Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Enzymatic microbubble robots

Abstract

The development of micro- and nanorobots has amplified the demand for intelligent multifunctional machines in biomedical applications, but most microrobotic systems struggle to achieve the attributes needed for those applications. Here we introduce enzymatic microbubble robots that exhibit steerable motion, enhanced biodegradability, high in vivo imaging contrast, and effective targeting and penetration of disease sites. These microrobots feature natural protein shells modified with urease to decompose bioavailable urea for autonomous propulsion, whereas an internal microbubble serves as an ultrasound imaging contrast agent for deep tissue imaging and navigation. Magnetic nanoparticle integration enables imaging-guided magnetically controlled motion and catalase functionalization facilitates chemotactic movement towards hydrogen peroxide gradients, directing robots to tumour sites. Focused ultrasound triggers robot shell collapse and inertial cavitation of the released microbubbles, creating mechanical forces that enhance therapeutic payload penetration. In vivo studies validate the tumour-targeting and therapeutic efficacy of these robots, demonstrating enhanced antitumour effects. This multifunctional microbubble robotic platform has the potential to transform medical interventions and precision therapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of bioresorbable microbubble robots with the capabilities of efficient autonomous propulsion, high imaging contrast, targeted disease site navigation and enhanced tissue penetration.
Fig. 2: Characterization of MBRs.
Fig. 3: Characterization of CBRs.
Fig. 4: Evaluation of microbubble robots for drug loading, tumour binding and penetration.
Fig. 5: Evaluation of antitumour effects of microbubble robots in vivo using an orthotopic bladder tumour model.

Data availability

The data supporting the results in this study are available within the paper and its Supplementary Information. Source data are provided with this paper.

Code availability

The custom MATLAB code for the Keller–Miksis dynamic model simulations in this study is available via Zenodo at https://doi.org/10.5281/zenodo.17717384 (ref. 65).

References

  1. Nelson, B. J. & Pané, S. Delivering drugs with microrobots. Science 382, 1120–1122 (2023).

    Article  CAS  PubMed  Google Scholar 

  2. Almeida, H., Traverso, G., Sarmento, B. & das Neves, J. Nanoscale anisotropy for biomedical applications. Nat. Rev. Bioeng. 2, 609–625 (2024).

    Article  CAS  Google Scholar 

  3. Kim, K., Guo, J., Liang, Z. & Fan, D. Artificial micro/nanomachines for bioapplications: biochemical delivery and diagnostic sensing. Adv. Funct. Mater. 28, 1705867 (2018).

    Article  Google Scholar 

  4. Li, J., de Ávila, B. E.-F., Gao, W., Zhang, L. & Wang, J. Micro/nanorobots for biomedicine: delivery, surgery, sensing, and detoxification. Sci. Robot. 2, eaam6431 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Elnaggar, A., Kang, S., Tian, M., Han, B. & Keshavarz, M. State of the art in actuation of micro/nanorobots for biomedical applications. Small Sci. 4, 2300211 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Simo, C. et al. Urease-powered nanobots for radionuclide bladder cancer therapy. Nat. Nanotechnol. 19, 554–564 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zhang, H. et al. Dual-responsive biohybrid neutrobots for active target delivery. Sci. Robot. 6, 9519eaaz (2021).

    Article  Google Scholar 

  8. Yoo, J., Tang, S. & Gao, W. Micro- and nanorobots for biomedical applications in the brain. Nat. Rev. Bioeng. 1, 308–310 (2023).

    Article  CAS  Google Scholar 

  9. Wu, Z. et al. A swarm of slippery micropropellers penetrates the vitreous body of the eye. Sci. Adv. 4, eaat4388 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wang, Y. et al. Microrobots for targeted delivery and therapy in digestive system. ACS Nano 17, 27–50 (2023).

    Article  CAS  PubMed  Google Scholar 

  11. Wu, Z. et al. Oral mitochondrial transplantation using nanomotors to treat ischaemic heart disease. Nat. Nanotechnol. 19, 1375–1385 (2024).

    Article  CAS  PubMed  Google Scholar 

  12. Yan, M. et al. Site-selective superassembly of biomimetic nanorobots enabling deep penetration into tumor with stiff stroma. Nat. Commun. 14, 4628 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wu, X. et al. Self-adaptive magnetic liquid metal microrobots capable of crossing biological barriers and wireless neuromodulation. ACS Nano 18, 29558–29571 (2024).

    Article  CAS  PubMed  Google Scholar 

  14. Law, J. et al. Microrobotic swarms for selective embolization. Sci. Adv. 8, eabm5752 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Go, G. et al. Multifunctional microrobot with real-time visualization and magnetic resonance imaging for chemoembolization therapy of liver cancer. Sci. Adv. 8, eabq8545 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Del Campo Fonseca, A. et al. Ultrasound trapping and navigation of microrobots in the mouse brain vasculature. Nat. Commun. 14, 5889 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Kim, J. et al. Advanced materials for micro/nanorobotics. Chem. Soc. Rev. 53, 9190–9253 (2024).

    Article  CAS  PubMed  Google Scholar 

  18. Peng, F., Tu, Y. & Wilson, D. A. Micro/nanomotors towards in vivo application: cell, tissue and biofluid. Chem. Soc. Rev. 46, 5289–5310 (2017).

    Article  CAS  PubMed  Google Scholar 

  19. Yong, J., Mellick, A. S., Whitelock, J., Wang, J. & Liang, K. A biomolecular toolbox for precision nanomotors. Adv. Mater. 35, e2205746 (2023).

    Article  PubMed  Google Scholar 

  20. Huang, T.-Y., Gu, H. & Nelson, B. J. Increasingly intelligent micromachines. Annu. Rev. Control Robot. Auton. Syst. 5, 279–310 (2022).

    Article  Google Scholar 

  21. Law, J. et al. Micro/nanorobotic swarms: from fundamentals to functionalities. ACS Nano 17, 12971–12999 (2023).

    Article  CAS  PubMed  Google Scholar 

  22. Mujtaba, J. et al. Micro-bio-chemo-mechanical-systems: micromotors, microfluidics, and nanozymes for biomedical applications. Adv. Mater. 33, e2007465 (2021).

    Article  PubMed  Google Scholar 

  23. Cao, S. et al. Photoactivated nanomotors via aggregation induced emission for enhanced phototherapy. Nat. Commun. 12, 2077 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhao, H. et al. Intelligent metallic micro/nanomotors: from propulsion to application. Nano Today 52, 101939 (2023).

    Article  CAS  Google Scholar 

  25. Tang, S. et al. Enzyme-powered janus platelet cell robots for active and targeted drug delivery. Sci. Robot. 5, eaba6137 (2020).

    Article  PubMed  Google Scholar 

  26. Medina-Sanchez, M., Schwarz, L., Meyer, A. K., Hebenstreit, F. & Schmidt, O. G. Cellular cargo delivery: toward assisted fertilization by sperm-carrying micromotors. Nano Lett. 16, 555–561 (2016).

    Article  CAS  PubMed  Google Scholar 

  27. Go, G. et al. Human adipose–derived mesenchymal stem cell–based medical microrobot system for knee cartilage regeneration in vivo. Sci. Robot. 5, eaay6626 (2020).

    Article  PubMed  Google Scholar 

  28. Felfoul, O. et al. Magneto-aerotactic bacteria deliver drug-containing nanoliposomes to tumour hypoxic regions. Nat. Nanotechnol. 11, 941–947 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Alapan, Y. et al. Soft erythrocyte-based bacterial microswimmers for cargo delivery. Sci. Robot. 3, eaar4423 (2018).

    Article  PubMed  Google Scholar 

  30. Zhang, F. et al. Nanoparticle-modified microrobots for in vivo antibiotic delivery to treat acute bacterial pneumonia. Nat. Mater. 21, 1324–1332 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Yan, X. et al. Multifunctional biohybrid magnetite microrobots for imaging-guided therapy. Sci. Robot. 2, eaaq1155 (2017).

    Article  PubMed  Google Scholar 

  32. Ceylan, H. et al. 3D printed personalized magnetic micromachines from patient blood–derived biomaterials. Sci. Adv. 7, eabh0273 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Tang, S. et al. Bacterial outer membrane vesicle nanorobot. Proc. Natl Acad. Sci. USA 121, e2403460121 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhang, F. et al. Biomembrane-functionalized micromotors: biocompatible active devices for diverse biomedical applications. Adv. Mater. 34, e2107177 (2022).

    Article  PubMed  Google Scholar 

  35. Huang, G. et al. Cell-based intelligent micro/nanorobots for precise regulation and active biotherapy. Matter 6, 4158–4194 (2023).

    Article  Google Scholar 

  36. Wang, B., Kostarelos, K., Nelson, B. J. & Zhang, L. Trends in micro-/nanorobotics: materials development, actuation, localization, and system integration for biomedical applications. Adv. Mater. 33, 2002047 (2020).

