Y., Y.F., L.Z., X.Y. and N.W. prepared and polished the paper. All authors discussed the results and commented on the paper.

Corresponding authors

Correspondence to Xuyong Yang or Ning Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Nanotechnology thanks Jung-Yong Lee, Tae-Woo Lee and Guichuan Xing for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–38, discussion and Tables 1–5.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, J., Zhao, B., Ji, H. et al. Multivalent-effect immobilization of reduced-dimensional perovskites for efficient and spectrally stable deep-blue light-emitting diodes. Nat. Nanotechnol. 20, 507–514 (2025). https://doi.org/10.1038/s41565-024-01852-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41565-024-01852-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing