Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Compact polyethylenimine-complexed mRNA vaccines

Abstract

Here we describe formulations comprising individual, polymer-complexed self-amplifying RNA (saRNA) molecules, designed for vaccination against infectious diseases and other prophylactic and therapeutic applications. When exposed to a large excess of the cationic polymer polyethylenimine (PEI), the single saRNA molecules in solution reorganize from an extended to a globular organization, characterized by a high packing density, low polymer mass fraction and, consequently, a very small size of the polyplex nanoparticles of about 30 nm. This format of PEI-complexed saRNA exhibits enhanced biological activity in comparison with previously described saRNA/PEI formulations, both in vitro and in vivo. In vaccination models, relevant immune responses at lower doses are achieved, offering potential advantages for practical use. We found that the single PEI-complexed RNA molecules are also present in conventional formulations to some degree. The direct correlation between the single-molecule fraction with activity suggests that it is this format that predominantly contributes to activity in the different formulation types. Complexation is driven by mechanisms of self-assembly between oppositely charged polyelectrolytes, making this protocol broadly applicable to various cationic polymers and RNA constructs. With their small size and good stability in biofluids, these compacted RNA molecules are also promising for the systemic delivery of genetic material to compartments that are difficult to reach with larger particles.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Discovering PEI-solubilized saRNA species.
Fig. 2: Fluorescence microscopy investigation of in vitro uptake.
Fig. 3: PEI-solubilized saRNA outperforms polyplex nanoparticles in vivo.
Fig. 4: Structure analysis of single PEI-compacted saRNA molecules.
Fig. 5: Extended structure analysis of PEI-complexed saRNA by SANS.
Fig. 6: CD reveals opposite effects of ions and PEI on secondary structure.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author, upon reasonable request. For the SANS measurements, the raw images are public via ISIS Neutron Source at https://data.isis.stfc.ac.uk/doi/INVESTIGATION/111243135/ and https://doi.org/10.5286/ISIS.E.RB2000156. Source data are provided with this paper.

References

  1. Labouta, H. I. et al. Role of drug delivery technologies in the success of COVID-19 vaccines: a perspective. Drug Deliv. Transl. Res. 12, 2581–2588 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Sahin, U., Karikó, K. & Türeci, Ö. mRNA-based therapeutics—developing a new class of drugs. Nat. Rev. Drug Discov. 13, 759–780 (2014).

    Article  CAS  PubMed  Google Scholar 

  3. Chaudhary, N., Weissman, D. & Whitehead, K. A. mRNA vaccines for infectious diseases: principles, delivery and clinical translation. Nat. Rev. Drug Discov. 20, 880 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bloom, K., van den Berg, F. & Arbuthnot, P. Self-amplifying RNA vaccines for infectious diseases. Gene Ther. 28,117–129 (2020).

  5. Vogel, A. B. et al. Self-amplifying RNA vaccines give equivalent protection against influenza to mRNA vaccines but at much lower doses. Mol. Ther. 26, 446–455 (2018).

    Article  CAS  PubMed  Google Scholar 

  6. Pollock, K. M. et al. Safety and immunogenicity of a self-amplifying RNA vaccine against COVID-19: COVAC1, a phase I, dose-ranging trial. EClinicalMedicine 44, 101262 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Davis, N. L., Willis, L. V., Smitht, J. F. & Johnston, R. E. In vitro synthesis of infectious venezuelan equine encephalitis virus RNA from a cDNA clone: analysis of a viable deletion mutant. Virology 171, 189–204 (1989).

    Article  CAS  PubMed  Google Scholar 

  8. Tenchov, R. et al. Lipid nanoparticles: from liposomes to mRNA vaccine delivery, a landscape of research diversity and advancement. ACS Nano 15, 16982–17015 (2021).

    Article  CAS  PubMed  Google Scholar 

  9. Samaridou, E., Heyes, J. & Lutwyche, P. Lipid nanoparticles for nucleic acid delivery: current perspectives. Adv. Drug Deliv. Rev. 154–155, 37–63 (2020).

    Article  PubMed  Google Scholar 

  10. Kranz, L. M. et al. Systemic RNA delivery to dendritic cells exploits antiviral defence for cancer immunotherapy. Nature 534, 396–401 (2016).

    Article  PubMed  Google Scholar 

  11. Aldon, Y. et al. Immunogenicity of stabilized HIV-1 Env trimers delivered by self-amplifying mRNA. Mol. Ther. Nucleic Acids 25, 483–493 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Blakney, A. K. et al. Polymeric and lipid nanoparticles for delivery of self-amplifying RNA vaccines. J. Control. Release 338, 201–210 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Blakney, A. K. et al. Big is beautiful: enhanced saRNA delivery and immunogenicity by a higher molecular weight, bioreducible, cationic polymer. ACS Nano 14, 5711–5727 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Démoulins, T. et al. Polyethylenimine-based polyplex delivery of self-replicating RNA vaccines. Nanomed. Nanotechnol. Biol. Med. 12, 711–722 (2016).

    Article  Google Scholar 

  15. Casper, Jens et al. Polyethylenimine (PEI) in gene therapy: current status and clinical applications. J. Control. Release 362, 667–691 (2023).