    Article  Google Scholar 

  37. Gao, C. et al. Biomedical micro-/nanomotors: from overcoming biological barriers to in vivo imaging. Adv. Mater. 33, 2000512 (2020).

    Article  Google Scholar 

  38. Singh, A. K., Awasthi, R. & Malviya, R. Bioinspired microrobots: opportunities and challenges in targeted cancer therapy. J. Control. Release 354, 439–452 (2023).

    Article  CAS  PubMed  Google Scholar 

  39. Wan, M., Li, T., Chen, H., Mao, C. & Shen, J. Biosafety, functionalities, and applications of biomedical micro/nanomotors. Angew. Chem. Int. Ed. 60, 13158–13176 (2021).

    Article  CAS  Google Scholar 

  40. Hortelao, A. C. et al. Swarming behavior and in vivo monitoring of enzymatic nanomotors within the bladder. Sci. Robot. 6, eabd2823 (2021).

    Article  PubMed  Google Scholar 

  41. Zhang, B. et al. Twin-bioengine self-adaptive micro/nanorobots using enzyme actuation and macrophage relay for gastrointestinal inflammation therapy. Sci. Adv. 9, eadc8978 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Dasgupta, A. et al. Nonspherical ultrasound microbubbles. Proc. Natl Acad. Sci. USA 120, e2218847120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Xu, F., Wang, W.-H., Tan, Y.-J. & Bruening, M. L. Facile trypsin immobilization in polymeric membranes for rapid, efficient protein digestion. Anal. Chem. 82, 10045–10051 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ma, X., Wang, X., Hahn, K. & Sanchez, S. Motion control of urea-powered biocompatible hollow microcapsules. ACS Nano 10, 3597–3605 (2016).

    Article  CAS  PubMed  Google Scholar 

  45. Wang, W., Duan, W., Ahmed, S., Mallouk, T. E. & Sen, A. Small power: autonomous nano- and micromotors propelled by self-generated gradients. Nano Today 8, 531–554 (2013).

    Article  CAS  Google Scholar 

  46. Mulvana, H., Eckersley, R. J., Tang, M.-X., Pankhurst, Q. & Stride, E. Theoretical and experimental characterisation of magnetic microbubbles. Ultrasound Med. Biol. 38, 864–875 (2012).

    Article  PubMed  Google Scholar 

  47. Crake, C. et al. Enhancement and passive acoustic mapping of cavitation from fluorescently tagged magnetic resonance-visible magnetic microbubbles in vivo. Ultrasound Med. Biol. 42, 3022–3036 (2016).

    Article  PubMed  Google Scholar 

  48. Chertok, B. & Langer, R. Circulating magnetic microbubbles for localized real-time control of drug delivery by ultrasonography-guided magnetic targeting and ultrasound. Theranostics 8, 341 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Beguin, E. et al. Magnetic microbubble mediated chemo-sonodynamic therapy using a combined magnetic-acoustic device. J. Control. Release 317, 23–33 (2020).

    Article  CAS  PubMed  Google Scholar 

  50. Gusliakova, O. I. et al. Magnetically navigated microbubbles coated with albumin/polyarginine and superparamagnetic iron oxide nanoparticles. Biomater. Adv. 158, 213759 (2024).

    Article  CAS  PubMed  Google Scholar 

  51. Owen, J. et al. Magnetic targeting of microbubbles against physiologically relevant flow conditions. Interface Focus 5, 20150001 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Lee, H. et al. Microbubbles used for contrast enhanced ultrasound and theragnosis: a review of principles to applications. Biomed. Eng. Lett. 7, 59–69 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Maas, M., Todenhöfer, T. & Black, P. C. Urine biomarkers in bladder cancer—current status and future perspectives. Nat. Rev. Urol. 20, 597–614 (2023).

    Article  PubMed  Google Scholar 

  54. Kaufman, D. S., Shipley, W. U. & Feldman, A. S. Bladder cancer. Lancet 374, 239–249 (2009).

    Article  CAS  PubMed  Google Scholar 

  55. Douglass, L. & Schoenberg, M. The future of intravesical drug delivery for non-muscle invasive bladder cancer. Bladder Cancer 2, 285–292 (2016).

    Article  PubMed  Google Scholar 

  56. Somasundar, A. et al. Positive and negative chemotaxis of enzyme-coated liposome motors. Nat. Nanotechnol. 14, 1129–1134 (2019).