    Article  CAS  PubMed  Google Scholar 

  16. Boussif, O. et al. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc. Natl Acad. Sci. USA 92, 7297–7301 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zou, S. M., Erbacher, P., Remy, J. S. & Behr, J. P. Systemic linear polyethylenimine (L‐PEI)‐mediated gene delivery in the mouse. J. Gene Med. 2, 128–134 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Bonnet, M.-E., Erbacher, P. & Bolcato-Bellemin, A.-L. Systemic delivery of DNA or siRNA mediated by linear polyethylenimine (L-PEI) does not induce an inflammatory response. Pharm. Res. 25, 2972–2982 (2008).

    Article  CAS  PubMed  Google Scholar 

  19. Perevyazko, I. Y. et al. Polyelectrolyte complexes of DNA and linear PEI: formation, composition and properties. Langmuir 28, 16167–16176 (2012).

    Article  CAS  PubMed  Google Scholar 

  20. Gallops, C. E., Yu, C., Ziebarth, J. D. & Wang, Y. Effect of the protonation level and ionic strength on the structure of linear polyethyleneimine. ACS Omega 4, 7255–7264 (2019).

    Article  CAS  Google Scholar 

  21. Huh, S.-H. et al. Optimization of 25 kDa linear polyethylenimine for efficient gene delivery. Biologicals 35, 165–171 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. Parot, J., Caputo, F., Mehn, D., Hackley, V. A. & Calzolai, L. Physical characterization of liposomal drug formulations using multi-detector asymmetrical-flow field flow fractionation. J. Control. Release 320, 495–510 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Graewert, M. A. et al. Quantitative size-resolved characterization of mRNA nanoparticles by in-line coupling of asymmetrical-flow field-flow fractionation with small angle X-ray scattering. Sci. Rep. 13, 15764 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Guerrini, G. et al. Analytical ultracentrifugation to assess the quality of LNP–mRNA therapeutics. Int. J. Mol. Sci. 25, 5718 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Oliver, R. C., Rolband, L. A., Hutchinson-Lundy, A. M., Afonin, K. A. & Krueger, J. K. Small-angle scattering as a structural probe for nucleic acid nanoparticles (NANPs) in a dynamic solution environment. Nanomaterials 9, 681 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Takamoto, K. et al. Principles of RNA compaction: insights from the equilibrium folding pathway of the P4–P6 RNA domain in monovalent cations. J. Mol. Biol. 343, 1195–1206 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. Guzmán-Terán, C., Calderón-Rangel, A., Rodriguez-Morales, A. & Mattar, S. Venezuelan equine encephalitis virus: the problem is not over for tropical America. Ann. Clin. Micro. Antimicrob 19, 19 (2020).

    Article  Google Scholar 

  28. Abhijeet, D. et al. Polyelectrolyte complexes: mechanisms, critical experimental aspects, and applications. Artif. Cells Nanomed. Biotechnol. 44, 1615–1625 (2016).

    Article  Google Scholar 

  29. Haas, H., Moreno Herrero, J., Schlegel, A. M. G. & Erbar, S. RNA formulations suitable for therapy. US patent WO2021001417A1 (2021).

  30. Moreno Herrero, J., Haas, H., Erbar, S. & Stahl, T. B. Nucleic acid complexes and uses thereorf. US patent WO2024068674A1 (2024).

  31. Siewert, C. et al. Investigation of charge ratio variation in mRNA—DEAE–dextran polyplex delivery systems. Biomaterials 192, 612–620 (2019).

    Article  CAS  PubMed  Google Scholar 

  32. Manalastas-Cantos, K. et al. ATSAS 3.0: expanded functionality and new tools for small-angle scattering data analysis. J. Appl. Crystallogr. 54, 343–355 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kuhn, A. N. et al. Phosphorothioate cap analogs increase stability and translational efficiency of RNA vaccines in immature dendritic cells and induce superior immune responses in vivo. Gene Ther. 17, 961–971 (2010).

    Article  CAS  PubMed  Google Scholar 

  34. Pokrovskaya, I. D. & Gurevich, V. V. In vitro transcription: preparative RNA yields in analytical scale reactions. Anal. Biochem. 220, 420–423 (1994).

    Article  CAS  PubMed  Google Scholar 

  35. Haas, H., Erbar, S. & Heidenreich, R. Formulation for administration of RNA. US patent WO2018011406A1 (2018).

  36. Erbacher, P. et al. Genuine DNA/polyethylenimine (PEI) complexes improve transfection properties and cell survival. J. Drug Target. 12, 223–236 (2008).

    Article  Google Scholar 

  37. Vita, R. et al. The Immune Epitope Database (IEDB): 2018 update. Nucleic Acids Res. 47, D339–D343 (2019).

    Article  CAS  PubMed  Google Scholar 

  38. Wang, P. et al. A systematic assessment of MHC class II peptide binding predictions and evaluation of a consensus approach. PLoS Comput. Biol. 4, e1000048 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Paul, S. et al. HLA class I alleles are associated with peptide-binding repertoires of different size, affinity, and immunogenicity. J. Immunol. 191, 5731–5739 (2013).