    Article  CAS  PubMed  Google Scholar 

  57. Keenan, T. M. & Folch, A. Biomolecular gradients in cell culture systems. Lab Chip 8, 34–57 (2008).

    Article  CAS  PubMed  Google Scholar 

  58. Ralph, S. J. & Reynolds, M. J. Intratumoral pro-oxidants promote cancer immunotherapy by recruiting and reprogramming neutrophils to eliminate tumors. Cancer Immunol. Immunother. 72, 527–542 (2023).

    Article  CAS  PubMed  Google Scholar 

  59. Szatrowski, T. P. & Nathan, C. F. Production of large amounts of hydrogen peroxide by human tumor cells. Cancer Res. 51, 794–798 (1991).

    CAS  PubMed  Google Scholar 

  60. Bar-Zion, A. et al. Acoustically triggered mechanotherapy using genetically encoded gas vesicles. Nat. Nanotechnol. 16, 1403–1412 (2021).

    Article  CAS  PubMed  Google Scholar 

  61. Xiu, W. et al. Ultrasound-responsive catalytic microbubbles enhance biofilm elimination and immune activation to treat chronic lung infections. Sci. Adv. 9, eade5446 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Chen, S. et al. A review of bioeffects induced by focused ultrasound combined with microbubbles on the neurovascular unit. J. Cereb. Blood Flow Metab. 42, 3–26 (2022).

    Article  CAS  PubMed  Google Scholar 

  63. Şen, T., Tüfekçioğlu, O. & Koza, Y. Mechanical index. Anat. J. Cardiol. 15, 334 (2015).

    Article  Google Scholar 

  64. Lakshmanan, A. et al. Preparation of biogenic gas vesicle nanostructures for use as contrast agents for ultrasound and MRI. Nat. Protoc. 12, 2050–2080 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Criado-Hidalgo, E. Keller-Miksis dynamic model simulations of CBRs. Zenodo https://doi.org/10.5281/zenodo.17717384 (2025).

Download references

Acknowledgements

This work was supported by the National Science Foundation grant (number 1931214, to W.G.) and the Heritage Medical Research Institute. We acknowledge D. M. Silevitch and P. J. Gunnarson from Caltech for support in assessing the magnetic properties and PIV analysis of bubble robots, respectively. We thank H. Salinas and C. Zavaleta from the University of Southern California (USC) for supporting the animal tests.

Author information

Authors and Affiliations

Authors

Contributions

S.T. and W.G. conceived the project. S.T. led the microrobot development. H.H., X.M., P.N.P., C.G., J.Z., E.C.-H., J.Y., J.L., G.K., S.Y. and D.W. contributed to the preparation and characterization of the microrobots. W.G., M.G.S. and Q.Z. supervised the work. S.T. and W.G. co-wrote the paper. All authors contributed to the data analysis and provided feedback on the manuscript.

Corresponding author

Correspondence to Wei Gao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Nanotechnology thanks Daniel Ahmed and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–3 and Figs. 1–34.

Reporting Summary

Supplementary Video 1

Propulsion of MBRs in urea solutions without or with magnetic control.

Supplementary Video 2

Motion of bare bubbles in urea solutions.

Supplementary Video 3

Propulsion of MBRs and bubble-MNP in biological fluids without or with magnetic control.

Supplementary Video 4

Propulsion of MBRs in urea solutions after storage.

Supplementary Video 5

US imaging of MBR motion within a microfluidic chamber.

Supplementary Video 6

US imaging of magnetically guided MBR motion within a microfluidic chamber.

Supplementary Video 7

US imaging of magnetically guided MBR motion across a narrow microchannel.

Supplementary Video 8

US imaging of MBR motion within a mouse bladder.

Supplementary Video 9

US imaging of magnetically guided MBR motion within a mouse bladder.

Supplementary Video 10

Propulsion of CBRs in urea solutions.

Supplementary Video 11

Propulsion of CBRs in biological fluids.

Source data

Source Data Fig. 2

Source data for Fig. 2.

Source Data Fig. 3

Source data for Fig. 3.

Source Data Fig. 4

Source data for Fig. 4.

Source Data Fig. 5

Source data for Fig. 5.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, S., Han, H., Ma, X. et al. Enzymatic microbubble robots. Nat. Nanotechnol. (2026). https://doi.org/10.1038/s41565-025-02109-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41565-025-02109-6

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research