    Article  Google Scholar 

  40. Blanchet, C. E. et al. Versatile sample environments and automation for biological solution X-ray scattering experiments at the P12 beamline (PETRA III, DESY). J. Appl. Crystallogr. 48, 431–443 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Schroer, M. A. et al. Smaller capillaries improve the small-angle X-ray scattering signal and sample consumption for biomacromolecular solutions. J. Synchrotron Radiat. 25, 1113–1122 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Round, A. et al. BioSAXS sample changer: a robotic sample changer for rapid and reliable high-throughput X-ray solution scattering experiments. Acta Crystallogr. D Biol. Crystallogr. 71, 67–75 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Franke, D., Kikhney, A. G. & Svergun, D. I. Automated acquisition and analysis of small angle X-ray scattering data. Nucl. Instrum. Methods Phys. Res. A 689, 52–59 (2012).

    Article  CAS  Google Scholar 

  44. Svergun, D. I. Determination of the regularization parameter in indirect-transform methods using perceptual criteria. J. Appl. Crystallogr. 25, 495–503 (1992).

    Article  CAS  Google Scholar 

  45. Franke, D. & Svergun, D. I. DAMMIF, a program for rapid ab-initio shape determination in small-angle scattering. J. Appl. Crystallogr. 42, 342–346 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Arnold, O. et al. Mantid—data analysis and visualization package for neutron scattering and μ SR experiments. Nucl. Instrum. Methods Phys. Res. A 764, 156–166 (2014).

    Article  CAS  Google Scholar 

  47. Rubinson, K. A., Stanley, C. & Krueger, S. Small-angle neutron scattering and the errors in protein structures that arise from uncorrected background and intermolecular interactions. J. Appl. Crystallogr. 41, 456–465 (2008).

    Article  CAS  Google Scholar 

  48. Orthaber, D., Bergman, A. & Glatter, O. SAXS experiments on absolute scale with Kratky systems using water as a secondary standard. J. Appl. Crystallogr. 33, 218–225 (2000).

    Article  CAS  Google Scholar 

  49. Ibel, K. & Stuhrmann, H. B. Comparison of neutron and X-ray scattering of dilute myoglobin solutions. J. Mol. Biol. 93, 255–265 (1975).

    Article  CAS  PubMed  Google Scholar 

  50. Stuhrmann, H. B. Small-angle scattering and its interplay with crystallography, contrast variation in SAXS and SANS. Acta Crystallogr. A A64, 181–191 (2008).

    Article  Google Scholar 

Download references

Acknowledgements

Figures 1, 3 and 4 were illustrated and designed by Elvire Thouvenot and are reproduced with permission, copyright 2022 Elvire Thouvenot. We thank JASCO and S. Suzuki for making available the HTS Module for early CD measurements and helping throughout the establishment of the HTS protocol used in this Article. We acknowledge A. Westenberger for excellent technical assistance. For SANS data analysis, this work benefitted from the use of the SasView application, originally developed under NSF award DMR-0520547. For SANS data analysis, the software package SasView was used. SasView contains code developed with funding from the European Union’s Horizon 2020 research and innovation programme under the SINE2020 project, grant agreement no. 654000.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization by J.M.H., S.E., A.S. and H.H. Methodology by J.M.H., S.E., J.S., A.S. and H.H. Investigation by J.M.H., T.B.S., J.S., K.M., T.B., L.P.C., M.A.S. and D.I.S. Visualization by J.M.H., S.E. and H.H. Project administration by S.E., A.S., H.H. and U.S. Supervision by S.E., A.S., H.H. and U.S. Writing—original draft by J.M.H., S.E. and H.H. Writing— review and editing by J.M.H., T.B.S., S.E., K.M., A.S., J.S., T.B., L.P.C., M.A.S., D.I.S. and H.H.

Corresponding authors

Correspondence to Ugur Sahin or Heinrich Haas.

Ethics declarations

Competing interests

U.S. is a management board member at BioNTech SE. T.B.S., J.S. and T.B. are employees at BioNTech SE. J.M.H., T.B.S., S.E., A.S., T.B., H.H. and U.S. are inventors on patents and patent applications related to RNA technology and/or have securities from BioNTech SE. All other authors declare no competing interests.

Peer review

Peer review information

Nature Nanotechnology thanks Gero Decher, Reidar Lund and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary data, Figs. 1–8 and Tables 1 and 2.

Source data

Source data Fig. 1

Excel file with data for Fig. 1.

Source data Fig. 2C

Excel file with data for Fig. 2c.

Source data Fig. 4

Excel file with data for Fig. 4.

Source data Fig. 5

Excel file with data for Fig. 5.

Source data Fig. 6

Excel file with data for Fig. 6.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moreno Herrero, J., Stahl, T.B., Erbar, S. et al. Compact polyethylenimine-complexed mRNA vaccines. Nat. Nanotechnol. 20, 1323–1331 (2025). https://doi.org/10.1038/s41565-025-01961-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41565-025-01961-w

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research